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Lagrangian statistics of mesoscale turbulence in a natural environment: The Agulhas return current
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The properties of mesoscale geophysical turbulence in an oceanic environment have been investigated through
the Lagrangian statistics of sea surface temperature measured by a drifting buoy within the Agulhas return
current, where strong temperature mixing produces locally sharp temperature gradients. By disentangling the
large-scale forcing which affects the small-scale statistics, we found that the statistical properties of intermittency
are identical to those obtained from the multifractal prediction in the Lagrangian frame for the velocity trajectory.
The results suggest a possible universality of turbulence scaling.
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Turbulence is a complex phenomenon in fluid flows
characterized by the presence of high amplitude fluctuations
on a broad range of dynamical spatial and temporal scales,
giving rise to nontrivial scale-free relationships of statistical
quantities [1–4]. Turbulence is currently investigated not only
because it is an as yet unsolved problem from a theoretical
point of view, but also because the properties of transport
processes—namely, the mixing of passive scalars within a
turbulent flow dominated by the advective action of velocity
fluctuations in time and space—are of particular interest from
a practical point of view (e.g., the diffusion and transport of
pollutants and nutrients).

However, mesoscale turbulent fluctuations in oceanic envi-
ronments have seldom been investigated experimentally due
to the large scales involved.

Eddies on this scale are, however, important in oceanog-
raphy, as has been shown by their interaction with tropical
instability waves in the eastern tropical Pacific influence ocean
biology and dynamics [5]. These eddies have an impact on
heat, mass, and energy transfer; tropical instability waves also
modulate the turbulent entrainment flux [6]. Variations in this
flux within the El Niño–La Niña cycle can have an impact on
global precipitation and temperature patterns. In the oceans,
eddies on these scales are tens to a few hundred kilometers in
diameter; they form as a result of strongly sheared motion and
are often associated with western boundary currents. They
play a crucial role in mixing passive scalar properties such
as heat, salinity, and carbon, but also in the transport of
contaminants and nutrients. Understanding mesoscale eddy
scaling properties may provide a tool to estimate the relative
importance of key oceanic physical and biological drivers [7],
and an understanding of SST fluctuations and their intermit-
tent properties may provide insight into large-scale climate
phenomena and teleconnections.

Here, the Lagrangian scaling properties of the sea surface
temperature (SST) measured in the Agulhas return current
(ARC) have been investigated, since a Lagrangian viewpoint,
that is, following the motion of an infinitesimal fluid element
moving with the local instantaneous flow, is conceptually
natural to describe turbulent transport [8].

The Agulhas current [9] is the western boundary current
of the Southern Indian Ocean, flowing southwards along the
East coast of Africa between 27 and 40◦S. When it reaches the
southern tip of the African continental shelf, most of the flow
turns back on itself, and becomes the Agulhas return current

rejoining the Indian Ocean gyre. Part of the Agulhas current
feeds into the Benguela current to the west of Africa, often in
the form of filaments or rings, feeding warm, salty water into
the South Atlantic. This so-called Algulhas Leakage has an
important role in global ocean circulation and climate [10].

The Oceans Climate Station Project [11] run by the Pacific
Marine Environmental Laboratory of the National Oceanic
and Atmospheric Administration deploys moored buoys to
measure meteorological and oceanic variables at strategic
points in the world’s oceans. One, located in the ARC,
nominally at 38.5◦S, 30.0◦E, is a slack line mooring with a
watch circle radius of 3.5 km (Fig. 1). This buoy was deployed
on 30 November 2010, however, due to unexpectedly strong
deep currents, it broke free on 16 January 2011, and drifted
over 1000 nautical miles before being recovered on 9 March
2011 [12]. The daily averaged position of the buoy during
this period is superimposed on Fig. 1 (black dots). Whilst free
from its mooring, the length scales of the eddies mean that the
buoy was moving noninertially. The buoy made continuous
SST measurements at �t = 600 s.

Transport by ocean currents is a controlling factor in
the distribution of water mass properties on a broad range
of scales, from ocean basin scale (thousands of kilometers)
to the microscale (centimeters); Lagrangian measurements
are particularly suitable for the study of transport processes
since they move with the currents following the motion of
water parcels, at least over large scale and mesoscales [13].
The standard procedure used in order to obtain information
about oceanographic quantities (SST, salinity, etc.) consists
of deploying fixed or drifting buoys. Drifters are free to
move on the ocean surface and are transported by surface
currents. Due to the strong current and the scales involved
in the fluid velocity of the ARC the buoy can be considered
as a 2D Lagrangian particle transported on the surface by
the oceanic eddies [14–16]. The temperature (heat content of
the ARC) can be considered a passive tracer because it has
negligible feedback on the scale of the flow anomalies within
the mesoscale eddies of the ARC.

An analogy can be made between a surface drifter and
particle dispersion in the scaling of the mean square interparti-
cle distance 〈�R2(t)〉 [�R(t) = R(t) − R(0)], where R(t)
represents the Lagrangian trajectory of a particle advected by a
prescribed incompressible velocity field. For a single particle,
when the Lagrangian correlation time (τ �) is finite (t � τ �), an
effective diffusive regime arises: 〈�R2(t)〉 = 2〈v2〉tτ � [17].
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FIG. 1. A snapshot of the SST taken on 12 March 2013. The
black dots represent the 24 h averaged position of the buoy during
the period 30 November 2010 through 09 March 2011. The buoy was
deployed at 38.5◦S, 30.0◦E (first black dot).

Physical situations which possess an infinite Lagrangian
correlation time τ �, however, correspond to superdiffusive
transport. In other words, if the large-scale components of
the velocity field are strong enough to move a particle (or a
drifter) in the same direction for an arbitrarily long period,
the resulting mean square displacement grows as a power of
t : 〈�R2(t)〉 ∝ tα [18,19]. Specifically, when an ensemble of
particles is advected by the fluid velocity, the mean square
interparticle distance scales as 〈�R2(t)〉 ∝ t3 [20].

On the other hand, the results obtained from numerical
simulations and experiments of particle dispersion on the fluid
surface differs significantly from Richardson’s scaling t3 [21].
This discrepancy is presumably related to compressible flow
effects of the floating-particle system. It can be seen that in the
case of compressible flow the scaling ranges from 〈�R2(t)〉 ∝
t2 to 〈�R2(t)〉 ∝ t1.65, while at mesoscale oceanic turbulence
it has been found 〈�R2(t)〉 ∝ t2.2, since the drifter motion is
subject to this compressible flow [21,22].

SST data measured by the buoy are shown in Fig. 2. It
is evident that, due to the particular currents in this region,
frequent abrupt changes in SST can be observed, due to the
strong mixing of currents with different temperatures.

It is customary in turbulence studies to obtain information
concerning the scaling properties of a turbulent scalar field
T (t) by investigating the scaling exponents of the structure
functions, namely, the qth moments of the fluctuations Sq =
〈[T (t + τ ) − T (t)]q〉 at a given scale τ (〈·〉 brackets represent
the time average) [4,24,25]. Kolmogorov’s second similarity
hypothesis suggests the scaling law of the Lagrangian second-
order structure function in the inertial range is S2(τ ) = C0ε0τ

(for a velocity trajectory), where C0 is a constant and ε0 is the
average dissipation rate. For a passive scalar, the Lagrangian
scaling relation for a second-order structure function, in the
inertial range, is expressed as S2(τ ) ∝ χ̄τ , where χ̄ is the
dissipation of the passive scalar variance, which is assumed
to be homogeneous [26]. The intermittency effects can be
introduced under the assumption of a Lagrangian cascade
for the passive scalar flux: χτ ∝ �T 2/τ [27,28]. The average
value 〈χτ 〉 is conserved by the equations of motion (〈χτ 〉 =
χ̄ = �k,�k being a constant) [29].

By defining the energy spectral density E(ω) through

S2(τ ) =
∫ ∞

0
E(ω)[1 − cos(2πωτ )]dω (1)

(ω ∼ 1/τ ), the K41 scaling law S2 ∼ τβ−1 results in E(ω) ∼
ω−β (β = 2 in this case). However, experimental and numeri-
cal results [30–35] suggest that scaling behavior is anomalous
with respect to the Kolmogorov phenomenology [1,2,4]. This
seems to be a universal characteristic of turbulent flows, being
observed also in complex fluids, such as turbulent astro-
physical flows [36], charged particle flows, and anisotropic
molecular flows [37,38].

The classical second-order structure function S2(τ ) can
be easily calculated from the SST dataset, and is shown in
Fig. 3, where a linear scaling is observed in a range of τ (open
symbols) compatible with the frequency range observed in the
power spectrum (Fig. 4), however, the scaling exponent is far
from being comparable with K41, since the slope is S2 ∼ τ 3/2,
rather than the K41 exponent reported above.

According to [39] this discrepancy should be related to
the presence of large-scale structures in the field. In the
present case it is known that, on the mesoscale, oceanic
SST is constantly forced by the daily solar radiation cycle,
which influences CO2 fluxes [40], latent heat flux [41], and
convection [42]. This represents a particular case, inasmuch
as structure functions should be used to investigate the scaling
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FIG. 2. Solid line: sea surface temperature measured in the period 30 November 2010 through 09 March 2011 with a sampling time
�t = 600 s. Dashed line: residual rn(t) obtained through the EMD decomposition related to the annual temperature cycle in the Agulhas
current [23].
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(dashed line) and τ (dash-dotted line) are reported for reference.

properties of turbulence. In fact, experiments on passive scalar
transport in fluid flows, and also numerical simulations, have
shown that this method may fail in the presence of large-
scale periodic forcing, because the fluctuations in the inertial
range can be affected over almost two orders of magnitude
by large energetic structures within the dynamics [39,43,44].
In fact, the large-scale region of S2(τ ) � 5 × 10−4 s seems to
follow a different scaling. This implies that the large scales are
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FIG. 4. Compensated power spectrum Rj (ω) = �j (ω)ω2 as a
function of the frequency ω, for j = 2,3, . . . ,7. The horizontal dashed
line, reported for reference, indicates the range where �̂j (ω) ∼ ω−2.

still correlated and possibly affect the smallest ones. The same
behavior is observed for all q orders of the scaling exponents
extracted from the structure function.

Therefore, to correctly extract scaling information from
the ARC SST data, by minimizing the effect of the forcing,
arbitrary order Hilbert spectral analysis (HSA) has been
used [39,43]. HSA formally represents an extension of
classical empirical mode decomposition (EMD), designed to
characterize scale invariant properties directly in amplitude-
frequency space [39]. EMD itself was developed to process
nonstationary data [45], and has successfully been applied in
many different contexts [46–49]. To apply HSA, the ARC SST
data was initially decomposed through classical EMD to obtain
the intrinsic mode functions (IMFs), and the Hilbert transform
was then applied to the IMFs.

Within the EMD framework [45], the SST data T (t) can
be decomposed into a finite number n of oscillating basis
functions �j (t), the so-called IMFs, and a residual rn(t) which
describes the mean trend, if one exists, as

T (t) =
n∑

j=1

�j (t) + rn(t).

Since EMD acts intrinsically as a dyadic filter bank [50,51],
each IMF captures a narrow ω band in frequency space, and
their superposition behaves as M�(ω) ≡ Max[�̂j (ω)] ∼ ω−β

in the inertial range [43]. A range of frequencies where a
power-law behavior can be observed is chosen (Fig. 4).

The subset of IMFs j ∈ [2–7] is enough to capture the
complete dynamics involved in the turbulent cascade process.
A simple linear least squares fit of M�(ω) gives β � 2
(with a reduced χ2 = 0.98) for frequencies in the range ω ∈
[2 × 10−5–5 × 10−4] Hz. Figure 4 illustrates the compensated
contribution Rj (ω) = �̂j (ω)ω2 of each IMF between j ∈
[2–7]. This scaling is very similar to that obtained from
laboratory measurements, where the temperature spectrum
mimics the slope of the kinetic energy fluctuation [52,53].

The peak at ω � 10−5 Hz in Fig. 4 is the daily radiation
cycle forcing. The annual temperature cycle of the Agulhas
current [23] is captured from the residual rn(t) (Fig. 2). The
maximum of the cycle is observed in December and January.

Once the IMFs have been obtained, a Hilbert transform is
performed on each:

��
j (t) = P

π

∫
�j (t ′)
t − t ′

dt ′, (2)

where P is the Cauchy principal value and the instantaneous
frequency is given by

ωj (t) = 1

2π

d

dt
arctan

[
��

j (t)

�j (t)

]
. (3)

A joint probability density function P (ω,A) is obtained,
related to the instantaneous frequency ωj and the amplitude
Aj of the j th IMF. A marginal integration of P (ω,A)
defines the so-called Hilbert marginal spectrum. To inves-
tigate the amplitude of turbulent temperature fluctuations
versus their characteristic frequency, the ω-dependent q-order
statistical moment Lq(ω) was obtained by evaluating the
moments of each IMF at those points where the corresponding
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FIG. 5. The Hilbert spectraLq (ω) for q = 1,2,3. The curves have
been shifted for clarity. Dashed lines represent the least squares fit.

instantaneous frequency is fixed at the value ωj (t) = ω [44]:

Lq(ω) ≡
n∑

j=1

〈|�j |q |ω〉, (4)

where q is the order, and 〈·〉 represents the time average.
Figure 5 shows the first three Lq(ω) orders (q = 1,2,3)

obtained from Eq. (4). The resulting Lq(ω) show a clear
scaling behavior Lq(ω) ∼ ω−γq . The inset in Fig. 5 illustrates
the second-order L2(ω) in compensated form, L2(ω)ω2, thus
showing that the second-order function behaves as L2 ∼ ω−2

in the range of frequencies ω ∈ [2 × 10−5–5 × 10−4] Hz
(linear least squares fit, χ2 � 0.99).

The scaling exponents ξ�(q) = γq − 1 (which are anal-
ogous to the classical exponents ζq obtained through the
structure functions), are shown in Fig. 6. The same figure
shows a comparison of ξ�(q) with some other scaling
exponents from the literature. It is easily observed that the
departure from K41 scaling is fully captured by the ARC
mesoscale turbulence and, furthermore, the exponents ξ�(q)
are surprisingly similar to the exponents obtained through
the multifractal prediction in the Lagrangian frame for the
velocity trajectory [44,54–56]. As can be seen in Fig. 6, the
scaling exponents evaluated through the HSA are closer to that
obtained from single particle statistics [44] than the exponents
obtained from multiple particle dispersion [55].

This result shows that, once HSA is used, the large-scale
contribution can be properly constrained. Rather unexpectedly
the Lagrangian scaling properties for velocity and passive
scalars are more similar than might be imagined. Within a Eule-
rian framework passive scalars exhibit a stronger intermittency
than velocity fluctuations [16,19]. The links between scaling
exponents in Eulerian and Lagrangian frameworks have been
described by [16]. However, superposition of the passive scalar
and velocity fluctuation scaling has been obtained in the
Eulerian case when HSA has been performed on laboratory

1 2 3 4
q

0.5

1

1.5

2

Sc
al

in
g

E
xp

on
en

t

q/2
Multifractal theory
ζHS
L (q)

Exp. 1
Exp. 2
Exp. 3
Exp. 4
DNS 1
DNS 2
ξΘ(q)
αΘ(q)

FIG. 6. Comparison of the scaling exponent obtained for velocity
and temperature data: ζHS

L multifractal scaling exponents for single
particle velocity trajectories [44]. Exp. 1, Exp. 2, Exp. 3, Exp. 4:
scaling exponent for multiple particle dispersion from [55], at
different Reynolds number Re = 510,570,810,1000, respectively.
DNS 1 and DNS 2: scaling exponent from numerical simulation
of multiple particle dispersion from [55], at Re = 75,140, with
5000 and 10 000 particles, respectively. ξ�(q): scaling exponent for
ARC-SST obtained through the HSA. α�(q): scaling exponent eval-
uated from renormalized structure function for ARC-SST. Dashed
line (K41, q/2): Lagrangian scaling exponents as estimated from
dimensional analysis [24]. Solid line: multifractal theory [56].

temperature data [39]. It was shown that when the large-scale
contribution of the velocity field is properly constrained, the
scaling exponents for passive scalars are comparable to those
obtained from ESS for velocity fluctuations [39].

In order to check the correctness of the result obtained
through the HSA, the scaling exponent of the ARC-SST has
been recovered using an alternative approach. Consider Eq. (1),
which defines S2(τ ) in terms of the spectral energy density. The
effect of large scales on the smallest ones can be estimated by
introducing the function F (τ ) � [S2(τ )]−1I (τ ), where

I (τ ) =
∫ ω1

0
E(ω)[1 − cos(2πωτ )]dω. (5)

The value ω1 represents the high-frequency boundary of the
large scales, in this case ω1 � 10−5. A new second-order
structure function, which should be roughly unaffected by the
large scales, can be estimated through S ′

2(τ ) = S2(τ )/F (τ ).
Using the spectral density E(ω) previously calculated in
Eq. (5), a simple numerical integration gives F (τ ) ∼ τ 1/2, as
shown in the inset of Fig. 3. The plot of S ′

2(τ ) in Fig. 3 shows the
corrected scaling law for the second-order structure function.
A correction to the whole set of qth-order structure functions
may be postulated, as an order of magnitude estimate, by the
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rescaling

S ′
q(τ ) = [Sq(τ )]2I−q/2. (6)

The scaling exponents of S ′
q calculated through S ′

q ∼ ταq

are shown in Fig. 6. Thus even without using HSA, a phe-
nomenological renormalization of structure functions yields a
scaling behavior similar to the multifractal scaling obtained
for velocity fluctuation (single particle case) [44,56].

In summary, the Lagrangian statistics of the SST in the
ARC, a mesoscale oceanic environment, has been investigated.
The influence of the largest scales over the inertial range
has been avoided using arbitrary order HSA, and the correct
scalings of the higher-order moments of the Lagrangian
temperature fluctuations has been obtained from the Hilbert
marginal spectrum.

In particular, we found that (i) the scaling exponents for
the ARC-SST are strictly comparable to those of the velocity
trajectory obtained from the multifractal prediction once the
effects of the largest scales are properly constrained and (ii)
the spectral behavior of the Lagrangian ARC-SST turbulence,
which shows a classical departure from the Kolmogorov
theory, is fully compatible with the results obtained from
laboratory experiments, even though the scales are completely
different. Finally, the possibility of a phenomenological renor-
malization of the structure functions is discussed in situations
where the scale separation is not fulfilled due to the influence
of the large scales over the inertial range.

To conclude, this may be interpreted as the fingerprint of
a possible universality between the scaling of the qth-order
moment of velocity and temperature, and is in agreement with
similar results obtained for the Eulerian case [39]. However,
before claiming universality more studies should be conducted.
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