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Using discrete element methods, the effects of the grain size distribution on the density and the shear strength
of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the
system’s grain size distribution and its rheology are revisited, and their validity is tested across a broader range of
distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction
are explored. It is found that the distribution that produces the densest packing is not the uniform distribution
by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when
the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in
1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919),
respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on
the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed
of frictionless particles as has been shown recently in several works. It is also found that this shear strength is
independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform
distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of
the grain size distribution.
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I. INTRODUCTION

Many granular materials, both natural and industrial, are
composed of particles of different sizes. This fundamental
property, commonly known as polydispersity, is of particular
interest in various fields, such as geotechnical and process
engineering, because it is known to have a strong effect on
the material’s macroscopic behavior. For example, polydis-
persity strongly influences the material’s packing fraction,
and, because of this, it is thought to have a major effect
on the material’s robustness. For this reason, choosing the
correct grain size distribution (GSD) is an important step for
proportioning the granular phase in composite materials, such
as Portland concrete, asphalt concrete, and granular bases in
roadway pavements in order to optimize their performance.

The relationship between polydispersity and the packing
fraction has been studied for more than a century. Fuller
and Thompson in 1907 [1] and 1919 [2] undertook the
first experimental works in which they looked for the GSD
of a mixture of cement and aggregates that produces the
densest arrangement. This optimal GSD is important because
it maximizes the concrete strength and workability. Fuller and
Thompson found that the optimal GSD is that for which the
cumulate volume distribution (also termed the grading curve
in several industrial contexts) is that described by

ρ = (d/dmax)0.5, (1)

where ρ is the mass percentage of particles with diameters
smaller than d and dmax is the maximal diameter. In the
years that followed, similar experiments were conducted, such
as those by Talbot and Richart [3] with cement and aggregates
and those by Andreasen [4] with ceramic powders, and new
exponents were proposed for Eq. (1) (i.e., 0.45 and 0.37,
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respectively). It was shown that the optimal exponent decreases
as the amount of fines (i.e., particles smaller than 75 μm) in
the mixture increases. Some recent experimental works are
those reported in Refs. [5–8] in which different exponents are
proposed, better adapted to different materials and industrial
contexts. In addition, a correction to Eq. (1) was proposed [6],
which takes into account a minimal diameter dmin,

ρ =
(

d − dmin

dmax − dmin

)η

, (2)

in which dmax and dmin determine the span of the GSD and
the exponent η controls its shape (e.g., η = 0 corresponds to a
monodisperse material, and η = 1 corresponds to the uniform
distribution by volume fractions).

Other early works were those of Furnas in 1929 and 1931
[9,10] who was the first to develop analytical expressions
to predict the packing density as a function of the GSD for
both discrete and continuous GSDs. Other works in which
similar expressions have been proposed are those reported
in Refs. [11–21]. In general, these expressions yield better
results for discrete GSDs (e.g., binary or ternary mixtures),
especially when the difference between the diameters of each
class is large. Predictions for continuous GSDs are less precise,
probably due to the difficulty in understanding the interactions
between particles of similar sizes.

A third strategy for tackling this problem theoretically
consists of building arrangements of particles (usually disks
or spheres) according to a geometrical rule and analyzing
their structures. For example, different geometrical rules have
allowed the empirical estimation of reference solid fractions,
such as those of the random close packing [22–25] and
the random loose packing [26] of equally sized disks (i.e.,
approximately 0.822 and 0.772, respectively). Some examples
of works in which this strategy was used to study polydisperse
systems are those reported in Refs. [17,27–36]. These models
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constitute an analysis tool of great value since they allow
for a large range of configurations to be explored with great
computational efficiency. For example, the work of Voivret
and colleagues [33] must be noted in which a large set
of GSDs was built and compared. Different shapes of the
GSDs were obtained by using the cumulative β distribution,
finding that the GSD that produces the densest packing is
the uniform distribution by volume fractions [i.e., Eq. (2)
with η = 1]. This result disagrees with those reported in
Refs. [1–3,5–8], although these works focus on mixtures of
fine and coarse grains and the model developed in Ref. [33]
was two dimensional.

The purpose of the tools mentioned in the previous
paragraphs is to explore the relations between the GSD and
the material’s rheology and microstructure. However, the use
of these tools implies several limitations. First, experiments
are usually expensive and time consuming, especially if the
researcher wants to explore a broad parametric space. Second,
analytical predictions are difficult to extend in order to analyze
properties beyond packing density, such as stiffness, shear
strength, permeability, etc. In addition, the difficulty to study
continuous GSDs constitutes a major obstacle for practical
applications since most granular materials, both natural and
industrial, exhibit continuous gradations. Finally, numerical
models of arrangements built geometrically, which allow for
investigating several microstructural characteristics, raise the
question of the correspondence between these systems and real
granular materials in which the system’s behavior is the result
of dynamics and of the interaction between grains.

A privileged analysis tool, which allows for overcoming
most of these limitations, is numerical simulation using
discrete element methods. However, the use of this tool also
implies limitations, such as the need for a large number of
grains in order to ensure statistical representativity and the
need for a refined time discretization in order to correctly
resolve the interactions between grains of very different sizes.
In fact, these limitations, among others, could explain why
most works using discrete element methods use narrow GSDs.
In order to illustrate this statement, Fig. 1 shows the size
ratio λ = dmax/dmin that was used in all papers using discrete
element simulations that have been published in the Granular
Materials section of Physical Review E from 1 July 2015 to
1 July 2016. It is interesting to note that the mean 〈λ〉 is only
1.73 and that works using values of λ greater than 2 are rare,
whereas natural granular materials, such as soils, usually have
values of λ that are orders of magnitude larger.

Over the past decades, there have been a few research
projects devoted to study the effects of the GSD by means
of discrete element methods. Stroeven and Stroeven [37]
presented simulations varying the shape of the GSD and
found that this affects the packing density. Wackenhut and
co-workers [38] compared the dilatancy and shear strength of
a bidisperse material and one with a continuous GSD, finding
that both measures were larger in the bidisperse material.
Voivret and collegues [39] presented a systematic analysis
of the anisotropy, force transmission, and shear strength in
materials with continuous GSDs; they only varied the span
of the GSD and kept its shape constant. An interesting and
counterintuitive result of this paper is that the shear strength
appears to be independent of the span of the GSD. Yohannes
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FIG. 1. Size ratio λ = dmax/dmin used in all papers using discrete
element simulations published in the Granular Materials section of
Physical Review E from 1 July 2015 to 1 July 2016. The black line
shows the average 〈λ〉 = 1.73. The horizontal axis is the publication
date, represented in days after 1 July 2015.

and Hill [40] studied the packing fraction and shear strength of
bidisperse systems, highlighting how these measures depend
on the level of inertia. Finally, the works of Nguyen and
colleagues [41,42] must also be noted. They studied the effects
of polydispersity on both particle size and particle shape, only
varying the span of the GSD and finding that the shear strength
was independent of the GSD as reported by Voivret et al. [39].

The works cited in the previous paragraph constitute
valuable contributions to the study of polydisperse granular
systems, and they evidence the great potential of simulations
with discrete element methods to study the mechanical effects
of polydispersity. However, these works also highlight the need
for a systematic analysis that includes not only the span of the
GSD, but also its shape. In addition, this bibliographic revision
sheds light on two open questions for which the reported results
disagree. These questions are the following:

(1) For coarse granular materials, is the GSD that produces
the densest packing either that with η � 0.5 as reported in
Refs. [1,2] for three-dimensional (3D) experiments or that
with η = 1 as reported in Ref. [33] for two-dimensional (2D)
simulations?

(2) Is the shear strength constant not only with the span of
the GSD as reported by Refs. [39,42], but also with the shape
of the GSD?

The aim or this investigation was to explore these two
questions. In order to do so, a discrete element method (i.e.,
contact dynamics) was used. The idea was to analyze the
simplest possible systems for which the answer to these two
questions was unclear. Thus, the particles were frictionless
disks. The systems were mechanically densified, which al-
lowed for studying their maximal packing fraction, and then
sheared in a simple shear configuration, which allowed for
studying their shear strength.

This article is organized as follows. First, the numerical
method is briefly presented in Sec. II. In Sec. III, the methods
used to construct the samples and to determine their maximal
solid fraction and shear strength are described. The results are
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presented in Sec. IV, and the paper ends in Sec. V with a brief
conclusion and some perspectives.

II. NUMERICAL METHOD

The simulations were carried out using the contact dy-
namics method, developed in France by Moreau [43] and
Jean in the 1990s [44–46]. This method can be seen as the
combination of three main ingredients. The first ingredient is
the set of equations of motion, which, integrated over a small
time step, relate the impulsion to the change in momentum
of each particle over the time step. The second ingredient is
a set of contact laws, which relate the impulsions exerted at
each contact with the change in relative velocity during the
time step. The method supposes that grains are perfectly rigid,
and the usual contact laws are perfect volume exclusion and
Coulomb friction. The third ingredient of the method is an
algorithm of solution. Since the system of equations to be
solved is of implicit type, each grain’s impulsions and changes
in momentum are determined using an iterative algorithm
similar to a Gauss-Seidel scheme. Then, these impulsions and
changes in momentum are used to calculate the contact forces
and grain positions at the end of the time step. For a detailed
description of the contact dynamics method, see Refs. [47,48].

III. SIMULATIONS

A. Sample construction

The numerical samples were composed of approximately
10 000 disks with a GSD that followed a power law, such
as that presented in Eq. (2). The span of the GSD was
described by the size ratio λ = dmax/dmin, and the shape of
the GSD was controlled by the exponent η. Systems were built
for the following set of parameters: λ ∈ (2,4,8,16,32) and
η ∈ (0.1,0.2, . . . ,1). For this purpose, the range of diameters
(dmin,dmax) was divided into ten subranges, and, inside these
subranges, a uniform distribution by number of grains was
used. Figure 2 shows the GSDs (i.e., the cumulate area distribu-
tions) of all samples; ρ is the area percentage of particles with a
reduced diameter smaller than dr = (d − dmin)/(dmax − dmin).
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FIG. 2. Grain size distributions for all samples. The black lines
show Eq. (2).

The black lines show Eq. (2). It can be seen that the built
GSDs closely follow the theoretical curves. For λ = 32, only
samples with η ≥ 0.4 were built since it was seen that smaller
values of η would require a larger number of grains in order to
obtain a good fit (i.e., a maximal vertical offset of 0.03) with
the theoretical curve.

B. Densification test

The samples were densified using an oedometric (i.e., zero
lateral strain) compression test. For each of the samples, the
grains initially were placed in the nodes of a square grid with
nr rows and nc columns in which nrnc � 10 000. The length of
the grid elements was 2.67〈d〉, where 〈d〉 = (dmax + dmin)/2
in order for the grains not to touch or overlap. Then, this
arrangement of grains was placed inside a semiperiodic
rectangular box (i.e., the top and bottom boundaries were rigid
walls, and the lateral boundaries were periodic). Finally, a
vertical force F was applied to the top and bottom walls,
which induced the downward displacement of the top wall and
the upward displacement of the bottom wall. The simulations
stopped once the samples reached equilibrium. nr and nc

varied among samples in order for the densified samples to
be of approximately square shape. For each combination of
parameters λ and η, five independent samples were built and
densified. Figure 3 shows a schematic of the densification test.

Figure 4 shows a zoom of some of the samples after
densification. In the first place, it can be seen that for low
values of λ and η (i.e., for λ = 2 and/or η = 0.1) the packings
are not completely random. This happens because for some
GSDs most of the particles have almost the same size. As a
result, some regions of the sample spontaneously arrange in
an ordered fashion. Specifically, these “crystallized” regions
emerge for GSDs with λ = 2 and/or η � 0.3. This implies
that the construction-densification protocol presented in this
paper cannot be used to reach reference states, such as the
random close packing [22–25] and the random loose packing
[26] of equally sized disks. In order to obtain these reference
states, careful construction and analysis procedures must be
implemented for ensuring the randomness of the system
[22–26]. In the second place, it can be seen that for intermediate
and large values of λ and η (i.e., for λ � 4 and η � 0.4)
the packings are essentially disordered. In addition, visual

(a) (b)

FIG. 3. Schematic of the densification test. The dashed lines
represent periodic boundaries. (a) Initial state in which the grains
neither touch nor overlap. (b) Final state once the sample reached
equilibrium under the action of forces F .
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FIG. 4. Zoom of some of the samples at the end of the densi-
fication procedure. Floating particles (i.e., particles with one or no
contacts) are shown in gray.

inspection of Fig. 4 reveals that the packings’ density is
strongly dependent on the choice of parameters λ and η. In
particular, for η = 0.5 the small particles seem to better fill
the pores between large particles, producing a denser system.
This effect will be shown quantitatively in Sec. IV A.

C. Simple shear test

After densification, the samples were sheared by imposing
a confining stress σc and a shear velocity vs to the upper
wall; see Fig. 5. In order to avoid strain localization along
the boundaries, relative movement between the walls and the

FIG. 5. Schematic of the shear test. The dashed lines represent
periodic boundaries.

grains in contact with them was inhibited. For λ ∈ (2,4,8,16),
the samples were sheared to a shear strain γ = �x/h = 1,
where �x is the horizontal displacement of the upper wall and
h is the sample height. For λ = 32, γ was 0.5 because these
simulations required considerable smaller time steps. It was
verified that the shear strain was homogeneously distributed
in the samples.

The level of inertia was quantified by means of the inertial
number I [49], defined as

I = γ̇ 〈d〉√
σc/	

, (3)

where γ̇ is the shear rate and 	 is the grains’ density. In all shear
tests I � 10−4, which means that these tests can reasonably
be considered as quasistatic.

For all simulations, in both the densification and the simple
shear tests, the gravity was set to zero.

IV. RESULTS

A. Packing fraction

The packing density was quantified by means of the packing
fraction ν, defined as

ν = Ag

A
, (4)

where Ag is the area occupied by the grains and A is the total
area. Figure 6 shows ν as a function of η for all values of λ.
First, it can be seen that ν increases with λ as expected and as
shown previously in Refs. [39,42]. Second, it can be seen that
ν varies in a nonmonotonic fashion with η with a maximum
for η � 0.5. This shows that the maximal packing fraction is
obtained when the GSD follows a power law with an exponent
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FIG. 6. Packing fraction ν as a function of η for all values of λ.
Error bars indicate the standard deviation between the five realizations
of the densification test for each combination of parameters λ and η.
The empty circles on the left axis show ν for several equally sized
disk packings, built following the protocol described in Sec. III B (the
difference between these systems is the remainder of the box width
divided by the disks’ diameter, which controls the amount and extent
of dislocations). The dashed line indicates the packing fraction of a
set of disks of the same size packed in an hexagonal arrangement HP
[i.e., π/(2

√
3) ≈ 0.9069].
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close to 0.5 as suggested by Fuller and Thompson [1] and
Taylor and Thompson [2] and not for the uniform distribution
by volume fractions (i.e., for η = 1), as suggested by Voivret
et al. [33]. As shown qualitatively in Fig. 4, large packing
fractions can be obtained by combining three key features:
disorder, a large size span, and the correct proportion of small
particles that allows for the voids between the large particles
to be efficiently filled.

Moreover, Fig. 6 also shows that ν can exceed the packing
fraction of a set of equally sized disks, which spontaneously
arrange in a crystallized fashion. The empty circles on the
left axis show ν for several equally sized disk packings, built
following the protocol described in Sec. III B (the difference
between these systems is the remainder of the box width
divided by the disks’ diameter, which controls the amount
and extent of dislocations). The dashed line shows ν for the
hexagonal arrangement [i.e., π/(2

√
3) ≈ 0.9069], which is the

highest covering density that can be achieved with equally
sized disks.

B. Shear strength

In order to calculate the shear strength, it is useful to
calculate the stress tensor. To do so, we first compute the
internal moment tensor Mg of each grain g, defined as

M
g

ij =
∑
c∈g

f c
i rc

j , (5)

where i and j represent the components in an orthonormal
reference frame, f c is the force exerted on the grain at contact
c, rc is the position vector of the same contact, and the sum
runs over all contacts on the grain. The stress tensor σ in an
area A of the granular assembly is given by

σA
ij = 1

A

∑
g∈A

M
g

ij . (6)

The shear strength can then be quantified by the angle of
internal friction φ, which can be calculated as

φ = arctan
σxy

σyy

, (7)

where x and y represent, respectively, the horizontal and
vertical directions in Fig. 5.

As examples, Fig. 7 shows φ and ν as functions of the
shear strain γ for five samples. First, it can be seen that both
φ and ν fluctuate around a mean value, indicating that the
packing is being sheared in the steady state. Second, it can
be seen that the shear strength is similar in the five samples
and is close to 6◦. This means that these packings exhibit a
small shear strength even if they are composed by frictionless
grains. Finally, it can be seen that ν remains approximately
constant during the test. These two last observations confirm
that, as first shown by Peyneau and Roux, “Frictionless bead
packs have macroscopic friction, but no dilatancy” [50] and
Azéma et al. [51].

Figure 8 shows φ as a function of η for all values of λ. It
can be seen that φ remains constant for both λ and η. First,
this means that, as shown in Refs. [39,42], the shear strength
is independent of the span of the GSD. Second, this means
that the shear strength is also independent of the shape of the
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FIG. 7. Angle of internal friction φ (top) and packing fraction ν

(bottom) as functions of the shear strain γ for five samples.

GSD, at least for the family of shapes that can be described by
Eq. (2).
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FIG. 8. Shear strength φ as a function of η for all values of λ. Error
bars indicate the standard deviation of 25 different states captured
during the shear tests.
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V. CONCLUSION AND PERSPECTIVES

The purpose of this paper was to explore the following two
questions for which the reported results disagree:

(1) For coarse granular materials, is the GSD that produces
the densest packing either that described by a power law with
an exponent close to 0.5 as reported in Refs. [1,2] for 3D
experiments or the uniform distribution by volume fraction as
reported in Ref. [33] for 2D simulations?

(2) Is the shear strength constant not only with the span of
the GSD as reported by Refs. [39,42], but also with the shape
of the GSD?

Regarding the first question, it was shown that the maximal
packing fraction is obtained when the GSD follows a power
law with an exponent close to 0.5 as suggested by Fuller and
Thompson in 1907 [1] and Taylor and Thompson in 1919 [2]
and not for the uniform distribution by volume fractions (i.e.,
for an exponent equal to 1) as suggested recently by Voivret
et al. [33]. This result extends the validity of the optimal
GSD proposed in Refs. [1,2] for real granular materials to the
case of 2D frictionless disks. Moreover, based on a qualitative
observation, it was suggested that the high packing fraction of
the GSD proposed by Fuller and Thompson is due to a higher
proportion of small particles that allows for the voids between
the large particles to be efficiently filled. Evidently, the effect
is enhanced as the span of the GSD increases.

When comparing the results presented in the present paper
with those presented in Ref. [33], it must be noted that the
parametric space investigated in Ref. [33] did not include a

power law GSD with an exponent of 0.5. In addition it is also
of importance that the numerical protocol used by Voivret and
colleagues to build the samples is different from the one used
in the present paper since that used in Ref. [33] is based on
geometrical rules and that used here is of a mechanical nature.

Regarding the second question, it was shown that the shear
strength remains constant for both the span (i.e., λ) and the
shape (i.e., η) of the GSD. This result is in agreement with
that presented by Voivret et al. [39] and Nguyen et al. [42]
and shows that it can be generalized to the family of shapes
described by Eq. (2). Finally, our results confirm that systems
composed of frictionless particles have a small shear strength
but no dilatancy as was first shown by Peyneau and Roux [50]
and Azéma et al. [51].

This work will be continued in several directions. First,
the effects of the GSD in the system’s microstructure will
be analyzed in both static loading and quasistatic shear
conditions. Second, the effects of the GSD on the packing
fraction and the shear strength of three-dimensional systems
will be explored. This is a crucial task in line with applying
the results of discrete element simulations to real systems and
industrial processes.
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