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Anisotropic macroturbulence and diffusion associated with a westward zonal jet:
From laboratory to planetary atmospheres and oceans
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Turbulence with inverse energy cascade and its transport properties are investigated experimentally in a
flow associated with a westward propagating jet. Turbulence and the jet were produced by an electromagnetic
force in a rotating tank filled with an electrolytic saline solution. The parabolic free surface emulated the
topographic β effect which evoked the zonation. The spectral and transport flow characteristics were highly
anisotropic. Turbulence is diagnosed by exploring the analogy between vertical and horizontal turbulent overturns
in, respectively, stably stratified and quasigeostrophic flows which gives rise to a method of potential vorticity
(PV) monotonizing. The anisotropization of transport properties of the flow is investigated using the finite scale
Lyapunov exponent technique. After initial exponential particle separation, radial (meridional in geophysical
and planetary applications) diffusion attains a short-ranged Richardson regime which transitions to the Taylor
(scale-independent diffusivity) one. The azimuthal (zonal) diffusion exhibits a double-plateau structure which
attains a superdiffusive regime on large scales. The transition to the Taylor regime for the radial diffusion
takes place at a scale of turbulence anisotropization. The radial eddy diffusivity in both regimes as well as the
transition scale are all determined by the rate of the inverse energy cascade, ε, that can be diagnosed by the PV
monotonizing. Conversely, ε can be deduced from the scale of the Richardson-Taylor regime transition in the
radial eddy diffusivity which, thus, provides an additional tool of diagnosing anisotropic macroturbulence with
inverse energy cascade.
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I. INTRODUCTION

There has been a continuing interest in zonal (east-west)
flows due to their importance for planetary atmospheric and
oceanic circulations. Giant gas planets boast powerful zonal
jets in both directions [1]; strong eastward jets dominate
Earth’s atmosphere and ocean’s Antarctic Circumpolar and
western boundary currents’ extensions following their sep-
arations from the coasts [2], and narrower and weaker
alternating jets or “striations” are observed in the oceans at
midlatitudes [3–5]. The jets owe their existence to the restoring
force associated with the latitudinal variation of the Coriolis
parameter, f = 2� sin θ , where � is the angular velocity
of the planetary rotation, and θ is the latitude. A measure
of this variation is β = (1/R)df/dθ = 2(�/R) cos θ , R being
the planetary radius, and its impact is known as a β effect. The
β-effect-related force is akin to an elastic force as it tends
to return a displaced fluid particle to its equilibrium latitude
giving rise to fluctuations around that latitude known as the
Rossby waves. In summary, a fluid with a β effect is said to
exhibit the Rossby wave elasticity [6].

Planetary circulations are usually concentrated in thin
layers of large horizontal extent such that the horizontal
velocities are much larger than their vertical counterparts.
Although the flows are stably stratified, they feature large
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Reynolds numbers and are strongly nonlinear and turbulent.
Due to the effects of geometric constraint, strong rotation and
stable stratification, planetary fluids acquire properties of two-
dimensional (2D) turbulence. In addition, planetary rotation
and stable stratification facilitate material conservation of a
new variable, the potential vorticity (PV) (e.g. [7]), which is
intimately related to Rossby waves and controls many dynamic
features. Rossby waves interact with planetary turbulence
and, together, they form complicated wave-turbulence jigsaw
puzzles [8] in which waves and turbulence coexist on all
scales [9]. The union of turbulence and waves characteristic
of large-scale planetary circulations can be thought of as
macroturbulence [10].

The formation and maintenance of zonal jets can be related
to the horizontal mixing of PV, in the same fashion as the
formation and maintenance of layered structures in a stably
stratified ocean can be related to the vertical mixing of the
density gradient (e.g. [11,12]). While the former is a process
that takes place on large scales and involves Rossby waves and
turbulence with up-scale energy cascade, the latter occurs on
relatively small scales and embroils the aggregation of internal
gravity waves and turbulence characterized by a down-scale
energy cascade.

Turbulent mixing in both cases is sustained by shear
instabilities that draw their energy from external sources. The
forcing renders the density and PV profiles nonmonotonic
thus facilitating the instabilities. The power of the forcing
that goes into turbulence in both cases can be estimated by
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monotonizing the density and PV profiles using the Thorpe’s
sorting algorithm [13–15]. In the former case, this algorithm
yields the Thorpe’s scale, LT , that was found commensurate
with the Ozmidov length scale, LO = (ε/N3)1/2, where ε

is the rate of the down-scale energy transfer and N is the
Brunt-Väisälä frequency. Physically, LO is a scale at which
the turbulent eddy turnover time is equal to the period of
internal gravity waves. The determination of LT , which is
often quite straightforward, is thus practically equivalent to
estimating ε from LO . In the latter case, the sorting algorithm
yields a scale LM that was found commensurate with the scale
Lβ = (ε/β3)1/5 [16], where ε is the rate of the up-scale energy
transfer [17–19]. In analogy to LO , turbulence dominates the
dynamics on scales shorter than Lβ , while Rossby waves
prevail on longer scales [20]. In practical situations, finding
ε from LM is much simpler and efficient than using the spectra
that require extensive spatial and temporal data.

Macroturbulence entangles dynamics and transport and so
some of the variables may be pertinent to both processes. By
obtaining these variables from the dynamics, we may be able
to learn about the transport and, vice versa, characteristics
of turbulence may be amenable to diagnosis by analyzing
transport and dispersion. One of the most important variables
of such “dual use” is the rate of the energy transfer ε as it relates
large-scale forcing to small-scale dissipation for flows with
down-scale, or direct energy cascade, and small-scale forcing
to large-scale dynamics for flows with up-scale, or inverse
energy cascade. On the other hand, such crucial characteristics
as eddy viscosities and eddy diffusivities are often related to
either of ε dependent on the nature of a flow [21,22].

Generally, the external forcing (e.g. the solar heating) plays
a paramount role in sustaining all planetary dynamic and
transport phenomena and so our ability to estimate ε cannot
be overstated. Numerous oceanographic and planetary obser-
vations indicate that the large-scale dispersion often obeys the
Richardson’s diffusion law at diverse locations and on a variety
of scales [23–28]. Richardson’s law involves ε and points to the
underlying role of turbulence. The method of PV monotonizing
can potentially be used for its estimation. The present study
elaborates another method of diagnosing macroturbulence and
estimating ε, this time by analyzing dispersion processes.
The basic premise of this method is the observation detailed
in [29] that in flows with dispersive waves and anisotropic
inverse energy cascade, the meridional diffusion undergoes
the transition from Richardson’s to Taylor’s diffusion regime.
The scale of this transition is close to Lβ , the fact that allows
us to develop a new method which can be an alternative
to PV monotonizing. When the data is sufficient to use PV
monotonizing and dispersion estimate independently, the two
methods provide a better constraint of the value of ε and allow
us to avoid using data-intense spectral tools.

The analysis necessary for developing such diagnostics can
be conveniently performed in a well-controlled environment
of a laboratory facility. In our previous investigation, a
facility at the University of Rome was used to explore the
method of the PV monotonizing and quantify the relationship
between LM and Lβ [16]. The present study extends this
analysis to turbulent diffusion in a basic flow associated
with a westward jet. Particle dispersion will be quantified

by means of the finite-scale Lyapunov exponent (FSLE)
method.

There are several reasons to concentrate the attention in
the preceding and present studies on a westward jet despite
the fact that major terrestrial oceanic and atmospheric jets are
eastward. Physically, westward jets are prone to instabilities
leading to PV mixing and eddy shedding (e.g. [30]). These fea-
tures are common to the westward South-Equatorial currents
in all oceans. Under the action of a seasonal forcing, these cur-
rents periodically become unstable and radiate waves known as
the Tropical Instability Waves (TIWs) [31–33] and associated
anticyclonic eddies to the north and south of the equator that
play an important role in weather variability such as the El
Niño–Southern Oscillation (ENSO) phenomenon (e.g. [34]).

Even more dramatic examples emerge from consideration
of circulations of giant planets’ atmospheres. Almost all west-
ward jets on Jupiter and Saturn are barotropically unstable [35]
and shed eddies of a variety of shapes, both cyclonic and
anticyclonic. On Jupiter, a near 30◦N westward jet irregularly
undulates in latitude and is time variable in appearance, the
features for which it was coined “The Jovian Ribbon” [36]. On
Saturn, the 40◦N westward jet becomes unstable on its southern
flank and radiates trains of westward propagating cyclonic
eddies sometimes referred to as the String of Pearls [37,38].
Many details of these phenomena are still unknown, either for
the lack of data or understanding of physics, and our laboratory
investigations are expected to provide new knowledge in both
areas.

The paper is composed in the following manner. Section II
describes the experimental setup, Sec. III provides the spectral
analysis of the flow field, Sec. IV compares eddy diffu-
sivities in quasigeostrophic and stably stratified turbulence
and introduces the notion of the available rotational kinetic
energy (ARKE) as a rotational counterpart of the available
potential energy (APE), Sec. V discusses the FSLE method,
Sec. VI applies this method to describe experimental results
on diffusion, and Sec. VII is summary and conclusions.

II. EXPERIMENTAL SETUP

To study the method of PV monotonizing and associated
diffusion laws, a series of laboratory experiments was per-
formed in a tank filled with an electrolytic saline solution
(mean depth of 4 cm) rotating counterclockwise (to emulate
the Earth’s rotation) with the angular velocity � = 3.0 rad
s−1. The experimental facility is shown on Fig. 1. A detailed
description of the facility is given in [39,40] where we studied
anisotropic dynamic and transport processes in flows with
a homogeneous forcing and their dependence on the flow
parameters (i.e., the intensity of the forcing, rotation rate,
etc.). The radius of the working section and the deformation
radius were R = 29.7 cm and LD � 10.4 cm, respectively.
The parabolic curvature of the free surface evoked a local β

effect; the average value of β was about 0.53 cm−1 s−1. The
forcing was produced by passing a constant electric current
through the working fluid over an array of 10 small, 12 mm
in diameter, permanent magnets mounted under the bottom of
the tank in a 90◦ arc of a radius r = 17 cm. The magnets were
spaced at 1–2 cm from each other and had the same sense of
polarity. This configuration induced a westward momentum
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FIG. 1. Schematic representation of the experimental device. The
magnets are placed in a 90◦ arc of the radius a = 17 cm (sector I).

that facilitated formation of a westward zonal jet. Unlike the
meandering oceanic jets, sometimes referred to as striations,
the stationary position of the magnets locked jet’s location. The
sector that contained the magnets was designated as sector I.
The other three sectors were used for studies of the dynamics
and diffusion in flows with inhomogeneous forcing and/or no
direct forcing at all. The electromagnetic force also produced
chaotic stirring whose scale, Lξ � 1 cm, was determined by
magnets’ diameter and spacing, both about 1 cm. This forcing
sustained the inverse energy cascade.

Velocities were measured by analyzing images of passively
advected styrene particles with mean size of about 5 × 10−5 m
monitored by a video camera with a spatial resolution of
1023 × 1240 pixels at a frequency of 20 Hz. The particles were
seeded at a fluid surface illuminated by two lamps. The contrast
was enhanced by using white particles over a black bottom.
The transparent lid of the tank insulated the working fluid from
the ambient air. The camera corotated with the system and the
data recording computer. The acquired images were analyzed
by a feature tracking algorithm [39] that reconstructs particle
trajectories from displacements between subsequent frames
over a fixed time step of 0.05 s and produces instantaneous
Lagrangian velocities. The time history of the Eulerian velocity
field was then obtained by interpolating the sparse data over a
regular grid. The polar coordinate grid employed in this study
had N = 60 circles (radial resolution of about 0.5 cm) and
M = 90 rays for each of the four sectors (angular resolution
of 1◦).

The Rossby number of the large-scale flow, Ro = U/�L,
U and L being typical velocity and horizontal scales, respec-
tively, was reasonably small, Ro = O(10−1), such that the flow
could be analyzed in the framework of forced quasigeostrophic
turbulence [41]. An important variable in this theory is the
potential vorticity, q, given by

q = (ζ + 2�)/H (r), (1)

where ζ is the vertical component of the relative vorticity and
H (r) is the fluid’s depth. The variation of H with r produces
a topographic γ effect which causes flow anisotropization and

TABLE I. Summary of the experimental setup and results.

Expt. I a 104εb CZ nc Lβ
d U LR

e Rβ
f

(A) (cm2 s−3) (cm) (cm s−1) (cm)

29 2 2.1 0.2 13 0.3 0.1 0.6 1
30 4 11.0 0.2 9 0.4 0.3 1.1 1.2
31 6 29.0 0.2 8 0.45 0.6 1.5 1.36

aElectric current.
bThe rate of the inverse energy cascade.
cnth zero of the Bessel function with an index m, Jm(αmn) = 0.
dLβ = (ε/β3)1/5.
eLR = (2U/β)1/2—the Rhines’s scale.
fRβ = LR/Lβ—the zonostrophy index.

zonation, i.e., the formation and maintenance of zonal jets
[42–44]. A local topographic β for experiments in a rotating
tank was derived in [45].

III. FLOW ANALYSIS

Three experiments, referred to as Exp. 29, 30, and 31, were
performed. They only differed by the strength of the applied
electric current, I , such that the rate of the energy injection due
to the forcing was the sole controlling parameter. The values
of I as well as the experimental results are summarized in
Table I.

A. Visual appearance

The flow consisted of a westward (easterly) jet, large-scale
eddies on both sides of it, and smaller-scale turbulence.
Figure 2 shows instantaneous and time-averaged flow fields
in sector I (90◦ sector on the right of the vertical line red in
the color rendition) and sector II. The instantaneous images of
sector I exhibit meandering jets squeezed between westward
propagating eddies with the intensity of the eddies increasing
with increasing forcing. The eddies were produced by the
barotropic instability associated with the jet. On the one hand,
the eddies highlighted the presence of the nonlinear Rossby
waves, hence the direction of their propagation. On the other,
they were maintained by the barotropic instability whose
Rayleigh-Kuo (or Charney-Stern) threshold criterion is that the
PV radial gradient, ∂q/∂r , crosses the zero value. Accordingly,
the zero crossings of the PV gradient were moving up and
down (north and south, respectively) along any fixed radius
thereby reflecting passing of the “northern” or “southern”
(anticyclonic and cyclonic, respectively) eddies, respectively,
as evident in Fig. 3. The dynamics of the interaction between
zonal flows, Rossby waves, and eddies is very rich. Evidently,
the large-scale eddies are produced by a combination of the
small-scale forcing and the barotropic instability taking place
on larger scales. The eddies give their energy back to a zonal
flow thereby establishing a two-way energy exchange whose
amplitude may exceed ε by several orders of magnitude.
This result may seem paradoxical because, recalling the
Riemann-Lebesgue theorem,

lim
k→∞

∫ 1

0
f (x) sin(kx)dx = 0
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FIG. 2. Instantaneous [panels (a)–(c); experiments 29–31] and time-averaged [panels (d)–(f)] velocities and stream functions. The vertical
line delineates the forced sector I located in the right halves of the semicircles.

for an R-continuous function f (x) : [0,1], one would expect
that the long-term average of the amplitude of this exchange
would tend to zero leaving no room for the effect of the
small-scale forcing upon large-scale structures. This is not
so, however, as Sukoriansky et al. [46] showed that such an
average tends to ε thereby suggesting that the energy transfer
oscillations are anharmonic.

In the unforced sector II, the eddies gradually die out
after which one can only discern nonmeandering zonal jets.
One infers that the system of eddies and meandering jet in
sector I is sustained by direct local forcing. The time-averaged
images present quite a different picture as they show strong
alternating zonal jets and no eddies in all sectors. These
experimental traits resemble ocean observations that highlight

FIG. 3. Radial profiles of the instantaneous radial gradients of the potential vorticity, ∂q/∂r , along the radial section at θ = 237◦ for t = 72 s
(left panel) and 95 s (right panel) for experiment 31. The five lines in each panel provide temporal representations. The dark line is the current
instant, while the “older” lines (by only a frame or two) are shown in progressively lighter hue. This is done to ease the tracking of the movement
of ∂q/∂r .
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numerous westward-propagating eddies closely entwined with
zonal currents on relatively short time scales [5,47]. Upon
time averaging, the meandering currents and eddies fuse into
alternating zonal jets [4]. In analogy to other experiments
(e.g. [48,49]), the scales of the eddies and jets exceed the
forcing scales thus pointing to a complex interaction between
the inverse energy cascade and eddies–zonal flows exchange.

B. Spectral analysis

Spectral analysis of the experimental results was performed
using the truncated Bessel-Fourier decomposition in a 90◦
sector,

f (r,φ)

=
M∑

m=0

N∑
n=1

Jm

(
αmn

r

R

)
(amn sin 4mφ + bmn cos 4mφ), (2)

where f (r,φ) is an arbitrary well-behaving function such that
f (R,φ) = 0, Jm is the Bessel function of the mth order, αmn is
its nth zero, and amn, bmn are the expansion coefficients [50].
With the azimuthal resolution of 1◦, M is limited to 45.

The argument of the Bessel function in (2) maps the space
of geometric scales associated with the index n onto a space
of scales associated with the Bessel functions’ zeros, αmn, for
every index m. To restore a geometric scale corresponding to
n from a scale associated with αmn for a given m, one needs to
multiply the latter by a factor αmn/n.

To accommodate the spectral anisotropy due to a β

effect, we define the zonal (radial) and residual spectra as,
respectively,

EZ(α0n) ≡ 1

2
b2

0nJ
2
1 (α0n), (3)

ER(αmn) ≡ 1

4

M∑
m=1

(
a2

mn + b2
mn

)
J 2

m+1(αmn). (4)

If and when a flow features inverse energy transfer and
otherwise approaches the regime of zonostrophic turbu-
lence [9,16], the spectra are expected to become

EZ(α0n) � CZβ2(α0n/R)−5R−1, (5)

ER(αmn) � CKε2/3(α1n/R)−5/3R−1, (6)

where CZ � 0.5, CK � 6. Two details need to be elaborated.
First, since αmn, m, and n are nondimensional numbers rather
than wave numbers, the spectra represent the energy per unit
number rather than unit wave number and so the expressions
in the right-hand side (RHS) of (5) and (6) are divided by
R to preserve correct dimensionality. Secondly, for relatively
small n, only the first few nonzonal modes contribute to ER

significantly and so Eq. (6) contains α1n only. The residual
spectrum is approximated by the modes with m = 1 that carry
the maximum energy.

The zonal (5) and residual (6) spectra intersect at a scale

L̂0
β ≡ R/α0n = (CK/CZ)3/10(α0n/α1n)1/2Lβ, (7)

which defines the index n of the intersection. We note that L̂0
β

depends on the constants CK and CZ , while Lβ is constant

independent and, thus, better suited for the purposes of this
study. We also note that such a defined scale corresponds to
the index α0n. As mentioned earlier, a corresponding geometric
scale for L̂0

β is obtained by multiplying (7) by a factor α0n/n

giving

L̂β = (α0n/n)L̂0
β = R/n

= (CK/CZ)3/10(α0n/n)(α0n/α1n)1/2Lβ. (8)

This scale is the exact polar coordinate analog of the scale Lβ

used in, e.g. [9].
The relationship between L̂β and Lβ expressed by (8) is

specific to the polar coordinate system due to the mapping
of the space of n onto the space of αmn. In other often used
coordinate systems, i.e., Cartesian and spherical, such mapping
is not required and so the proportionality coefficient between
L̂β and Lβ is much simpler (e.g. [9]).

Figure 4 presents the spectra for all experiments and their
rms fitting to expressions (5) and (6) [51]. The ranges of the
available wave numbers are short yet marginally sufficient
to determine the slopes. Figure 4 reveals strong anisotropy,
whereas the zonal spectrum is steep and close to the −5 slope
reminiscent of the regime of zonostrophic turbulence [9], while
the residual spectrum is close to the Kolmogorov-Kraichnan
(KK) law (6). The corresponding values of ε are given in
Table I.

The presence of the −5/3 slope is insufficient to ascertain
the existence of the inverse energy cascade as the direction of
the energy flux cannot be deduced from a spectrum. It can be
diagnosed independently by the analysis employing third order
longitudinal structure functions, DLLL = 〈(δuL)3〉, where δuL

is the velocity increment between two points projected onto
a vector connecting these points, its length being , and
〈〉 denotes statistical averaging (e.g. [52–56]). In a locally
isotropic and homogeneous turbulence, the structure functions
are equal to

DLLL = −4/5ε (9)

for the direct energy cascade in 3D turbulence (the Kol-
mogorov four-fifths law) and

DLLL = −3/2ε (10)

FIG. 4. Experimental zonal (EZ , thin line) and residual (ER ,
thick line) spectra and their rms fittings to Eqs. (5) and (6). The
index n denotes the nth zero of the Bessel function with an index
m, Jm(αmn) = 0, as explained after Eq. (2). Left, middle, and right
panels pertain to the experiments 29, 30, and 31, respectively.
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in 2D turbulence with inverse energy cascade. In the former
case, ε > 0 is the rate of the viscous dissipation, while in the
latter, ε < 0 is the rate of the inverse energy cascade. Thus the
sign of DLLL points to the direction of the energy flux—for
the direct cascade, DLLL < 0, while for its inverse counterpart,
DLLL > 0 [53,57,58].

Although the flows in the experiment are inhomoge-
neous and anisotropic, the time-averaged fields, as evident
in Figs. 2(d)–2(f), may be assumed approximately axially
symmetric if the structure functions are computed in the
forced sector. The accuracy of this assumption increases with
decreasing  (e.g. [59]). Thus the sign of DLLL provides the
diagnostic of the direction of the energy cascade. With regard
to the magnitude of ε, we keep in mind that Table I provides
sector-averaged values which may be smaller than those
obtained from the structure function analysis that produces
localized values. Therefore, only an order of magnitude
agreement can be expected.

The structure functions for all three experiments are shown
in Fig. 5. They are positive for all experiments and for all ,
thus indicating that the flows indeed featured inverse energy
cascade. The existence of the inverse cascade can also be
inferred visually, from the disparity between small scales of
the forcing and large scales of the resulting structures under the
action of rotation with small Ro. For very small separations,
DLLL ∝ 5 for experiments 30 and 31, in agreement with
Lindborg [53]. All structure functions exhibit a short linear
regime starting at about 2.5 cm, 3.8 cm, and 4.5 cm and
ending at about 3.5 cm, 6 cm, and 7.3 cm for experiments
29, 30, and 31, respectively. All these values approximately
correspond to the beginnings and ends of the KK ranges in
the spectra shown in Fig. 4. The lengths of the linear intervals
are, approximately, 1 cm, 2.2 cm, and 2.8 cm, respectively. In

FIG. 5. Longitudinal structure functions for experiments 29
(lower line), 30 (middle line), and 31 (upper line). Normalized
structure functions, DLLL/ε, are shown in the inset with the
order of the lines reversed and the horizontal line corresponding
to DLLL/ε = 0.5; ε is obtained from Table I.

the linear range, DLLL � 0.5ε with the absolute value of ε

estimated from the spectra and given in Table I. As mentioned
earlier, only an order of magnitude agreement of DLLL with
Eq. (10) was expected.

In quasi-2D turbulence with inverse energy cascade and a
β effect, possible flow regimes can be classified in terms of
several nondimensional parameters formed by the ratios of
characteristic length scales, Lξ , LD , Lβ , and LR , the latter
being the Rhines scale, LR = (2U/β)1/2, where U is the
rms of total velocity [60,61]. Since the deformation radius,
LD , was larger than the span of the jets and the eddies for
all experiments, the zonation was unimpeded by the flow
divergence (see, e.g. [62]) and so the dynamic effect of LD

was negligible. The two remaining relevant parameters are
the zonostrophy index, Rβ = LR/Lβ , and Rξ = Lβ/Lξ . As
shown in [9], the effect of the forcing scale becomes small for
Rξ � 2. Although in our experiments Rξ was smaller than 1,
the forcing scale did not appear to make a significant impact.

The results of the spectral analysis are summarized in
Table I. We note the relatively low values of the zonostrophy
index Rβ , between 1 and 1.36. As elaborated in [9,44], flows
with Rβ � 2 are eddy-dominated and feature weak [or latent
(see, e.g. [63,64])] zonal jets. For comparison, the large-scale
oceanic circulation, for which Rβ < 2 [44], exhibits multiple
westward propagating eddies (e.g. [47,65]) and latent zonal
jets (e.g. [3,66]). As mentioned earlier in Sec. III A, similar to
Fig. 2, the oceanic jets also become more distinct upon time
averaging (e.g. [63,64,66]).

According to Table I, the coefficient CZ in the zonal
spectrum (5) is nearly constant for all experiments, CZ � 0.2.
This value is in a reasonable agreement with the results
of numerical simulations in [19] (about 0.4) but somewhat
smaller than about 0.5 found in [60]. The near-constancy of
CZ , along with the very existence of the interval with the −5
slope for the zonal spectrum, could be construed as an evidence
of the regime of zonostrophic turbulence. Given the low values
of Rβ , however, the presence of this regime is unexpected.

To understand the reason behind attaining near-
zonostrophic spectra in the observed flow which was far
from the zonostrophic regime, recall that in our previous
numerical studies where zonostrophic regime was achieved,
the forcing was homogeneous, isotropic, and concentrated on
small scales (e.g. [9,67]). In the present experiments, however,
the forcing was spatially inhomogeneous and the zonal jet
was produced by direct application of the electromagnetic
force, thus bypassing the zonation process. Most likely, this
forcing facilitated the zonal kinetic energy spectra to attend
distributions close to those in the zonostrophic regime. The
zonal spectrum (5) is forcing independent and determined
solely by β and the wave number, but the constant CZ may be
a function of Rξ . It is possible that the spectrum (5) could be
attained in forced β-plane turbulence with any forcing, forc-
ing’s properties determining the value of CZ . If this indeed is
the case, then laboratory flows analogous to those produced in
the present experiments could be used as a proxy to the regime
of zonostrophic turbulence.

Turning to the residual spectra we note that the indexes
where EZ(n) and ER(n) intersect are in agreement with
Eq. (8). The corresponding scale, L̂β , marks the threshold of
spectral anisotropy. An analogous length scale in the spherical
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geometry was identified in simulations in [60]. As evident
from (8), although scales L̂β and Lβ are proportional, only
the scale Lβ is constant independent and thus better suited for
the use in PV monotonizing algorithm [16]. The scale L̂β , on
the other hand, plays an important role in characterization
of diffusion processes [29]. Furthermore, as shown in the
next section, it can be deduced from the observed diffusion
characteristics thereby providing an additional to LM tool of
diagnosing macroturbulence.

IV. PARALLELS BETWEEN AVAILABLE POTENTIAL AND
ROTATIONAL KINETIC ENERGIES AND BETWEEN EDDY

DIFFUSIVITIES IN STABLY STRATIFIED AND
QUASIGEOSTROPHIC TURBULENCE

In theories of homogeneous isotropic turbulence, it is
customary to invoke a one-dimensional representation of the
eddy diffusivity coefficient K [68],

K ∝ u2TL, (11)

where u2 is a measure of the turbulence kinetic energy and
TL is the Lagrangian integral time scale. Conditions under
which (11) can be recast in terms of the mixing length ,

K ∝ u2
1/2

, (12)

were discussed in [24].
Geophysical and planetary turbulence is strongly

anisotropic and so, if (12) were to be used, one needs to reassess
the physical meaning of the mixing length  in diapycnal and
isopycnal applications. In both cases, models of K usually
involve a product of an eddy velocity and an eddy length scale
(e.g. [24,69,70] for the former and e.g. [71–77] for the latter)
whose determination is a key unresolved problem.

In the spirit of the seminal work by Richardson [78] and
following [9,29], we define K() as an effective diffusivity
accumulated at a scale  due to contributions from all scales
up to ,

K() ∝ E()1/2, (13)

where E() is the turbulence energy contained in all scales
bounded by . For homogeneous isotropic turbulence with
the Kolmogorov energy spectrum, Eq. (13) gives the classical
Richardson diffusion law,

K() ∝ ε1/34/3, (14)

where ε is the rate of either the direct or inverse energy cascade.
The definition (13) can be expanded to anisotropic flows that
combine turbulence and waves. The effect of the anisotropy is
then reflected in the choice of  in different directions.

A critical parameter in such flows is a scale at which
a wave period is approximately equal to the time scale of
turbulent overturns. Recall that in stably stratified flows,
this is the Ozmidov scale, LO , and in small-scale forced
quasigeostrophic turbulence, such scale is Lβ . Additional
critical scales are those marking the respective thresholds of
spectral anisotropy. They correspond to crossovers between the
Kolmogorov and steep spectra developing in slow manifolds
in the directions along which waves do not propagate [16,79].
Those scales are proportional to, respectively, LO and Lβ and

denoted L̂O and L̂β . Simulations (e.g. [29]) and experiments
(e.g. [39]) indicate that along these directions, only the scales
up to L̂O or L̂β contribute to the eddy diffusivity. On larger
scales,  remains “frozen” at the L̂O or L̂β values and so
K() becomes scale-independent and reminiscent of the Taylor
regime. In the orthogonal directions, however, diffusion obeys
the Richardson law on much longer scales until overtaken by
the zonal advection, particles’ trajectories decorrelation, etc.

In the case of stable stratification, E() in the Taylor regime
is E() = E(L̂O) = 1

2N2L̂2
O ≡ Ep, where Ep is the part of

the available potential energy (APE) that can be converted to
turbulence (note that Ep → 0 when ε → 0). The vertical eddy
diffusivity in this case,

Kz(L̂O) ∝ E1/2
p L̂O ∝ ε

N2
, (15)

is the celebrated Ellison-Britter-Osborn expression.
Since L̂O � LT [15], density monotonizing yields the value

of ε and thus the vertical and horizontal eddy diffusivities in
both Richardson and Taylor regimes [21,79].

A similar analysis can be performed on (13) for quasi-
geostrophic turbulence where the appropriate scale is L̂β and
the kinetic energy of turbulence can be computed from the KK
spectrum which usually exists on scales not exceeding L̂β ,

Er =
∫ n̂β

∞
CKε2/3n−5/3dn = 3

2
CKε2/3n̂

−2/3
β . (16)

Here, CK � 6 is the Kolmogorov-Kraichnan constant and n̂β

is the wave number corresponding to the scale L̂β . In the spher-
ical geometry, β = �/R, where � and R are, respectively, the
angular velocity and the radius of a sphere [60]. Introducing a
nondimensional index ñβ = Rn̂β = πR/L̂β , Eq. (16) can be
transformed to

Er = (3/2)CK�2R2ñ−4
β . (17)

In analogy to Ep, Er defines a part of the available rotational
kinetic energy (ARKE) in quasigeostrophic flows that can
be converted to turbulence (Er → 0 when ε → 0). Since the
rotational kinetic energy (per unit mass) of a solid body with
the moment of inertia I rotating with the angular velocity �

is 1
2I�2, the product 3CKR2ñ−4

β plays a role of the equivalent
moment of inertia of a flow on scales dominated by turbulence.

On a fast rotating sphere, in the regime of zonostrophic
turbulence, the total rotational kinetic energy of a flow,
including the zonal jets, can be approximated by

Et � (5/4)CZ�2R2ñ−4
R , (18)

where CZ = O(1) and ñR is the index associated with the
Rhines scale LR = (2U/β)1/2, with U being the rms of total
velocity [61,80] [in (18) we take into account that the part of
the spectrum for n � nR ∝ L−1

R may be flat due to the action of
a large-scale drag]. As in Eq. (16), one can identify the product,
(5/2)CZR2ñ−4

R , with the equivalent moment of inertia of the
total flow. Note that while Er substantially depends on ε, Et

depends on a single geometrical property of the zonal jets,
their width which roughly scales with LR [61].

Viewed as a measure of the zonal jets’ variability due to
turbulence, the ratio Et/Er can be expressed in terms of the
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zonostrophy index Rβ ≡ ñβ/ñR ,

Et

Er

� 5CZ

6CK

(
ñβ

ñR

)4

= 5CZ

6CK

R4
β, (19)

which rapidly increases with Rβ . In the ocean, where Rβ �
1.7 [44], the ratio (19) is O(10−1) and the jets are hardly
distinguishable from turbulence, i.e., latent. On Jupiter, on
the other hand, Rβ � 5 [28], the ratio (19) is O(102) and so
the zonation is profound, the zonal jets are strong, and the
turbulence signal is weak, just as observed on Jupiter and
Saturn.

By analogy with (15), substituting E
1/2
r and L̂β in (12)

one obtains an expression for the scale-independent, Taylor-
regime-like lateral eddy diffusivity in forced quasigeostrophic
turbulence,

Ky(Lβ) ∝ E1/2
r L̂β ∝ ε3/5β−4/5, (20)

with an O(1) coefficient. This scaling was verified in labora-
tory experiments [39].

The Taylor-like eddy diffusivities for the vertical and merid-
ional mixing, Eqs. (15) and (20), respectively, in anisotropic
turbulence with dispersive waves constitute profound physical
laws with important practical implications.

For the former, consider vertical (diapycnal) mixing in the
Antarctic Circumpolar Current (ACC). In the framework of the
DIMES (Diapycnal and Isopycnal Mixing Experiment in the
Southern Ocean) campaign, Ledwell et al. [81] studied vertical
diffusion of trifluoromethyl sulfur pentafluoride (CF3SF5)
released at the isopycnal surface of about 1500 m at the latitude
of the release. The vertical spread of the tracer was observed for
1 yr and the final profile was compared with the one computed
using a one-dimensional diffusion equation with a constant,
Taylor-like diffusivity coefficient, Kz = 1.28 × 10−5 m2 s−1,
best fitted to the evolution of the mean profile. The result
of this comparison is shown in Fig. 6. The tracer spread
nearly equally, for about 100 m, up and down from the release
height with no accumulation at any particular level, i.e., no
level exhibits features of a mixing barrier. The measure of
turbulent overturns, the Ozmidov scale LO , was only about
1 m, which is considerably smaller than the vertical size of
the tracer’s spread. This result indicates that the actual mixing
was taking place everywhere in the tracer’s cloud on scales of
the order of LO and the total spread was a cumulative effect
of a large number of small-scale overturning mixing events.
With the measured value of the Brunt-Väisälä frequency,
N � 1.5 × 10−3 s−1, the Ellison-Britter-Osborn model (15)
with the proportionality coefficient set at 0.2 was utilized
to estimate the rate of the viscous dissipation, ε, from the
value of Kz. Thus obtained value of ε was about 50% higher
than the estimate based on direct measurements using the
microstructure profiler.

With regard to the meridional diffusivity in the environment
of turbulent flows with inverse cascade, we use Eq. (20)
to describe the lateral spread of the debris and gases after
the Shoemaker-Levy 9 (SL9) comet impact upon Jupiter in
1994 (see, e.g. [82]). The debris and gases turned out to be
natural conservative tracers perfectly suited for dispersion
observations. Such observations were conducted for several
years following the impact.
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FIG. 6. Vertical diffusion of a tracer in the Antarctic Circumpolar
Current. The ordinate is height relative to the center of the initial
profile. The abscissa is the concentration in femtomolars (fM; 1 fM =
1 × 10−15 moles/liter). Dashed curve: initial mean concentration
measured shortly after release, multiplied by 0.005. Solid curve: final
mean profile measured 1 yr later. The gray uncertainty envelope is
based on variations of the shape of individual profiles. Dash-dotted
curve shows final profile for an integration of the one-dimensional
diffusion equation, starting with the initial profile, for a diapycnal dif-
fusivity of 1.28 × 10−5 m2s−1. After Ledwell et al. [81]. ©American
Meteorological Society. Used with permission.

A study by Friedson et al. [27], in which mean optical
depth was used as a concentration surrogate, concluded that
the advection due to the residual circulation was insufficient
to describe the temporal dispersion of the impact cloud
and so the authors included meridional diffusion with a
scale-independent, Taylor-type diffusivity coefficient, Ky =
(1−10) × 106 m2s−1, in the region between 10 and 100 mbar.
Our estimate based upon Eq. (20), with the rate of the inverse
energy cascade ε � 10−5 m2s−3, as estimated from the Cassini
data by Galperin et al. [28], and β � 10−12 m−1s−1, yields
Ky � 4 × 106 m2s−1, in good agreement with the values used
in [27]. In addition, unlike calculations in the latter paper,
Eq. (20) produces no negative eddy diffusivities.

Figure 7 shows the meridional spread of the cloud of debris
as a function of time. A gradual meridional expansion of the
initially latitudinally narrow tracer profile is evident, just as it
was in the case of the vertical diffusion in the ACC discussed
earlier. As in the ACC case, the maximum size of eddies
contributing to Ky was Lβ , a scale approximately Rβ (Rβ � 5)
times smaller than the width of a zonal jet. This scale was
considerably smaller than a scale of the lateral expansion of
the debris cloud yet there was no debris accumulation at any
particular latitude. Even though powerful zonal jets on Jupiter
are sometimes assumed to play a role of the barriers for the
meridional mixing (e.g. [83]), Fig. 7 does not support this
assumption. Instead, it demonstrates that the lateral dispersion
is a Taylor diffusion process, both qualitatively and quan-
titatively, which is driven by macroturbulence with inverse
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FIG. 7. Meridional spread of the debris following the collision of the Shoemaker-Levy 9 comet with Jupiter. The crosses represent
longitude-mean perturbation optical depths at 230 nm derived from the changes in reflectivity after 18 May 1994: (a) 25 August 1994, (b) 4–5
March 1995, (c) 15 May 1996, and (d) 6 November 1997. Optical depths were integrated over longitude in each of the latitude bands between
−60◦ and +30◦. Regions of negative mean optical depth are found where the average brightness of the bin was higher than it was prior to the
arriving of impact debris. The solid lines are synthetic profiles calculated with the dynamical model that includes horizontal eddy diffusivity.
Dash-dotted and dash-triple-dotted lines correspond to the results with the eddy diffusivity coefficient, respectively, reduced or increased by a
factor of 5 compared to its nominal value. After Friedson et al. [27]; reprinted with the permission from Elsevier.

energy cascade. Note also that Figs. 6 and 7 demonstrate
the affinity of the diffusion processes in vastly diverse flows
that feature different regimes of anisotropic turbulence with
opposite directions of the energy transfer and different types
of dispersive waves.

Turning back to Eq. (20) we note that Ky depends on
ε in both the Richardson’s and Taylor’s diffusion regimes,
albeit in different fashions. The observation that the scale L̂β ,
delineating the transition between the two diffusion regimes,
is intimately related to ε could be used to diagnose ε from
diffusion observations. This new method could be employed
as either an alternative or a supplement to the method of PV
monotonizing. In practical applications, the transition scale
can be estimated using the finite-scale Lyapunov exponent
(FSLE) technique (e.g. [84]). The duality of the methods of
estimating ε by PV monotonizing and a change in the diffusion
regime will be elaborated in the following section using the

previously employed experimental facility with a westward
jet.

V. FSLE METHOD

Since the velocities in our experiments were estimated by
tracking particle trajectories, we could use this information
to evaluate particle dispersion with the FSLE technique. The
FSLE quantifies an average growth rate of noninfinitesimal
perturbations at different scales of observation [85]. Briefly, it
is assumed that at time t = 0 a “reference” trajectory xxx(0) is
perturbed toxxx ′(0) = xxx(0) + δxxx(0), where ‖δxxx(0)‖ ≡ δmin � 1
(all length scales are nondimensionalized with the maximum
characteristic length scale of the system). A sequence of
thresholds δn, n = 1, . . . ,N , can be introduced with δn =
δ1ρ

n−1, where the amplification factor is ρ > 1. Then, the
statistics of the growth times τ (δ) between δ and ρδ is
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computed on a large number of trajectory pairs, for each
δ = δn. The FSLE is defined according to

λ(δ) = ln ρ

〈τ (δ)〉 , (21)

where 〈τ (δ)〉 is the average time that the trajectory separation
at scale δ takes to grow by a factor ρ (see also [86]). Different
functional dependencies λ = f (δn) define different dispersion
regimes (e.g. [39]).

FSLE can be a function of xxx in which case λ(δ,xxx) is
a Lagrangian measure of the local amplification rate of a
perturbation of size δ imposed on a trajectory initially passing
through a point xxx. In this case, Eq. (21) becomes

λ(δ,xxx) = 1

〈τ (δ,xxx)〉 ln ρ, (22)

which defines a map of the local rate of dispersion for an
ensemble of trajectory pairs relative to their initial positions.
We observe that for statistically stationary flows neither (21)
nor (22) are explicitly time dependent. The FSLE maps
diagnose regions with higher dispersion and those where
dispersion is lower or null; the latter can be identified with the
mixing barriers [87]. To account for anisotropic dispersion,
the FSLE can be computed for the meridional and zonal
components of the distance between particles separately as
was done by Lacorata et al. [88] for dispersion in the lower
stratosphere.

The initial dispersion is typically characterized by expo-
nential growth of the fluid particles’ separation. In this regime,
relative dispersion is nonlocal and we expect λ(δ) � λL =
const, λL being an estimate of the maximum Lagrangian
Lyapunov exponent [84]. We identify the maximum separation
of a particle pair attained at the end of the exponential regime
as δL.

In flows with forcing, the initial, exponential stage of
dispersion may evolve into the power law scaling λ(δ) ∼ δ−2/3

which corresponds to the Richardson’s t3 time dependence
and Kolmogorov’s (in 3D flows) or KK’s (in 2D flows) −5/3
energy density spectrum. For either flow, the FSLE approach
yields

λ(δ) = C
1/3
R ln ρ

ρ2/3 − 1
ε1/3δ−2/3, (23)

where δ > δL and CR is the Richardson constant. For 2D
flows with inverse energy cascade, CR ∼ O(1) [89]. The
Richardson’s law scaling may further evolve into the Taylor’s
diffusion regime for which λ(δ) ∼ δ−2. As mentioned earlier,
in 2D turbulence with a β effect, the transition between the
regimes is expected to occur at a geometrical scale δt � L̂β .

VI. TURBULENT DIFFUSION IN THE LABORATORY AND
IMPLICATIONS FOR PLANETARY FLOWS

The three experiments analyzed in Sec. III were used
for studies of the diffusion. The results are summarized in
Figs. 8 and 9. The top row in Fig. 8 shows the FSLE maps,
λ(δ,xxx), constructed by following two trajectories from an
initial separation δ0 = 0.7 cm to a final separation threshold ρδ

over the observation time T = 25 s. The amplification factor
is ρ = 2. If the final separation threshold was not attained after

FIG. 8. FSLE maps (top), samples of instantaneous (middle),
and fully time- and sector-averaged (bottom row) profiles of the
radial PV gradient. The left, middle, and right columns pertain to the
experiments 29, 30, and 31, respectively. The Roman numbers mark
different sectors; sector I contains the magnets. While the flow in this
sector is barotropically unstable most of the time, the occurrence of
the instability decreases away from the sector. The color bar numbers
show powers of 10.

the time T , the FSLE was set to zero. The computed values
were mapped onto trajectories’ initial positions.

The figure elucidates the differences in dispersion associ-
ated with forced and unforced jets. For the former, increasing
turbulence intensity (measured by ε) enhances the dispersion.
The increase in λ with increasing ε for a fixed δ is consistent
with (23). One notes the FSLE decrease in the vicinity of
the jet’s axis and their asymmetry revealing somewhat larger
dispersion on the “southern” flank of the jet. This asymmetry
could be a result of the increase of the eddy size with increasing
radius stipulated by the round geometry of the experimental
device. While the FSLE is never null in the jet’s domain over
the forced sector I, it rapidly falls to zero around the middle
part of the jet in the unforced sector II and is fully extinguished
in sectors III and IV.

FIG. 9. Radial (black squares) and zonal (open circles) FSLE
computed with ρ = 21/4. Straight lines represent the Richardson,
λ(δ) ∼ δ−2/3 (solid), and Taylor, λ(δ) ∼ δ−2 (dotted), diffusion laws.
Left, middle, and right panels pertain to the experiments 29, 30, and
31, respectively.
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It was suggested in e.g. [83,90] that an unstable, easterly
jet may become a mixing barrier and so our results in the
unforced sectors do not appear surprising. It is not so in the
forced sector I. Figure 2 in [83] and Fig. 3 in [90] indicate
that easterly jets are associated with monotonic PV profiles
thus implying that the jets’ environs experienced no significant
forcing due to the absence of the available rotational kinetic
energy. In our experiments, however, forcing was applied to
sector I and the ensuing turbulence played a major role in the
dynamics and dispersion. Figure 8 shows persistent instability
in sector I, while Fig. 3 shows that the instabilities were
migrating between the “northern” and “southern” flanks of the
jet and could be aligned with the locations of FSLE maxima.
The instability sporadically occurs in sector II even though
the flow there is not forced directly. In sector III, the flow is
practically always stable, although some residual turbulence
might survive.

The rapid decrease of λ along the central section of the jet in
sectors II and III can be explained by the absence of the direct
forcing and is somewhat reminiscent of the manifestation of
a mixing barrier in the easterly jet as elaborated in [83,90].
A slower decay of λ on the jet’s flanks over the unforced
sectors can probably be attributed to the remote forcing by
the breaking Rossby waves as they propagate westward from
sector I. A weak forcing in sector II leads to a collapse of the
radial dispersion while most of the zonal dispersion appears to
be due to the advection by the jet.

In summary, forced westward jets do not act as mixing
barriers due to nonzero cross-jet turbulent diffusion. The
enhanced mixing on jets’ flanks can be facilitated by turbulence
developing from the barotropic instability. These conclusions
are in line with the results discussed in Sec. IV regarding
the Jovian zonal jets. It was argued, and also elucidated
by Fig. 7, that, however powerful, the jets cannot suppress
meridional diffusion which is sustained by macroturbulence.
The magnitude of the meridional diffusivity coefficient in
the Taylor’s regime can be estimated from Eq. (20) and is
consistent with the values inferred from observations.

Further insight into diffusion by macroturbulence is pro-
vided by the FSLE analysis of the experimental results
summarized in Fig. 9 and Table II. By showing the FSLEs
in the radial (meridional) and azimuthal (zonal) directions,
Fig. 9 underscores the anisotropic nature of dispersion in
turbulence with a β effect. In all three experiments, the zonal
FSLEs display two successive plateaus. As the FSLE plateaus
correspond to the exponential dispersion of two Lagrangian
particles trapped in a coherent structure (e.g. [85]), one can
identify the first plateau with single eddies on both sides of

TABLE II. Comparison of the scale L̂β with the transitional scale
δT and PV monotonizing scale LM .

Expt. L̂β δT LM L̂β/LM

(cm) (cm) (cm)

29 2.5 2.6 1.3 1.9
30 3.4 3.1 1.7 2.0
31 3.7 3.8 1.9 1.95

the jet, and the second one with the entire zonal meandering
“ribbon.” Thus the two major scales corresponding to these
structures are the size of the eddies estimated at about 5–6 cm,
and the wavelength of the ribbon, about 20 cm. Subsequently,
the first zonal plateau ends at about 5–6 cm followed, after
a short transition, by a lower secondary plateau extending
to about 20 cm. At its exit, the zonal FSLEs have a slope
compatible with the Richardson’s regime. This regime could be
anticipated because the Rossby wave elasticity that facilitates
the Richardson-Taylor regime transition in the radial direction
does not act in the zonal direction. The secondary plateau
being lower reflects the decrease in the dispersion rate caused
by a temporary “trapping” of the Lagrangian particles by the
meandering ribbon inside of which the particles can recirculate
while departing from each other. This does not occur, of course,
when the separation is smaller than the size of a single eddy,
and this is why the separation in that case is somewhat faster.

Bounded by the Rossby wave elasticity, there are no
secondary structures in the radial direction and so the radial
FSLEs have only one plateau. As δ → 0, the FSLE levels
in the radial and zonal directions are approximately equal
because in this limit, the dispersion is isotropic. Since the
zonal plateau accounts for the translation of eddies in the zonal
direction, it is always somewhat longer than its meridional
counterpart. At the exit from the meridional plateau, denoted
δL, the FSLE exhibits a short range of the Richardson’s regime
at the end of which, denoted δT and computed in excess of δL, it
experiences sharp crossover to the Taylor’s regime. As evident
from Table II, the range of the Richardson’s regime, δT , is very
close to the measured values of L̂β . In addition, one observes
a nearly constant ratio between L̂β and LM , L̂β/LM � 2.
These results point to the affinity between the Richardson’s
diffusion regime and PV mixing as both are powered by the
Kolmogorov-Kraichnan turbulence. The constant ratio of L̂β

and LM ensures consistency between the estimates of ε from
the kinetic energy spectra, PV monotonizing, and meridional
dispersion.

VII. DISCUSSION AND CONCLUSIONS

The application of the results of this investigation to the
analysis of dispersion processes on Jupiter and, possibly,
other gas giant planets was discussed in Sec. IV. In the
oceanographic context, these results are even more useful
because more dispersion data is available.

Studies by, e.g., LaCasce and Bower [23], Ollitrault
et al. [91], LaCasce [25], Lumpkin and Elipot [26] indicate that
Richardson’s and Taylor’s diffusion regimes are ubiquitous in
the World ocean. The transition between the regimes in the sub-
surface layer occurs on scales of 200–300 km which are of the
order of the width of the alternating zonal jets [3,66]. Several
investigations note strong diffusion anisotropy (e.g. [92–94]),
whereas meridional diffusivities are much smaller than their
zonal counterparts. Diffusion anisotropization is sometimes
attributed to the effect of the mean zonal flow upon the lateral
diffusivity [95]. The present results point to an alternative
explanation of this phenomenon, i.e., the anisotropization of
the inverse energy cascade at the crossover length scale L̂β .
The oceanic kinetic energy spectra usually deviate from the
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KK and zonostrophic distributions and so the coefficient in (8)
is prone to some uncertainty. In addition, this coefficient
may vary with geographic location. Using (8) and taking
β ∼ 10−11 m−1 s−1 and L ∼ 200–300 km, one evaluates ε

between 10−8 and 10−9 m2 s−3, which is not dissimilar to the
values reported by Arbic et al. [96]. According to (20), such
ε yields Ky in the range between 2.5 × 103 and 104 m2 s−1,
also in agreement with the observed values (e.g. [92–94]).

For the deep water, LaCasce and Bower [23] show the
transition at L ∼ 100 km, which gives ε ∼ 10−10 m2 s−3, in
quantitative agreement with the estimates found in e.g. [3,97].
Then, Ky is evaluated at about 103 m2 s−1. The decrease of
ε with depth is consistent with the decrease of the eddy
kinetic energy [94] and stems from the differences in energy
partitioning among the modes. The surface signal reflects
inverse cascade in the baroclinic mode which is more energetic
than its counterpart in the deep ocean which is mostly
barotropic [98].

Concluding we reemphasize that a combination of PV
monotonizing and particles’ dispersion characteristics offers a
powerful and effective tool for quantification of macroturbu-
lence. This tool has predictive skills and offers a plethora of
applications in studies of planetary circulations as well as the
large-scale oceanic circulations and climate.
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G. Sérazin, and T. Penduff, J. Phys. Oceanogr. 44, 2050 (2014).
[97] M. Ollitrault, M. Lankhorst, D. Fratantoni, P. Richardson, and

W. Zenk, Geophys. Res. Lett. 33, L05605 (2006).
[98] C. Wunsch, J. Phys. Oceanogr. 27, 1770 (1997).

063102-13

https://doi.org/10.1080/03091920412331319513
https://doi.org/10.1080/03091920412331319513
https://doi.org/10.1080/03091920412331319513
https://doi.org/10.1080/03091920412331319513
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1029/2002GL015422
https://doi.org/10.1029/2002GL015422
https://doi.org/10.1029/2002GL015422
https://doi.org/10.1029/2002GL015422
https://doi.org/10.1017/S0022112099004851
https://doi.org/10.1017/S0022112099004851
https://doi.org/10.1017/S0022112099004851
https://doi.org/10.1017/S0022112099004851
https://doi.org/10.1103/PhysRevE.82.016307
https://doi.org/10.1103/PhysRevE.82.016307
https://doi.org/10.1103/PhysRevE.82.016307
https://doi.org/10.1103/PhysRevE.82.016307
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1146/annurev-fluid-120710-101240
https://doi.org/10.1002/2014JC009993
https://doi.org/10.1002/2014JC009993
https://doi.org/10.1002/2014JC009993
https://doi.org/10.1002/2014JC009993
https://doi.org/10.1029/2000JD900815
https://doi.org/10.1029/2000JD900815
https://doi.org/10.1029/2000JD900815
https://doi.org/10.1029/2000JD900815
https://doi.org/10.1017/S0022112006003697
https://doi.org/10.1017/S0022112006003697
https://doi.org/10.1017/S0022112006003697
https://doi.org/10.1017/S0022112006003697
https://doi.org/10.1016/j.physrep.2005.04.001
https://doi.org/10.1016/j.physrep.2005.04.001
https://doi.org/10.1016/j.physrep.2005.04.001
https://doi.org/10.1016/j.physrep.2005.04.001
https://doi.org/10.1063/1.1327594
https://doi.org/10.1063/1.1327594
https://doi.org/10.1063/1.1327594
https://doi.org/10.1063/1.1327594
https://doi.org/10.1175/JAS4013.1
https://doi.org/10.1175/JAS4013.1
https://doi.org/10.1175/JAS4013.1
https://doi.org/10.1175/JAS4013.1
https://doi.org/10.1063/1.1524188
https://doi.org/10.1063/1.1524188
https://doi.org/10.1063/1.1524188
https://doi.org/10.1063/1.1524188
https://doi.org/10.1175/2008JPO4096.1
https://doi.org/10.1175/2008JPO4096.1
https://doi.org/10.1175/2008JPO4096.1
https://doi.org/10.1175/2008JPO4096.1
https://doi.org/10.1017/jfm.2011.345
https://doi.org/10.1017/jfm.2011.345
https://doi.org/10.1017/jfm.2011.345
https://doi.org/10.1017/jfm.2011.345
https://doi.org/10.1029/2007GL030812
https://doi.org/10.1029/2007GL030812
https://doi.org/10.1029/2007GL030812
https://doi.org/10.1029/2007GL030812
https://doi.org/10.1029/2005GL022728
https://doi.org/10.1029/2005GL022728
https://doi.org/10.1029/2005GL022728
https://doi.org/10.1029/2005GL022728
https://doi.org/10.1088/0031-8949/2008/T132/014034
https://doi.org/10.1088/0031-8949/2008/T132/014034
https://doi.org/10.1088/0031-8949/2008/T132/014034
https://doi.org/10.1088/0031-8949/2008/T132/014034
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1029/JC094iC07p09710
https://doi.org/10.1029/JC094iC07p09710
https://doi.org/10.1029/JC094iC07p09710
https://doi.org/10.1029/JC094iC07p09710
https://doi.org/10.1002/qj.49709239302
https://doi.org/10.1002/qj.49709239302
https://doi.org/10.1002/qj.49709239302
https://doi.org/10.1002/qj.49709239302
https://doi.org/10.1002/qj.49709640802
https://doi.org/10.1002/qj.49709640802
https://doi.org/10.1002/qj.49709640802
https://doi.org/10.1002/qj.49709640802
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1016/j.ocemod.2010.02.001
https://doi.org/10.1016/j.ocemod.2010.02.001
https://doi.org/10.1016/j.ocemod.2010.02.001
https://doi.org/10.1016/j.ocemod.2010.02.001
https://doi.org/10.1175/JPO-D-13-0159.1
https://doi.org/10.1175/JPO-D-13-0159.1
https://doi.org/10.1175/JPO-D-13-0159.1
https://doi.org/10.1175/JPO-D-13-0159.1
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1007/s10236-010-0325-z
https://doi.org/10.1007/s10236-010-0325-z
https://doi.org/10.1007/s10236-010-0325-z
https://doi.org/10.1007/s10236-010-0325-z
https://doi.org/10.1063/1.1373684
https://doi.org/10.1063/1.1373684
https://doi.org/10.1063/1.1373684
https://doi.org/10.1063/1.1373684
https://doi.org/10.1175/2010JPO4557.1
https://doi.org/10.1175/2010JPO4557.1
https://doi.org/10.1175/2010JPO4557.1
https://doi.org/10.1175/2010JPO4557.1
https://doi.org/10.1175/2008JAS2579.1
https://doi.org/10.1175/2008JAS2579.1
https://doi.org/10.1175/2008JAS2579.1
https://doi.org/10.1175/2008JAS2579.1
https://doi.org/10.1088/1751-8113/46/25/254019
https://doi.org/10.1088/1751-8113/46/25/254019
https://doi.org/10.1088/1751-8113/46/25/254019
https://doi.org/10.1088/1751-8113/46/25/254019
https://doi.org/10.1016/S0378-4371(99)00613-5
https://doi.org/10.1016/S0378-4371(99)00613-5
https://doi.org/10.1016/S0378-4371(99)00613-5
https://doi.org/10.1016/S0378-4371(99)00613-5
https://doi.org/10.1016/S0167-2789(01)00330-X
https://doi.org/10.1016/S0167-2789(01)00330-X
https://doi.org/10.1016/S0167-2789(01)00330-X
https://doi.org/10.1016/S0167-2789(01)00330-X
https://doi.org/10.1175/JAS-3292.1
https://doi.org/10.1175/JAS-3292.1
https://doi.org/10.1175/JAS-3292.1
https://doi.org/10.1175/JAS-3292.1
https://doi.org/10.1063/1.1498121
https://doi.org/10.1063/1.1498121
https://doi.org/10.1063/1.1498121
https://doi.org/10.1063/1.1498121
https://doi.org/10.1175/JAS-D-11-084.1
https://doi.org/10.1175/JAS-D-11-084.1
https://doi.org/10.1175/JAS-D-11-084.1
https://doi.org/10.1175/JAS-D-11-084.1
https://doi.org/10.1017/S0022112005004556
https://doi.org/10.1017/S0022112005004556
https://doi.org/10.1017/S0022112005004556
https://doi.org/10.1017/S0022112005004556
https://doi.org/10.1029/2002JC001596
https://doi.org/10.1029/2002JC001596
https://doi.org/10.1029/2002JC001596
https://doi.org/10.1029/2002JC001596
https://doi.org/10.1029/2003JC002241
https://doi.org/10.1029/2003JC002241
https://doi.org/10.1029/2003JC002241
https://doi.org/10.1029/2003JC002241
https://doi.org/10.1175/JPO-D-13-044.1
https://doi.org/10.1175/JPO-D-13-044.1
https://doi.org/10.1175/JPO-D-13-044.1
https://doi.org/10.1175/JPO-D-13-044.1
https://doi.org/10.1175/2010JPO4278.1
https://doi.org/10.1175/2010JPO4278.1
https://doi.org/10.1175/2010JPO4278.1
https://doi.org/10.1175/2010JPO4278.1
https://doi.org/10.1175/JPO-D-13-054.1
https://doi.org/10.1175/JPO-D-13-054.1
https://doi.org/10.1175/JPO-D-13-054.1
https://doi.org/10.1175/JPO-D-13-054.1
https://doi.org/10.1029/2005GL025368
https://doi.org/10.1029/2005GL025368
https://doi.org/10.1029/2005GL025368
https://doi.org/10.1029/2005GL025368
https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2



