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Oscillation-induced sand dunes in a liquid-filled rotating cylinder
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The dynamics of granular medium in a liquid-filled horizontal cylinder with a time-varying rotation rate is
experimentally studied. When the cylinder is purely rotated, the granular medium develops an annular layer near
the cylindrical wall. The interface between fluid and sand is smooth and axisymmetric. The time variation of the
rotation rate initiates the azimuthal oscillation of the liquid in the cylinder’s frame of reference and provokes
the onset of quasisteady relief in the form of regular dunes. The stability of the axisymmetric sand surface and
dynamics of regular dunes are examined. It is found that the ripple formation is provoked by the quasisteady
instability of the Stokes boundary layer. In the range of high Reynolds numbers, the ripple formation occurs at a
constant critical Shields number θc � 0.05. The spatial period of the relief is not sensitive to the fluid viscosity
and granule diameter; it is determined by the amplitude of oscillation and ratio between the oscillation frequency
and mean rotation rate. Long-term experiments show that there are forward and backward azimuthal drifts of
dunes. An initial analysis of the issues related to the dune migration is provided.

DOI: 10.1103/PhysRevE.94.063109

I. INTRODUCTION

It is known that surface waves in nearshore waters induce to-
and-fro motion near the seabed. This motion interacts with the
seabed, modifies its geometry, and generates bed forms, which
are known as ripples. Stokes [1] showed that in a surface wave,
in addition to the oscillatory motion, fluid has a steady second-
order drift in the direction of wave propagation. The presence
of a unidirectional component of water flow is clearly relevant
to questions that involve the ripple migration initiated by water
waves [2,3]. The migration of subaqueous sand patterns is
an important component of coastal sediment dynamics (see,
e.g., [4]). The seabed geometry directly affects fluid motion
and controls sediment transport in coastal and continental shelf
areas.

Under the to-and-fro motion of liquid, individual grains
begin to roll over the flat bed and form small ridges, which
are called rolling-grain ripples [5]. Rolling-grain ripples are
transient and evolve into larger vortex ripples: the flow over the
ripples generates vortices that transport sand from the ripple
troughs and bring it towards the ripple crest (see, e.g., [6]).
For a sufficiently large liquid velocity, the transition to a sheet
flow occurs, and the ripples are washed out from the sand
bed, which becomes flat again (see, e.g., [7]). Sheet flow with
a high sediment concentration causes notably large sediment
transport rates.

Despite the practical relevance of understanding the bed
morphology and related phenomena and the great interest of
many authors, important questions remain unanswered: What
are the relevant dynamical mechanisms that control ripple
formation? What determines the time scales and length scales
of ripples? In a review [8], these questions and related problems
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were discussed for the case of ripples under unidirectional flow
conditions.

This paper concentrates on the ripple formation and spa-
tiotemporal evolution of ripples under oscillatory liquid flow.
Ripple formation under oscillatory flow has been extensively
investigated under laboratory conditions [3,7,9–16]. In the
experiments, oscillatory flow is generated in a wave tunnel [9],
a stationary tank using water surface waves [3,7,10,11], an
oscillating container [12–15], or a rapidly rotating drum using
water surface waves [16]. A distinctive feature of the latter
study is the presence of rotation: Dyakova et al. [16] considered
that in the frame of reference of a horizontal rotating cylinder,
the gravitational force oscillates and produces fluid oscillation
in an annular liquid layer.

This paper extends the study of Dyakova et al. [16] to the
case of a completely liquid-filled cylinder with a time-varying
rotation rate:

� = �r + ϕ0�osc sin �osct, (1)

where �r is the mean rotation rate, ϕ0 is the angular amplitude
of azimuthal oscillation, and �osc is the radian frequency of
oscillation.

In a purely rotating cylinder, the granular medium is
uniformly distributed near the cylindrical wall: The interface
between liquid and sand is axisymmetric. If the rotation rate
is time varying, liquid oscillates in the cylinder’s frame of
reference and provokes sand bed instability.

The dynamics of the liquid inside a cylinder with a time-
varying rotation rate is qualitatively similar to libration-driven
liquid flows. Better knowledge of these flows is of great interest
in astrophysics, where libration is driven by gravitational
interactions and used to investigate the interior structure of
planets [17–20].

In this paper, we present an experimental method to
demonstrate sand bed instability under time-varying rotation

2470-0045/2016/94(6)/063109(9) 063109-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.063109


VERONIKA DYAKOVA, VICTOR KOZLOV, AND DENIS POLEZHAEV PHYSICAL REVIEW E 94, 063109 (2016)

1

2

3

H

D 5

4

FIG. 1. Scheme of the experimental setup.

and report experimental results for the length scale of sand
ripples and their long-term evolution.

The outline of this paper is as follows: the experimental
setup is described in Sec. II. The experimental results for the
stability of an axisymmetric sand bed and time evolution of
ripples and a discussion of the length scale of the dunes are
presented in Sec. III. The conclusions are provided in Sec. IV.

II. EXPERIMENTAL SETUP

The scheme of the experimental setup is shown in Fig. 1. It
consists of a hollow transparent cylinder with an inner radius
R = D/2 = 6.3 or 7.2 cm and length H = 7.8 or 2.2 cm. The
cylinder was filled with a water-glycerol solution (kinematic
viscosity ν = 3.8–13 cSt, density ρl = 1.12–1.17 g/cm3) and
seeded with glass spheres of density ρs = 2.50 g/cm3 ± 2%.
Experiments were performed with particles of two different
mean diameters: d = 0.018 cm ±15% or 0.009 cm ±10%.
The mass of the granular medium was 80 g in the cylinder
of radius R = 7.2 cm and 200 g in the cylinder of radius
R = 6.3 cm.

Cylinder 1 was supported by roller bearings 2 and mounted
on a massive horizontal platform. Stepper motor 3 was coupled
to the cylinder and provided rotation about its horizontal axis
with a mean angular velocity �r up to 75 rad/s and accuracy of
0.05%. The stepper motor also provided harmonic oscillation
of the angular velocity in the form of ϕ0�osc sin �osct ,
where �osc could be selected between 2 and 75 s−1 and
accuracy of 0.05%. In terms of dimensionless numbers, we
explored the following ranges: the ratio between the oscillation
frequency and mean rotation rate f ≡ �osc/�r ∈ [0.03; 1]
and parameter ε ≡ ϕ0f ∈ [0; 0.5].

Each experiment followed a standard protocol. The cylinder
was slowly accelerated from rest to several revolutions per
second. After a solid body rotation was reached, the granular
medium developed an annular layer near the cylindrical wall.
The thickness of the axisymmetric annular layer was h0 = 0.56
cm in the cylinder of radius R = 7.2 cm and 0.45 cm in
the cylinder of radius R = 6.3 cm. Then, the stepper motor
was activated to oscillate at definite frequency �osc and
parameter ε. To determine the threshold of ripple formation, we
followed the interface between the fluid and granular medium
in stroboscopic illumination, which was emitted by lamp 4.
Each experiment lasted for dozens of minutes (∼104–105

cycles of oscillation).
If the surface remained axisymmetric for a sufficiently long

time, we terminated the experiment and began a new one at a

larger value of ε. As soon as the axisymmetric sand surface
became disturbed, photo registration by the DSLR camera 5
Nikon D7000 and lenses Nikkor 50 mm f/1.8 G was initiated.

The main scope of this paper is to determine the stability
criterion for the axisymmetric surface of the granular medium,
the length scale of regular ripples, and a physical explanation
of the ripple formation and related issues.

III. EXPERIMENTAL RESULTS

A. Stability of an axisymmetric sand bed

When the horizontal cylinder was stationary, the granular
medium was at rest at the bottom of the cylinder. When the
cylinder was rotated with a low to moderate angular velocity,
its rising side dragged spherical particles from the bottom.
After a few revolutions, an almost uniform suspension of
glass spheres originated in the rotating low-viscosity fluid. In a
rapidly rotating cylinder, the annular granular layer developed
[Fig. 2(a)]. Without cylinder oscillation, the fluid and granular
medium underwent a solid-body rotation, and the interfacial
surface was axisymmetric.

In the experiments, we provided rapid rotation, when the
ratio of the gravitational force to the centrifugal force was

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 2. Time evolution of dunes: R = 7.2 cm, h0 = 0.56 cm, ν =
5.0 cSt, d = 0.018 cm, �r = 31.4 rad/s, �osc = 6.28 s−1, ε = 0.15
(threshold value of ε is 0.135). Images (a)–(f) were captured at time
t = 0, 5, 15, 30, 45, and 55 min. The rotation is counterclockwise.
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FIG. 3. Angular amplitude of oscillation versus the nondimen-
sional frequency of oscillation at the threshold of ripple formation.
The solid lines correspond to the best data fit for two types of glass
particles: ϕ0 ∼ f −1.2.

� = g/�2
r a ∼ 0.1 (a is the radius of the axisymmetric sand

bed), which is equivalent to a weak effect of gravitational force.
The time variation of the rotation rate initiated the azimuthal

oscillation of fluid in the cylinder’s frame of reference, whose
frequency and amplitude were determined by �osc and ε. In
the experiments with fixed �r and �osc and increasing ε, the
initially axisymmetric interface between the fluid and granular
medium became unstable due to the ripple growth. When the
angular amplitude of oscillation ϕ0 increased, we observed two
regimes of ripple formation: rolling-grain ripples with grains
moving back and forth at the interface between the granular
medium and fluid and quasisteady dunes with perpendicular
crests to the fluid oscillation [Figs. 2(b)–2(f)].

At the threshold of ripple formation, irregular dunes of
small height were observed. At larger values of ε, the
ripples became regular and covered the entire surface area
of the granular medium. The typical evolution of an initially
axisymmetric sand bed, which destabilized under the action of
an oscillatory flow, is shown in Fig. 2. Typically, ripples have
an asymmetrical cross section: one slope is steep and the other
is gentle.

The experimental data on the threshold of ripple formation
are presented in the plane of the angular amplitude of
oscillation ϕ0 ≡ b/a (b is the amplitude of liquid oscillation;
a is the radius of axisymmetric sand bed) and nondimensional
frequency of oscillation f ≡ �osc/�r (Fig. 3). The rotation
rate and frequency of oscillation were varied to cover various
ranges of f and ϕ0. According to the data in Fig. 3, the critical
value of the amplitude of oscillation strongly depends on
the particle diameter and is affected by the liquid viscosity
(e.g., compare two types of triangles): a greater viscosity
corresponds to a smaller amplitude at the threshold of ripple
formation. The solid lines correspond to the law: ϕ0 ∼ f −1.2.

In a recent study by Rousseaux et al. [14], the stability
of the horizontal sand-fluid interface in a vertical cylindrical
container with rotary oscillation was studied. Similar to

the problem discussed here, they separated two different
thresholds: one for grain movement and the other for ripple
formation. In other words, ripple formation requires the
initiation of grain motion. In our experiments, the threshold
for the grain motion is difficult to precisely determine, and we
were concerned with the threshold for ripple formation.

We selected the Shields number θ as a control parameter
for this instability, which is the ratio between the viscous shear
stress at the top of the sand bed and the apparent weight of
a single particle. The critical Shields number is required to
initiate the motion of the sand particles and associated dune
growth. According to [21], the typical critical Shields number
is θc � 0.05.

We can estimate θc by defining the viscous shear stress and
apparent weight as

νρlb�oscd
2/δ (2)

and

(ρs − ρl)�
2
r ad3, (3)

respectively. Here, b is the amplitude of liquid oscillation;
δ = √

2ν/�osc is the thickness of the Stokes boundary layer
near the sand surface because of the liquid oscillation. The
rapid rotation of the cylinder implies a specific definition of
the apparent weight: We consider the inertial centrifugal force
instead of the gravitational force [Eq. (3)].

Finally,

θ = νb�osc

(ρ − 1)�2
r adδ

, (4)

where ρ = ρs

ρl
is the relative density of granules with respect

to the liquid.
The experimental verification of θc � 0.05 is challenging

because the flow in the Stokes layer is laminar only in a limited
range of Reynolds numbers. A popular assumption to treat the
stability of time-dependent states is the quasisteadiness: the
basic flow is assumed to vary so slowly in comparison with the
growth of a disturbance that it can be treated as a steady basic
state using an instantaneous, frozen profile. Thus, according
to the quasisteady theory [22], the crisis of the oscillatory
motion of a liquid confined between parallel plates, when one
plate is at rest and the other oscillates, is determined by the
stability of the velocity profile in the phase of zero flow rate.
The analysis finds that for Reδ > 102, the oscillatory flow is
unstable to perturbations with a nondimensional wave number,
which is scaled with the thickness of the Stokes boundary layer:
kδ = 0.5. Reynolds number Reδ is defined with the boundary
layer thickness according to

Reδ = b�oscδ

ν
. (5)

A similar effect was found for the stability problem of the
Stokes layer in a stationary planar channel [23] and a horizontal
rotating cylinder that was partially filled with liquid [24]. In
both cases, the intensive vortices rise in a certain phase of the
cycle and vanish in the remainder of the cycle. In addition,
the experimental data analysis of Kozlov and Polezhaev [24]
reveals that the wave number of vortices, which is defined with
the boundary layer thickness, is kδ ≈ 0.5.
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FIG. 4. Critical Shields number for the onset of bed form
instability as a function of the Reynolds number. The dotted line
corresponds to the critical Shields number θc = 0.05. Here and below
(if not stated otherwise), the solid line is a guide for the eye.

We measured the wavelength λ at the initial phase of the
ripple growth and calculated the wave number kδ ≡ 2πδ/λ.
The experimental results are consistent with the obtained
data in the quasisteady theory: kδ = 0.56 ± 0.10. Figure 4
demonstrates the experimental results of the threshold of ripple
formation in the plane of Reδ and θc. In the range of large
Reynolds numbers (Reδ > 100), the experimental data on the
critical Shields number are consistent with the typical value
θc � 0.05 [21]. With the data on the initial wave number kδ ,
the curve kink at approximately Reδ = 100 in Fig. 4 verifies
that ripple growth is provoked by the onset of quasisteady
instability of the oscillatory fluid flow.

This result is consistent with the experimental observations
of Rousseaux et al. [13]. Rousseaux et al. studied subaqueous
sand ripples in an oscillating annular cell and revealed that
the critical Shields number θc tended to a constant value
in the range of Reδ > 100. Rousseaux et al. also measured
the wavelength of sand ripples before the coarsening process
became important (see Fig. 7 in [13]). Based on these
measurements, we found that the wave number kδ varied in the
range of 0.4–1.0 for the fine grains δ/d � 1. This phenomenon
was not explained in [13], but we believe that the exactly
quasisteady instability of the oscillatory flow is responsible
for ripple formation.

B. Time evolution and length scale of ripples

Regular relief develops over a long period of time: depend-
ing on the experimental conditions, ripples continue to grow
for a few minutes or dozens of minutes. Figure 5 shows the
dependence of the relative height h/h0 and azimuthal length
λ/h0 of the dunes on time. Here, h is the distance from
the cylindrical wall to the crest and the toe of dunes, h0 is
the thickness of the axisymmetric annular layer of granular
medium, and λ is the distance between crests of adjacent
dunes. The empty circles in Fig. 5(a) correspond to the crest
height; the filled circles correspond to the thickness at the toe
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FIG. 5. Dependence of the relative height h/h0 (a) and azimuthal
length λ/h0 (b) of dunes on time: R = 6.3 cm, h0 = 0.45 cm, ν = 10
cSt, d = 0.018 cm, �r = 31.4 rad/s, �osc = 12.6 s−1, ε = 0.163. (a)
The empty and filled circles were obtained for the thickness at the
crest and toe of the dunes.

of the dunes. In the growth phase of the ripple formation, the
dunes grew because of the sand transport from toe to crest.
Comparing the data in Figs. 5(a) and 5(b), we conclude that
after approximately half an hour, the quasisteady state was
reached: the spatial period and height of the relief remained
constant.

In the experiments, we used stroboscopic illumination to
visually determine the threshold of ripple formation. The
threshold can also be determined from the dependence of
the dimensionless azimuthal length λ/h0 on parameter ε: the
azimuthal length linearly increases with ε (Fig. 6).

Specific features appeared at high values of ε: in a certain
phase of fluid oscillation, surface granules began floating, and
the dune slopes became gentler [e.g., comparing Figs. 7(a)
and 7(f)] and the sheet flow occurred. Furthermore, the height
of the dunes decreased and the azimuthal size remained
constant (Figs. 6 and 7 at ε > 0.4).

Figure 8 shows the dependence of the dune wavelength on
the amplitude of oscillation. The experiments were performed
at a fixed rotation rate �r = 31.4 rad/s and various frequencies
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FIG. 6. Dependence of the relative maximum height and spatial
period of dunes on ε: R = 7.2 cm, h0 = 0.56 cm, ν = 5.0 cSt, d =
0.018 cm, �r = 31.4 rad/s, �osc = 6.28 s−1.
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FIG. 7. Regular dunes in a rotating and oscillating cylinder: R =
7.2 cm, h0 = 0.56 cm, ν = 5.0 cSt, d = 0.018 cm, �r = 31.4 rad/s,
�osc = 6.28 s−1, ε = 0.18, 0.25, 0.32, 0.38, 0.45, and 0.50 [(a)–(f)].
The rotation is counterclockwise.

0 4 8 12 16 20
b (cm)

(c
m

)

2

4

8

6

, cSt d, cm osc, s-1

5.0     0.018    3.14
5.0     0.018    4.71
5.0     0.018    6.28
5.0     0.018    12.6

, cSt d, cm osc, s-1

9.0     0.018    6.28
9.0     0.018    12.6
5.0     0.009    3.14
5.0     0.009    4.71
5.0     0.009    6.28

FIG. 8. Dependence of the spatial period of quasisteady relief
λ on the amplitude b of the cylinder oscillation: R = 7.2 cm,
�r = 31.4 rad/s.

of oscillation �osc. The open, semifilled and filled symbols
of the same type (squares, circles, triangles, and diamonds)
illustrate the data that were obtained at identical values of �osc

or f ≡ �osc/�r . The data obtained in the experiments with
granules of two sizes and liquids of different viscosities are
consistent with one another for equal f . This result indicates
that nondimensional frequency f is one of the governing
parameters of the problem.

The starting point for discussion of the ripple length
variation is the experimental fact that the ripple length of
sand ripples is proportional to the liquid amplitude: λ/b is
constant. This relation was first noted by [25] and later verified
by [12,14,15]. However, as shown in Fig. 8, the ripple size does
not linearly depend on the amplitude of oscillation. The data
in Fig. 8 clearly show that the ripple length depends on both
the amplitude of oscillation b and ratio �osc/�r .

We believe that the relation between these two variables
is as follows. As shown in the paragraph about the stability
of the axisymmetric sand bed, the azimuthal fluid motion
transports glass spheres along the sand bed. The action of
the Coriolis force fc ∼ ρlU�r on the azimuthal component of
fluid velocity U induces the appearance of a vortical fluid flow
of radius L. The centrifugal acceleration of this circular motion
is scaled as U 2/L. The fluid transports glass spheres along the
sand bed and thereby imposes the wavelength λ = λ(L). Using
a typical value of fluid velocity U ≡ b�osc, we can estimate
the size of the ripples:

λ ∼ b�osc/�r. (6)

According to Eq. (6), the typical length along the interface
between the fluid and the sand bed is not the amplitude of
fluid oscillation b but the distance b∗ ≡ b�osc/�r , which is
the displacement distance of liquid during a rotation cycle.
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FIG. 9. Nondimensional wavelength of the dunes versus the
angular amplitude of oscillation.

Figure 9 shows the dependence of the nondimensional
azimuthal length λ/b∗ of the dunes on the angular amplitude of
oscillation ϕ0. It is noteworthy that the experimental data are
satisfactorily consistent for different viscosities and particle
sizes. In the range ϕ0 > 1, the ratio λ/b∗ is nearly constant
and approximately equal to 2.5. This result is consistent with
the reported data by [12,14,15,25].

C. Ripples migration

Figure 10 demonstrates the time evolution of dunes in
the course of a long-term experiment: symbols illustrate the
positions of the dune crests. With time, the number of dunes
decreases because of coalescence: small dunes bump into
larger ones. A few minutes later, the number of dunes reaches
a quasisteady value. According to the observations, the dunes
migrate in the azimuthal direction. At first sight, this result
is puzzling because the liquid undergoes pure oscillatory
flow.

We offer the following explanation for this intriguing
phenomenon. In a rotating and oscillating cylinder, the liquid
bulk rotates as a solid body at a constant rotation rate �r

almost everywhere except the thin viscous boundary layers
near the sand surface and end walls of a cylinder. Because
the angular velocity � oscillates around the mean rotation
rate �r [see Eq. (1)], the liquid rotates more slowly than the
cylinder during the first half cycle of oscillation and faster
than the cylinder during the second half cycle. Moreover, in
the cylinder’s frame of reference, the directions of azimuthal
liquid flow in the first and second half cycles are the opposite.
During the first half cycle, the liquid flow transports sand grains
in the direction opposite to the cylinder’s rotation (so-called
backward migration). During the second half cycle, sand
grains are transported in the direction of the cylinder’s rotation
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FIG. 10. Spatiotemporal evolution of dunes: R = 6.3 cm, h0 =
0.45 cm, ν = 10 cSt, d = 0.018 cm, �r = 31.4 rad/s, �osc = 12.6
s−1, ε = 0.17 (a) and 0.22 (b); the symbols illustrate the positions of
the dune crests. The azimuthal angle α increases in the direction of
the cylinder rotation.

(forward migration). One can imagine that the total mass flux
is zero, but it is not because of the unequal action of centrifugal
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force on the sand granules in the first and second half cycles
of oscillation. During the first half cycle, when the cylinder
rotates faster than the liquid interior, the granules experience a
larger centrifugal force and travel backward a shorter distance.
During the second half cycle, the centrifugal force decreases
and the granules travel forward a longer distance. Therefore,
the total mass transport is codirected with the cylinder rotation
[Fig. 10(a)].

The typical velocity �drift of this mass transport is on the
order of a few degrees per minute [Fig. 10(a)]. The velocity
of migration remains constant because the number of dunes
reaches the steady-state value.

Surprisingly, the direction of mass transport can reverse
at a large amplitude of oscillation [Fig. 10(b)]. An intuitive
explanation of the backward migration is as follows. When
the amplitude of oscillation is relatively small, sand is dragged
by the liquid flow along the windward side; after reaching the
dune crest, it is redistributed along the slip face. During the
following half cycle, the process is repeated in the opposite
direction. As previously discussed, this phenomenon leads to
the onset of forward migration. What will change at larger
amplitudes? According to the observations, the transition from
the vortex ripple flow to the sheet flow occurs [Figs. 7(e)
and 7(f)]. During the half cycle, when � < �r (i.e., under
reduced centrifugal force), the granules are transported in
the direction of the cylinder rotation and obtain a sufficiently
large velocity to become suspended in the liquid. During the
following half cycle (under increased centrifugal force), the
granules deposit on the interface, whereas the sediment cloud
is transported in the backward direction.

Backward migration of dunes is a rare but not unique
phenomenon. In laboratory experiments, Dumas et al. [9]
observed similar dynamics of subaqueous sand dunes gener-
ated under combined flows. However, the relevant dynamical
mechanism that controls the backward migration of sand dunes
remains unclear. Dumas et al. [9] noted that the phenomenon of
backward migration only appeared in the intensive oscillatory
flow. This fact is qualitatively consistent with our experimental
data: In a rotating and oscillating cylinder, the effect of
backward migration appears at large oscillation acceleration
amplitude b�2

osc, i.e., intensive liquid oscillation (negative drift
velocity �drift in Fig. 11). Experimental data analysis shows
that the region of existence of forward migration narrows
when the nondimensional frequency f increases. We observe
an exclusively forward drift at f = 0.20, an exclusively
backward drift at f = 0.50, and both types of dune migration
at intermediate values of f .

Figure 12 demonstrates the dependence of the nondimen-
sional drift velocity on the ratio between wavelength λ and
amplitude of oscillation b. The experimental data points tend
to fall on a single curve if they are obtained at close values of f

but various values of the mean rotation rate �r and frequency
of oscillation �osc (triangles in Fig. 12). This result proves that
the nondimensional frequency f is one of the parameters that
controls the dune migration.

We expect that at smaller values of λ/b, the drift velocity
of the dunes at f = 0.20 (squares in Fig. 12) decreases; in
fact, all curves have similar shapes regardless of f . With the
increase in ε, the curves shift to the right (larger values of λ/b)
and the domain of existence of the forward migration narrows.

200 300 400 500 600

b osc
2 (cm/s2)

-0.12

0

0.12

0.24

dr
ift

(ra
d/

m
in

)

               f r, rad/s osc, s-1

 0.20         31.4         6.28
 0.29         37.7         11.0
 0.30         31.4         9.42
 0.33         37.7         12.6
 0.50         31.4         15.7

FIG. 11. Dependence of the drift velocity on the amplitude
of the tangential acceleration of the cylinder. The experiments
were performed with particles with mean diameter d = 0.018 cm:
R = 7.2 cm, ν = 10 cSt.

This figure shows that the dependence of the drift velocity
on the ratio between wavelength λ and amplitude of oscillation
b is nonmonotonic. According to the analysis of dune
migration, this effect can be explained by the transition from
the regime of vortex ripples to the sheet flow. In the vortex
ripple regime, dunes migrate in the direction of the cylinder
rotation: The positive drift velocity decreases with the increase
in nondimensional length λ/b (the right side of the curves in
Fig. 12). The transition to the sheet flow leads to the reverse
of the direction of dune migration (the left side of the curves
in Fig. 12).

By combining two control parameters f = �osc/�r and
λ/b, we introduce a new parameter λ/b∗ to accommodate

0.5 1 1.5 2 2.5
λ/b

-0.07

0

0.07

0.14

Ω
dr

ift
/Ω

r
10

3

FIG. 12. Dependence of the nondimensional drift velocity on the
nondimensional wavelength λ/b. The symbols correspond to those
in Fig. 11.
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0.14
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ift
r

 10
3

+

FIG. 13. Dependence of the nondimensional migration velocity
on the ratio between wavelength λ and distance b∗. The symbols
correspond to those in Fig. 11.

various data on the drift velocity. Here, b∗ ≡ b�osc/�r is the
displacement distance of liquid during a rotation cycle. As
we have identified, λ/b∗ determines the size of the dunes in
the range of large cylinder oscillation amplitudes (see Fig. 9).
Figure 13 illustrates that the experimental results obtained at
different values of f are consistent with one another, but only
in the vortex ripple regime, wherein the drift velocity decreases
with the increase in nondimensional length λ/b∗. Thus, the
displacement distance of liquid during a rotation cycle controls
the velocity of forward migration in the vortex ripple regime
(the right side of the curves in Figs. 12 and 13). The appearance
of the left side of the curves can be explained by the transition
to the sheet flow. In the framework of this discussion, the data
on the backward migration rate are not clearly understood and
require further investigation. We believe that more advanced
analysis will determine the relevant dynamical mechanism that
controls the forward and backward dune migration.

IV. CONCLUSION

The dynamics of granular medium in a liquid-filled horizon-
tal cylinder with a time-varying rotation rate was experimen-
tally studied. When the cylinder purely rotates, the granular
medium develops an annular layer near the cylindrical wall and
undergoes a solid-body rotation. The interface between fluid
and sand is smooth and axisymmetric. The time variation of
the rotation rate initiates the azimuthal oscillation of liquid
in the cylinder’s frame of reference and provokes regular
ripple formation. According to the analysis, the ripples grow if
there is a quasisteady instability of oscillatory liquid motion.
In the range Reδ > 100, the threshold of ripple formation is
determined by a critical Shields number θc � 0.05.

The spatial period of the relief is based on the displacement
distance of fluid during a rotation cycle b∗ = b�osc/�r

and is not sensitive to the fluid viscosity and granule size.
This result demonstrates the fundamental difference between
ripples formed in the rotating containers and those formed in
the nonrotating ones, where the ripple length is determined by
the amplitude of fluid oscillation.

The experimental data which were obtained in cylinders
of different radii with granules of various diameters, obey
the law λ/b∗ � 2.5 in the range of large cylinder oscillation
amplitudes ϕ0 > 1. In long-term experiments, we observed
dune migration in the direction of rotation of the cylinder or the
opposite direction. Forward migration is observed in the vortex
ripple regime and can be explained by the asymmetric action
of the centrifugal force on the granules in opposite phases of
an oscillation cycle. The forward migration rate is determined
by the nondimensional wavelength and decreases with λ/b∗.
The backward migration occurs in the sheet-flow regime. The
mechanism responsible for the observed backward migration
is not clearly understood and requires further investigation.
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