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Structure of curved crystals in the thermodynamic limit and the perfect screening condition
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The dislocation and disclination density defining the structure of a crystal constrained on a general curved
background is computed analytically in the thermodynamic limit, when the number of particles is arbitrarily large.
It is shown that the minimum of the elastic energy, where strains are optimally close to zero, can be formulated
in terms of a connection (a rule on how to parallel transport vectors), which allows to provide an explicit solution
in the thermodynamic limit that consists of disclinations surrounded by scars (grain boundaries with variable
spacing). The approach allows to compute the interaction potential. For a sphere, a full characterization of the scars
is provided, and it is shown that the potential of interaction among disclinations “dressed” by scars is inversely
proportional to the sinus of the geodesic distance and that the ground state consists of 12 dressed disclinations
that display icosahedral symmetry. The case of a torus is also considered. More generally, the thermodynamic
solution implements a “perfect screening” condition, where defects completely screen the Gaussian curvature.
Implications for the problem of melting are discussed.
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I. INTRODUCTION

Understanding the type of crystalline order that occurs on a
lattice constrained on a general curved manifold is a fundamen-
tal problem with many recent experimental realizations in soft
systems such as lipids, colloids, or surfactants [1–7] as well
as in hard systems such as metallic glasses, superconductors,
or carbon nanotubes among many other relevant examples
[8]. Although there has been remarkable theoretical progress
[9–22], most studies have focused on the limit of a relatively
small number of particles. In this article, I investigate the
thermodynamic limit, that is, the limit when the number of
particles is arbitrarily large. This situation has been addressed
previously [3,20,23] by considering a limit of weak curvature.

The key elements in any crystal on a curved background are
topological defects and Riemannian curvature [24,25]. Indeed,
disclinations and dislocations are necessary to relieve the
stresses induced by the curvature. Intuitively, the disclinations
are akin to electrostatic charges and the dislocations to
polarizable dipoles, which combine to neutralize the curvature.
In two-dimensional solids, for example, previous calculations
strongly suggest [3,11,20] that in the thermodynamic limit, at
zero temperature, a “perfect” screening of defects neutralizing
the curvature should follow. More precisely,

∫
K(x)dA =

ND∑
i=1

qi +
∫

�∇ · �PdA (1)

with K(x) the Gaussian curvature, ND is the number of isolated
disclinations (each of charge qi), and �P is the “polarization”,
which is related to the dislocation density.

A clear example of “perfect screening” is provided by an
icosahedron, see Fig. 1, where each vertex accumulates a π

3
of Gaussian curvature, which are screened by π

3 disclinations.
In this case, however, no additional dislocations are required
and the remaining lattice, consisting of six coordinated
vertices forming a perfectly planar hexagonal lattice, can

*trvsst@ameslab.gov

be constructed on the planar face of the icosahedron. Note
that the physical bonds between nearest neighbor particles in
different sites are parallel. On a general manifold, however, the
curvature is continuous, and, in principle, cannot be completely
screened by a number of discrete disclination charges. In
such case, there is no notion of parallelism, as attempting
to construct the lattice requires the specification of a rule that
tells how to parallel transport vectors (a connection). In curved
geometries, parallel transport of a vector generally depends on
the amount of curvature encircled by the path, so the parallel
transport is not unique, and not suitable for the construction of
a lattice. It is known, however, that a path independent parallel
transport from a point P1 to any other point P2 (on a sphere,
for example) can be defined from

�V = V θeθ (P1) + V ψeψ (P1) → V θeθ (P2) + V ψeψ (P2),

(2)

where eθ ,eψ are the unit tangent vectors defined by spherical
coordinates. As shown in Fig. 1, such parallel transport has two
distinct features: It is singular at the north and south poles, and
the parallel transport of two vectors along each other does not
result in a closed parallelogram, as shown in Fig. 1. The first
feature is indicative that the entire Gaussian curvature is now
localized at both poles in the form of two vortices each with
charge 2π . The second is that this newly defined connection
has geometric torsion [26]. Such “trivial” connections have
been known, for example in navigation, as they correspond to
loxodromic paths, which become straight lines in the Mercator
projection. In physical terms, such connections implement a
lattice where the rows of atoms are as close as possible to have
zero strains. This equivalence between optimal strains and
trivial connections forms the basis of the approach developed
in this paper.

II. GEOMETRIC FORMULATION FOR CRYSTALS
IN ARBITRARY GEOMETRIES

While disclinations are associated with Gaussian curvature,
dislocations are identified as sources of geometric torsion
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FIG. 1. (Top left) Icosahedron, where each vertex is a disclination
with Gaussian curvature K(x) = π

3 δ(x − xi). (Top right) Trivial
parallel transport from points A to D by the vector fields eθ ,eψ .
(Bottom left) Frame corresponding to the trivial connection with
the vortices at the north and south poles. (Bottom right) Parallel
transporting segment AC along segment AB, and parallel transporting
segment AB along AC results in gap that is given by �b = − cot(θ )eψ ,
indicative of a nonzero torsion or dislocation density.

[24,27]. In this way, a very natural physical interpretation
of the process of “trivialization” of a connection by torsion
emerges, where the dislocations role is to “spread” the
discrete disclination charge and fully screen out the curvature,
resulting in a configuration that is basically flat, and where
the parallel transport is defined by the vectors defining the
crystallographic axis. This is a completely general result,
beyond consideration of crystals. For example, the free energy
of an hexatic membrane with bond orientational order θ on a
curved manifold with metric gμν is given as [28]

Fhex = KA

2

∫
d2x

√
ggμν

(
∂μθ + �D

μ − �L
μ

)

× (
∂νθ + �D

ν − �L
ν

)
, (3)

where ∇μ = ∂
∂xμ − �L

μ defines the standard covariant deriva-
tive (Levi-Civita) connection and �D accounts for the distribu-
tion of disclinations. The difference in sign reflects that defects
screen curvature of the same sign. It is convenient to consider
�D,L as one-forms, whose exterior derivative d [26] gives

d�L = K(x)�M, d�D = SD(x)�M (4)

with K(x) the Gaussian curvature, SD(x) = ∑ND

j=1
qj√
g
δ(x −

xj ) is the disclination density (with qi the disclination charge),
and �M = θ1 ∧ θ2 = √

gdx1 ∧ dx2 is the volume two form.
Thus, the free energy becomes a function of the combina-

tion ϒμ = �D
μ − �L

μ and is given by

F = Y

2

(
dϒ,

1


p
dϒ

)
=

∫∫
(KD − S)

1


p
(KD − S), (5)

where 
 is the Laplacian. The case p = 1 describes the hexatic
order Eq. (3) [28] while p = 2 describes a general 2D crystal

[11]. For this latter case, dislocations need to be introduced as

�(D,d)
μ = �D

μ +
Nd∑
i=1

bi
μ√
g

δ(x − xi)

(6)

S(D,d)(x) =
Nd∑
i=1

1√
g

εαβbi
α∂μ

(
e
μ
β δ(x − xi)

) + SD(x),

where bα is the Burgers vector and formulas have been written
in local or “einbein” coordinates (see Appendices). For a flat
monolayer, the above formulas reduce to the known results
[25].

The thermodynamic limit is obtained as the lattice constant
a of the underlying lattice becomes vanishingly small com-
pared with the dimensions (in physical units) of the curved
manifold. In such limit, the dislocation density satisfies

Nd∑
i=1

bi
α√
g

δ(x − xi) = βα(x) + O(a/R), (7)

where R is a characteristic parameter defining the surface (for
a sphere, R is obviously the radii, for a torus, the smaller of the
two radii, etc.). This formula defines a continuum dislocation
density β, and the last term serves to remind the error made in
such approximation, an issue to which I will return later.

From differential geometry, the standard Levi-Civita con-
nection satisfies �L,α = −dθα . A new connection may be
defined by subtracting to the Levi-Civita connection the
dislocation density �C

α = �L
α − βα , and satisfies

dθ̂α + �C,α�M = βα�M, (8)

d�C = K�M . (9)

Upon identifying β with the torsion, these equations are
the Cartan structure equations [26], which define the most
general connection that is compatible with the metric (see also,
Appendix A). Here K is the curvature associated with this new
connection, which is different than the Gaussian curvature.
Following the trivialization discussed in Fig. 1, the dislocation
density (the torsion) β will be chosen so that the new curvature
K is given as

K(x) =
D∑

i=1

qj√
g

δ(x − xi) → dϒ = 0, (10)

that is, the curvature is entirely concentrated in a few isolated
points (such as the two poles for the case in Fig. 1).
As I will argue further below, such construction is always
possible. In this way, the dislocation density β succeeds
in undressing the Gaussian curvature into isolated charges,
which are perfectly screened by disclinations, in the same
way as for the icosahedron previously discussed. In this way,
the trivialization of the connection implements the “perfect
screening” condition.

Thus, the equations defining the minimum of the free energy
Eq. (5), that is Eq. (10), amounts to the statement that ϒ is a
closed one-form and that the dislocation density is determined
up to an arbitrary exact form

dϒ = 0, β ′ = β + dζ, (11)
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so that the solution Eq. (10) is not unique. In addition, if the de
Rham cohomology group H1(S) of the manifold is non-trivial,
additional topological inequivalent solutions become possible.

Note that the Stokes theorem implies that the integral over
the entire closed manifold of the form in Eq. (11) is∫

dζ = 0, (12)

so that the additional “gauge invariance” is interpreted as
modifying the distribution of dislocations, but not its total
number.

III. RESULTS: THE CASES OF THE SPHERE
AND THE TORUS

As a first example, I consider the manifold to be a sphere S2,
described with coordinates (ϑ,ψ). The Levi-Civita connection
is

�L = − cot(ϑ)θ̂ψ (13)

so that d�L = 1 × �M and the Gaussian curvature is K = 1.
The obvious dislocation density calculated from the Car-

tan structure equations (8) is βϑ = 0,βψ = − cot(ϑ), which
exactly implements the “Mercator” trivialization discussed in
the introduction. The associated curvature becomes

K = 2πδ(ϑ − 0) + 2πδ(ϑ − π ), (14)

that is, as expected, the entire curvature is concentrated into
two vortices, each carrying a 2π curvature. Such defects are
not consistent with a spherical crystal. An acceptable solution
containing twelve q = π

3 disclinations can be found as a
superpositions of six of these solutions, namely,

βϑ = −1

6

6∑
i=1

cot(ωi)

sin(ωi)
sin(ϑi) sin(ψ − ψi),

βψ = 1

6

6∑
i=1

cot(ωi)

sin(ωi)
[sin(ϑ) cos(ϑi) − cos(ϑ)

× sin(ϑi) cos(ψ − ψi)], (15)

where (ϑi,ϕi)i=1...6 describes the orientations of the axis
where each of the six disclination pairs are placed and
cos(ωi) = cos(ϑ) cos(ϑi) + sin(ϑ) sin(ϑi) cos(ψ − ψi). Since
one disclination pair can be placed along the axis defining the
north-south pole ϑ = 0, and another disclination can be placed
at ψ = 0, the solution Eq. (15) has nine free parameters.

There is, however, an additional boundary condition that
must be met. In its most general case, Eq. (15) leads to
a situation where Burgers vector add to non-zero values
at the position of disclinations. This is clearly unphysical
as a disclination cannot have a Burgers vector. The same
conclusion can also be arrived from Eq. (7), as, by construction,
each of the discrete dislocation density at finite lattice spacing
will obviously have a zero Burgers vectors at the disclination,
so this should be also be the case for the limit. Therefore, I
arrive at the following boundary condition:

βϑ (xj ) =̃ 0, βψ (xj ) =̃ 0, (16)

where xj ,j = 1 . . . 6 runs over the positions of each disclina-
tion pair, and the =̃ sign is used to emphasize that the actual
disclination at xj is should be omitted.

The general potential between two dressed disclinations,
that is, including the scars, is a function of the geodesic distance
s, so it can be written as V (s). The overall potential for the 12
dressed disclinations will therefore be

U =
12∑
i=1

12∑
j>i

V (sij ), (17)

where sij is the geodesic distance between the two i,j

disclinations. Note, that the minimization of the above
potential energy should lead to Eqs. (15) and (16). Such
condition immediately leads to V (s) = 1

sin(s) as the only
possibility for function V [this statement can be verified by
showing that the minimum of Eq. (18) leads to Eqs. (15)
and (16)]. Note that the interaction between a pair of dressed
disclinations is always repulsive. Therefore, the potential
energy for the 12 disclinations is given as

U =
6∑

i=1

6∑
j>i

1

sin(sij )
, (18)

where the summation only needs to run up to six, as the
other six dressed disclinations follow by inversion symmetry.
Thus, Eq. (16) appears as the condition of zero force between
screened disclinations. By analogy with the flat equations,
the potential in full dimensional units has to be multiplied by
YR2

2 , where Y is the Young modulus, see Eq. (5).
Given that the potential Eq. (18) implies that a disclination

pair repeal each other, it is intuitively clear, and I have also
verified it with numerical minimizations, that the zero force
condition Eq. (16) consists of twelve disclinations that sit on
the vertices of an icosahedron, in positions

(0,0),

(
arctan(2),

2π

5
k

)
,

(
π − arctan(2),

π

5
+ 2π

5
k

)
,(π,0),

(19)

with k = 0 . . . 4. Note that even though dϒ = 0, the form ϒ

itself is not zero. Also, for a sphere H1(S2) = 0, and there are
not additional topological distinct solutions.

The dislocation density β defined by Eqs. (15) and (19) is
shown in Fig. 2. Note that β can be regarded as a vector field,
so it displays 32 vortices (12 around each disclination) and
30 anti-vortices (midway each nearest-neighbor disclinations).
The magnitude of the dislocation density is shown in Fig. 3
along the path connecting two next-to-nearest disclination,
where it intersects three vortices (two vortices and one
antivortex). The additional “gauge” invariance can be used
to optimize the distribution Eq. (15): by including a function
ζ (ψ) = a cos(5ψ) (on each of the 12 disclinations), the
dislocations become significantly different from zero only
along the paths connecting nearest neighbor disclinations
defining a distribution of “pentagonal buttons” [11].

The same methods provide the solution for a torus manifold.
Using (ϑ,α) coordinates (see Appendix B, the Levi-Civita
connection is �L = − sin(α)

r+cos(α)θ
1, where r = R1

R2
> 1 is the

aspect ratio of the torus. The most general dislocation density
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FIG. 2. Solution for the dislocation density on the sphere in the
thermodynamic limit [Eqs. (15) and (19)]. Solution Eq. (15).

satisfying Eq. (11) is

β =− sin(α)dϑ + λ1dϑ + λ2dα + d(ζ1(α) + ζ2(ϑ)),

(20)

where λ1,λ2 are arbitrary real numbers that parametrize
the De Rahm cohomology group H 1(T 2) = R ⊕ R and ζ1,2

are arbitrary functions. In Fig. 4(top), the solution with
λ1,λ2,ζ1,ζ2 = 0 is shown, and consists of finite length grain
boundaries with no disclinations (pleats [3]). In Fig. 4(bottom),
the solution with (λ1 = 0.5,λ2 = 0.3) is shown, with Burgers
vectors that twist along the circles with constant ϑ . Solutions
with isolated disclinations [8] are also possible, but will not be
discussed here.

0.0 0.5 1.0 1.5 2.0
θ

0.0

0.2

0.4

0.6

0.8

1.0

β
(x

)

q
=

+
1

q
=
−

1

q
=

+
1

FIG. 3. Magnitude of the dislocation density as a function
of geodesic distance from one disclination to the next-to-nearest
disclination. The three zeros correspond to two vortices q = 1 and
one anti-vortex q = −1. The magnitude diverges near disclinations.

FIG. 4. (Top) Solution for the dislocation density on the torus in
the thermodynamic Eq. (20) for aspect ratio r = 1.7. Solution with
λ1,λ2,ζ1,ζ2 = 0. (Bottom) Solution for the dislocation density on the
torus in the thermodynamic Eq. (20) for aspect ratio r = 1.7. Solution
with λ1 = 0.5,λ2 = 0.3.

IV. CONCLUSIONS

The general solution Eq. (11) immediately leads to a free
energy Eq. (5) that is identically zero. This does not imply
that the resulting crystal is perfectly flat, it is only flat up to
corrections of order O(a/R), see Eq. (7). A concrete example
will serve to illustrate this degeneracy: The energy of an
isolated disclination in a flat disk of radius R grows like R2

[25]. Whenever such disclination is surrounded by low angle
grain boundaries, the “perfect screening” condition leads to
an elastic energy that is of order R2O(a/R) = aR. There is,
however, a large freedom in the choice of the actual grain
boundaries: m radial grains where dislocations within a grain
are separated a distance

D = b

/(
2 sin

[
π

6m

])
(21)

will perfectly screen the disclination for any value of m or
orientation of the grains [14]. This freedom in the choice of
grain boundary is what the “gauge symmetry” Eq. (11), in the
general case, parametrizes.

Of course, the degeneracy implied by the “gauge symme-
try” is removed at order O(a/R), but then, there are additional
free energy contributions that come into play, such as, defect
core energies, bond orientational terms and many others.
The critical step is therefore the continuum limit Eq. (7).
This limit can be performed by the following construction
[15]: The minimum number of disclinations is determined
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by topological constraints and placed where the curvature
is maximum. Dislocations defining the scar are then added
whenever the area around that point exceeds or fails the
area of an entire triangle =√

3a2/4, where a is the lattice
constant. Such dislocation density will provide an optimal
approximation for finite a and converges to the exact analytical
solution.

Although it may appear that the results have been obtained
within linear elastic theory, they are, in fact more general. From
standard results in differential geometry [26], it is possible
to express ϒ = d†(��M ), where � is the generalization of
the Airy function [25] to curved geometries. Such function
satisfies an expansion in the “incompatible stress function”,
which goes beyond linear elasticity theory [29]. This for-
malism provides a rigorous justification for the formalism
discussed here, but making it more precise will be left for
a subsequent publication.

In summary, an explicit solution of the structure, in the
form of the distribution of disclinations and dislocations in
the thermodynamic limit for any geometry is provided. The
solution is highly degenerate. The results provide a precise
and practical formulation of the perfect screening condition
[3,11,20] and allow a determination of the effective potential
between disclinations dressed with scars, Eq. (18). Using
these results,it is shown that in the thermodynamic limit, the
ground state of a sphere contains 12 disclinations with the
symmetry of an icosahedron. With the current advances of both
experimental and numerical methods [18,21,22], where large
systems are realized, the importance of the thermodynamic
limit result becomes even more clear. Furthermore, the
underlying geometric interpretation is completely revealed.

The discussion in this paper has been confined to closed
manifolds. It is possible to generalize the results to manifolds
with boundaries. If it is allowed to adjust the boundary so that
the stresses are zero at the boundary, the equations defining the
perfect screening Eq. (13) can be applied with the only mod-
ification that the dislocation density is zero at the boundary.
If some stress is applied at the boundaries, as considered in
Refs. [20,23], these external stresses need to be implemented
as boundary conditions, which is not conceptually difficult but
somewhat more complex in practice [29].

The results presented are also relevant for a discussion of
finite temperature effects. For a sphere, for example, it shows
that the icosahedral order of the disclinations is maintained in
the thermodynamic limit, and therefore, the long-range effect
of such disclinations, which interact with a potential Eq. (18),
keeps the icosahedral symmetry all the way till melting [25].
The precise melting mechanism will be investigated in future
work. Last, but not least, the solutions discussed in this paper
are relevant for other problems, for example, in determining
triangulations of a manifold where triangles are optimally close
to equilateral.
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APPENDIX A: DIFFERENTIAL GEOMETRY BASICS

A general surface is described by an embedding �r(x), and
inherits a metric from flat space given by

gμν = ∂μ�r · ∂ν�r. (A1)

It is convenient to diagonalize the metric in terms of the
non-coordinate basis {êα} and {θ̂ α}, through the vielbeins
coefficients

θ̂ α = eα
μdxμ, êα = eμ

α

∂

∂xu

, (A2)

so that gμν = δαβeα
μeβ

ν . The one-form connection describes
how to transport vectors at different points, and is defined
according to

ωα
β = �α

γβ θ̂γ , (A3)

where the tensor �α
γβ implements the connection. The connec-

tion must be compatible with the metric, so that the norm and
angle of two vectors does not change during parallel transport.
This metric compatibility condition leads to

ωαβ = −ωβα =⇒ ωαβ = εαβ�, (A4)

where herein the right arrow is used to indicate the simplifica-
tions that occur for the two dimensional case. Here � = �αθ̂α

is a one-form. With these definitions, the Cartan structure
equations are given as

dθ̂α + ωα
β ∧ θ̂ β = T α =⇒ dθ̂α + �α�M = Bα�M,

(A5)
dωα

β + ωα
γ ∧ ω

γ

β = Rα
β =⇒ d� = K�M,

where T α = 1
2T α

βγ θ̂β ∧ θ̂ γ =⇒ Bα�M is the torsion tensor,

and Rα
β = 1

2Rα
βγ δθ̂

γ ∧ θ̂ δ =⇒ εα
βK�M is the curvature tensor,

with �M = θ̂1 ∧ θ̂2 the area form.
There is a special connection, sometimes named the Levi-

Civita connection, where the torsion vanishes identically. In
this case, vectors are parallel transported along geodesics. I
denote this connection as �L, and it satisfies the equations

�L,α�M = −dθ̂α, d�L = K�M, (A6)

where K(x) is the standard Gaussian curvature.

APPENDIX B: TOROIDAL COORDINATES

The toroidal coordinates employed in this paper are

x(α,ϑ) = (R1 + R2 cos(α)) cos(ϑ),

y(α,ϑ) = (R1 + R2 cos(α)) sin(ϑ), (B1)

z(α,ϑ) = R2 sin(α),

where both α,ϑ run from 0 to 2π .
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