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Empty smectic liquid crystals of hard nanorings: Insights from a second-virial theory
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Inspired by recent simulations on highly open liquid crystalline structures formed by rigid planar nanorings,
we present a simple theoretical framework explaining the prevalence of smectic over nematic ordering in systems
of ring-shaped objects. The key part of our study is a calculation of the excluded volume of such nonconvex
particles in the limit of vanishing thickness to diameter ratio. Using a simple stability analysis we then show that
dilute systems of ring-shaped particles have a strong propensity to order into smectic structures with an unusual
antinematic order while solid disks of the same dimensions exhibit nematic order. Since our model rings have
zero internal volume, these smectic structures are essentially empty, resembling the strongly porous structures
found in simulation. We argue that the antinematic intralamellar order of the rings plays an essential role in
stabilizing these smectic structures.
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I. INTRODUCTION

By virtue of their orientation-dependent interactions, non-
spherical nanoparticles are capable of displaying a much
richer phase morphology than their spherical counterparts.
Prominent examples are liquid crystal mesophases, which
are characterized by broken orientational symmetry (nematic
order) combined with long-ranged periodicity in one, two, or
sometimes three (such as in cholesteric blue phases) spatial
dimensions [1]. The nature of the simplest liquid crystal,
the nematic fluid, has received a sound statistical-mechanical
basis with the classical theory of Onsager [2], in which it
is argued that steric repulsion alone can favor nematic states
with long-range particle alignment over disordered (isotropic)
fluids provided the particle concentration is sufficiently high.
Experimental examples of liquid crystal formation driven
by convex nonspherical particle shapes (rods, disks) are
quite plentiful in colloid physics [3]. Recent advances in
nanoparticle fabrication have led to colloidal or polymeric
particles with more complicated, nonconvex shapes [4,5],
with examples ranging from lock-and-key colloids [6], bowl-
shaped [7], and hollow spheres [8] to bent-core [9] and
shape-persistent macrocycles [10,11]. Clearly, investigating
the spontaneous self-assembly of these intricate particle shapes
poses an intriguing challenge to the modeling community [12].

While Onsager-type mean-field theories have been success-
fully employed to predict the structure and bulk phase behavior
of simple convex bodies (rods, plates, boards, etc.) and their
mixtures, their application to systems of nonconvex particle
shapes is of a more recent date [13–16]. The studies appearing
to date have underlined the notion that broken particle
symmetry may give rise to intricate periodicity in nematics,
involving cubatic [14] or helical mesostructures [16,17]. A
recent computer experiment on assemblies of planar nanorings
of different shapes and sizes has revealed striking examples of
lamellar order, which seems greatly facilitated by the hollow
shape of the rings [18,19]. Stable smectic structures emerge
quite generically provided ample interpenetrability of the rings
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is guaranteed, i.e., the rings should be sufficiently thin but need
not be perfectly round (e.g., regular polygonal rings with at
least four sides also exhibit smectic order) [19]. An example
of a porous smectic phase formed by rigid circular rings is
presented in Fig. 1.

These smectic structures are remarkable for two reasons.
First, they are strongly porous since the rings are hollow and
therefore have a very small internal volume. This feature is
important in view of many materials applications (e.g., the
fabrication of photonic crystals), which requires structures
with long-ranged periodicity but a low-packing fraction as
in inverse opals [20]. Other examples of “empty” liquids
or liquid crystals include laponite suspension [21], swollen
lamellar phases of clay sheets [22], and columnar phases of
imogolite rods [23]. In these systems, long-ranged electro-
static interactions between the particles are believed to be
responsible for order at ultralow-packing order, rather than
short-ranged steric interactions related to some nonconvex
particle shape. The second surprising feature is that the rings
are ordered antinematically, that is, the particle orientation
vectors preferentially lie in a plane perpendicular to the
nematic director, contrary to what is found in most discotic
liquid crystals. Evidence of antinematicity was found in some
soft-interaction models for clay particles [24] and deformable
dendrimers [25]. It is quite surprising to see this type of order
emerging in simple systems of nanorings, which interact only
through steric repulsion without the need to apply an external
field [26].

In this paper we give a theoretical underpinning for the
emergence of empty smectic structures in ring assemblies
starting from a simple hard-interaction model treated within
a second-virial theory. The approach fully accounts for the
nonconvex shape of the particles but restricts interactions to
pairs only. We show that the theory is capable of reproducing
the main features observed in the simulations, namely the
prevalence of smectic over nematic order along with a
correct assessment of the local antinematic alignment and
lamellar spacing. Mixing rings with regular convex disks
produces a crossover from smectic to standard nematic order,
suggesting that the stability of smectic order must be due to
the nonconvexity of the rings and their marked propensity to
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FIG. 1. Representative configuration of the smectic-A (SmA)
phase formed by a system of N = 500 rigid rings obtained by
molecular dynamics simulations (see Ref. [19]). This system is
modeled as a collection of nb = 56 tangent beads of diameter σ

interacting via a soft WCA potential. The radius of the rings (from
the center of the particles to the center of the peripheral beads)
is r = 8.92σ . The particle density is ρr3 = Nr3/V = 1.5, which
corresponds to a very-low-packing fraction φ = πNnbσ

3/(6V ) =
0.062. The system has been replicated along the direction of the
layers to aid the visualization of the SmA phase. The typical lamellar
spacing is indicated by λ∗. The rings are aligned antinematically with
their normals pointing perpendicular to the lamellar director n̂. Traces
of interlayer rings with transverse, nematic order are visible in the
center of the image.

interpenetrate. We also argue the antinematic order of the rings
within the smectic layers to be one of the main contributing
factors to smectic stability, as it enables the system to retain a
much higher degree of orientational entropy than it would if the
particles were aligned nematically along a common director.

II. STABILITY OF THE ISOTROPIC FLUID AGAINST
LIQUID CRYSTALLINE ORDER

Without loss of generality we set the thermal energy
kBT = 1 as the unit of energy (kB is Boltzmann’s constant and
T temperature). The Helmholtz free energy F of a nonuniform
fluid of nonspherical particles is expressed in terms of the
one-body density ρ(r,û). In the second-virial approximation
it reads [2,27–29]

F[ρ] = μ0 +
∫

drdûρ(r,û) ln[Vρ(r,û) − 1]

− 1

2

∫
drdû

∫
dr′dû′�(�r,û,û′)ρ(r,û)ρ(r′,û′),

(1)

with V the total thermal volume of the particle, including
contributions from the rotational momenta. The key quantity
here is the Mayer function � = e−U − 1, defined in terms of
the orientation-dependent pair potential U (�r,û,û′) between
two nonspherical objects with center-of-mass distance �r =
r − r′ and orientation vectors û and û′. The chemical potential
μ0 ensures proper normalization of the one-body density, i.e.,∫

drdûρ(r,û) = N .
If the particle interactions are strictly hard, which is the

case here, then � = −1 if the cores overlap and � = 0

otherwise. Configurations involving any number of particle
overlaps yield an infinite potential energy and are infinitely
improbable. All allowable particle configurations, therefore,
have zero internal energy and the Helmholtz free energy is
governed by entropic contributions alone. This is encoded in
Eq. (1) where the first term represents the exact translational
and orientational entropy of an ensemble of freely rotating non-
spherical particles—both entropies are maximal in a uniform
isotropic fluid—whereas the approximate second contribution
accounts for the so-called packing entropy of hard particles
by considering only interactions between pairs. Since there
are no enthalpic contributions, temperature becomes a mere
scaling factor and the overall particle concentration constitutes
the only relevant thermodynamic parameter. Strictly, the
second-virial free energy formulated above is only expected
to be quantitatively reliable for strongly elongated hard rods,
in line with Onsager’s original idea [2]. Although far less
accurate for rings or discotic bodies where higher-order
virial contribution are expected to remain important even at
low particle concentration [30,31], the theory does provide
important qualitative guidance as to the liquid crystal structure
formation of those types of particle shapes.

At low particle density, the particles will form an isotropic
fluid with uniform particle concentration ρ0 = N/V and
random orientations so that the one-body density is a simple
constant ρ(r,û) = ρ0/4π . At higher concentration, particle-
particle interactions will drive liquid crystalline order of some
nature. In order to probe this in more detail we apply a
perturbation to the isotropic state by considering an arbitrary
density modulation characterized by some wave vector q [32]:

ρ(r,û) = ρ0

4π
+ δρ̂(û)e−iq·r, (2)

where the amplitude is required to be infinitesimally small,
i.e., |δρ̂(û)| � 1. This perturbation may signify any type of
liquid crystalline order such as nematic, smectic, columnar,
or even full crystalline order. The perturbation brings about a
change in free energy, which formally reads up to quadratic
order in the amplitude:

δ2F =
∫

dûdû′
{

4πδûû′

ρ0
− �̂q(û,û′)

}
δρ̂(û)δρ̂(û′), (3)

where �̂q represents the Fourier transform (FT) of the Mayer
function, which for hard interactions reduces to a Fourier
transform of the excluded volume at fixed particle orientation:

�̂q(û,û′) =
∫

d�r�(�r,û,û′)eiq·�r

= −
∫

Voverlap(û,û′)
d�reiq·�r. (4)

Local stability of the isotropic fluid against liquid crystalline
order requires that δ2F be positive, whereas loss of stability
happens when δ2F = 0. The state-point (particle density ρ0)
at which this occurs is referred to as a bifurcation point,
indicating the emergence of liquid crystalline order with a free
energy lower than that of the isotropic fluid at the same particle
concentration. The bifurcation condition can be established by
factorizing the perturbation δρ̂(û) = εf ∗(û) (with ε � 1) and
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rearranging terms into the following integral equation [28,33]:

f ∗(û) = ρ0

4π

∫
dû′f ∗(û′)�̂q(û,û′), (5)

where f ∗(û) is the eigenfunction marking the orientational
distribution of the particles in the incipient “new” phase.

The stability analysis entails seeking the wave vector,
encoding some prescribed density modulation, that produces
the lowest eigenvalue ρ0. The latter is identified as the
bifurcation density. The simplest liquid crystalline instability
is the nematic. This state is characterized by a uniform
density but a nonuniform orientation probability in which the
particles adopt a certain degree of alignment along a common
nematic director denoted by n̂. The bifurcation toward the
nematic is particularly straightforward to gauge since there
is no periodicity (q = 0), while the incipient orientation
distribution takes on the form of a simple Legendre polynomial
f ∗(û · n̂) = P2(û · n̂)/4π (with P2(x) = 3

2 cos2 x − 1
2 ) [34].

The isotropic-nematic bifurcation density then simply follows
from Eq. (5) after some basic rearrangements:

ρ∗
0 = 〈[P2(t)]2〉t

〈〈P2(t)P2(t ′)〈B2(û,û′)〉�ϕ〉t 〉t ′ , (6)

with t = û · n̂ the projection of the particle vector onto the
nematic director and �ϕ the azimuthal angles describing the
relative particle orientation in the plane perpendicular to
the director so that we may parametrize (û,û′) → (t,t ′,�ϕ).
The brackets denote averages over the polar projections, 〈·〉t =∫ 1
−1 dt , and azimuthal orientations 〈·〉�ϕ = (2π )−1

∫ 2π

0 d�ϕ.
The key ingredient here is the second-virial coefficient
B2(û,û′) = 1

2 �̂0(û,û′), defined as the excluded volume per
particle [2]. For slender uniaxial particles (needles, disks,
rings) this quantity is strongly orientation-dependent and
scales as B2(û,û′) ∝ | sin γ | in terms of the enclosed angle
γ between the main particle vectors. The corresponding bi-
furcation density then simply follows from ρ∗

0 = 4/〈〈B2〉〉I in
terms of isotropic average of the second virial coefficient [34].

III. EXCLUDED VOLUME OF RIGID RINGS AND DISKS

The key quantity of interest here is the excluded volume
between the two hard objects at fixed mutual orientation
defined as the figure swept out as one object moves around
the other at closest contact. The excluded volume of spher-
ical particles is simply another spherical object with twice
the radius of its constituents. Anisotropic objects, however,
produce much more complicated geometries depending on
their mutual orientation. Figure 2 depicts the excluded volume
manifolds for the particles under scrutiny: hollow rings and
filled disks. Both objects are characterized by a diameter
D = 2r and a thickness L, which is assumed asymptotically
small so that L/D ↓ 0. The rings are infinitely thin and
are not allowed to interlock. Thus, both objects have an
internal volume tending to zero, but a finite excluded-volume,
which is nontrivially orientation-dependent. Clearly, the figure
associated with the excluded-volume zone of two rings is
highly nonconvex due to the interpenetrability of the particles.
This gives rise to sharp cusps located at the four square edges
of the figure, which join together at the center-of-mass of the
body (Fig. 2), reflecting the possibility of a complete overlap

FIG. 2. Visualization of the excluded volume of a pair of infinitely
thin hard rings (a) and disks (b) with radius r = D/2 at fixed mutual
orientation defined within a particle-based frame spanned by the three
unit vectors. The overlap figure of rings is strongly nonconvex and
contains sharp inward cusps.

of mathematical rings at mutual perpendicular orientation
û1 · û2 = 0, a configuration resembling the gimbals of a
gyroscope. Complete overlap of disks is not possible unless the
particles are strictly parallel (û1 · û2 → 1) in which case the
overlap volume vanishes. The main challenge confronting us
is to parametrize the nonconvex overlap manifold associated
with the rings. While several routes are conceivable, we find
that the most expedient one involves computing the overlap
between a ring and a disk as sketched in Fig. 3. Let us
first define a particle-based frame from the normal vectors
û1 and û2 of a pair of disks or rings. Defining the additional
unit vectors v̂ = û1 × û2/|û1 × û2| and ŵi = ûi × v̂ so that
{ûi ,v̂,ŵi} (with i = 1,2), we obtain two orthonormal frames.
The excluded volume is most conveniently parameterized in
the nonorthogonal, rhombic {ŵ1,v̂,ŵ2} frame with unit volume
|û1 × û2| = | sin γ |.

First, we parametrize the circular parts (I) as follows:

rA
I = −dv̂ + t1 sin ξ v̂ + t1 cos ξ ŵ1 + t3ŵ2,

(7)
rB

I = dv̂ − t1 sin ξ v̂ + t1 cos ξ ŵ1 + t3ŵ2,

with integration limits 0 < t1 < r , −r < t3 < r , and 0 < ξ <

2π and d = (r2 − t2
3 )

1
2 the center-to-center distance of the

fused circles. For the circle segments (II) we use the same
form as above but with the angular integration replaced by
− cos d

r
< ξ < cos d

r
. Finally, the triangular parts (III) can be

parameterized via

rA
III = −t1v̂ + t2ŵ1 + t3ŵ2,

(8)
rB

III = t1v̂ + t2ŵ1 + t3ŵ2,

with 0 < t1 < d, −(t3 − t1 tan d
r
) < t2 < (t3 − t1 tan d

r
), −r <

t3 < r . The FT of the excluded volume per particle (i.e., the
second virial coefficient) for a ring-disk (RD) pair is given by
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IIIIII

FIG. 3. Overlap between a ring and a disk; rolling the disk around
the circle in the {ŵ1,v̂} plane at fixed mutual orientation projects
a typical dimer composed of two overlapping circles with radius
r = D/2. Its surface can be calculated by decomposing the area into
a circular section (I, checkerboard), a circle segment (II, stripes), and
a triangular section (III, waves). The dotted lines in the top-right
sketch denotes the convex hull of the fused circles.

a linear combination of the three contributions via

B̂RD
2q =

∑
A,B

[∫
drIe

iq·rI −
∫

drIIe
iq·rII +

∫
drIIIe

iq·rIII

]
.

(9)

The integrals can be worked out by invoking the coor-
dinate transformations

∫
dri → ∫

dt1
∫

dt3
∫

dξJi (i = I,II)
and

∫
drIII → ∫

dt1
∫

dt2
∫

dt3JIII, with Ji being the Jacobian
matrix associated with the transformation. While the results
for arbitrary nonzero wave vector cannot be obtained in closed
form, the actual excluded volume can be retrieved analytically
from the zero wave-number limit B̂RD

2q↓0 = BRD
2 , which yields

BRD
2 = D3

(
1

3
+ π

8

)
| sin γ |. (10)

The FT of the second-virial coefficient between two rings (RR)
is now easily obtained from

B̂RR
2q = B̂RD

2q + B̂DR
2q − B̂DD

2q . (11)

The contribution for disks (DD) in Fourier space has been
derived in Ref. [35] and can be readily reconstructed from
Fig. 3 by considering the convex hull of the dimer area
(no cusps; see dotted lines in Fig. 3) resembling a 2D
spherocylinder. Also here, the zero wave-number limit is well-
known and yields the excluded-volume between two infinitely
thin hard disks with diameter D, namely BDD

2 = π
4 D3| sin γ |.

The result for two rings then follows from Eq. (11) and turns
out

BRR
2 = 2

3
D3| sin γ |. (12)

The ratio BRR
2 /BDD

2 = 8/3π ≈ 0.85, indicating that the ex-
cluded volume of rings is only about 15% smaller than
that of disks providing the particles have the same diameter
and mutual orientation. The finite wave-number values of
the second-virial coefficients were obtained by numerically
solving the contour integrals in Eq. (9) using standard numer-
ical integration packages [36]. These values then define the
kernel of the integral equation, Eq. (5), which is subsequently
solved using a matrix diagonalization routine by discretizing
the orientational phase space on an equidistant grid of polar
(0 < θ < π ) and azimuthal (0 < ϕ < 2π ) angles with respect
to the nematic director. Note that the polar angle, measuring the
projection of the particle normal onto the nematic director via
cos θ = û · n̂, is the only relevant angle for describing uniaxial
nematic order we consider here.

IV. RESULTS FOR A BINARY MIXTURE
OF RINGS AND DISKS

We now have all the ingredients to investigate the various
instabilities that might occur in the isotropic fluid. In order to
smoothly interpolate between the convex disk and nonconvex
ring shape we will consider a binary mixture of the two. Let
us define x as the mole fraction of rings, then the FT of the
second virial coefficient of the mixture can be approximated
by

B̂mix
2q = (1 − x)2B̂DD

2q + (1 − x)xB̂DR
2q

+ x(1 − x)B̂RD
2q + x2B̂RR

2q . (13)

We stress that this form is a simplified one; it presupposes
that both species undergo the same spatial density modulation
and that there are no compositional fluctuations contributing
to the loss of stability of the isotropic fluid. A more elaborate
treatment allowing for a full coupling between orientational,
positional, and compositional degrees of freedom is realizable
but goes beyond the scope of the present work.

The isotropic-nematic instability (I-N) is easily established
from Eq. (6). Given that the second-virial coefficients of
rings and disks only differ by a constant prefactor we can
immediately deduce that the I-N instability of pure rings
(x = 1) should occur at a density that is a factor 3π/8 ≈ 1.17
higher than that of the disks. Of course, we need to keep
in mind that the nematic phase need not be the first stable
phase as transitions to smectic or columnar order might
preempt it. The smectic A (SmA) phase is characterized
by a unidirectional density modulation along the nematic
director, whereas columnar order implies two-dimensional
ordering in the plane perpendicular to n̂. We thus decompose
q = D · n̂ with D = q‖n̂n̂ + q⊥(I − n̂n̂) such that (q‖ > 0,
q⊥ = 0) imposes smectic order and (q‖ = 0, q⊥ > 0) columnar
order.

Figure 4 provides an overview of the main results. The two
principal instability modes, the isotropic-nematic (I-N) and
the isotropic-smectic (I-SmA) one, are shown in Fig. 4(a).
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FIG. 4. (a) Bifurcations in a binary isotropic fluid mixture of
hard disks and rings. Shown are the normalized particle density ρ∗

0 r3

plotted versus the mole fraction x of rings. The emergent type of
liquid crystalline order is given by the curve with the lowest density.
Pure rings (x = 1) exhibit a direct transition from isotropic to smectic
order, whereas pure systems of disks (x = 0) form a nematic phase.
(b) Characteristic lamellar distance λ∗ corresponding to the smectic
phase expressed in units of the particle diameter D.

Naturally, the one with the lowest density represents the
physically relevant instability as it indicates the first new phase
appearing upon densification of the isotropic fluid. While an
isotropic fluid of pure disks (x = 0) becomes nematic, a dilute
system of rings shows a clear tendency to form smectic phases
at higher concentration without the intervention of nematic
order. This is in agreement with what has been observed in the
simulations [19]. The isotropic-smectic bifurcation is located
at ρ∗

0 r3 ≈ 0.7 preempting the I-N one (ρ∗
0 r3 = 3/π ≈ 0.95)

by more than 25%. In order to estimate the location of the
metastable first-order I-N transition we may employ the exact
numerical results from Onsager theory for infinitely thin hard
rods, namely ρ

(I )
0 〈B2〉I = 3.29 and ρ

(N)
0 〈B2〉I = 4.19 [40], and

renormalize these values for the ring case by using the isotropic
second-virial 〈BRR

2 〉I = 4r3π/3 from Eq. (12). From this we
estimate the I-N coexistence densities ρ

(I )
0 r3 ≈ 0.786 and

ρ
(N)
0 r3 ≈ 1.001 [black dots in Fig. 4(a)]. Clearly, the I-SmA

bifurcation lies well below the estimated I-N transition so it
may be safely assumed that the transition to the smectic phase
preempts any onset of nematic order.

Irrespective of composition, we find that the isotropic-
columnar (I-Col) bifurcation (results not shown) is located
at densities well above the other curves so columnar order
does not interfere with the other modes even though the I-Col

bifurcation density shifts to considerably smaller values going
from pure disks to pure rings. Our linear bifurcation analysis
does not provide information about the order of the I-SmA
transition. In the simulations the transition was found to be
first order [19]. This scenario could, in principle, be confirmed
theoretically by expanding the bifurcation analysis to higher
order [32], which we will not pursue here.

We reiterate that the smectic structures predicted by our
analysis are essentially empty because of the following: (i) the
transition takes place at finite particle concentration, and (ii)
the rings have a vanishing internal volume. This scenario is
in stark contrast with columnar phases emerging from dense
nematic systems of infinitely thin disks. Here, even though the
internal volume of the disks vanishes upon reducing the aspect
ratio L/D ↓ 0, the critical particle concentration at which
the N-Col transition occurs diverges in such a way that the
product of the two quantities, yielding the packing fraction,
always attains a finite value of around 40–45% [37,38]. Upon
increasing the mole fraction of disks (x < 1) the I-N transition
exhibits a shallow downward trend reflecting the very similar
excluded volumes of the rings and disks (their prefactors
differ only by 15%). The I-SmA instability, however, abruptly
terminates below some critical mole fraction of disks. This
indicates a complete absence of the smectic mode for the
pure disks at least coming from the isotropic phase. The
disruptive effect of the disks on the smectic structure is
also reflected in the lamellar spacing [Fig. 4(b)], which
rapidly grows up to almost twice the ring diameter upon
increasing the fraction of disks. These large spacings are
unlikely to occur spontaneously, and it is conceivable that
equimolar ring-disk mixtures are prone to form segregated
binary smectic structures in which each component obeys
a different smectic periodicity and/or internal orientational
order. The discussion of this interesting problem is beyond the
scope of the present work and will be discussed in a future
paper.

The eigenfunctions associated with Eq. (5) provide infor-
mation about the orientational order the particles adopted by
the emerging phase. Examples for the pure systems are shown
Fig. 5. As expected, the nematic phase of disks clearly exhibits
P2-type order with the disk normals pointing on average
along the nematic director. The rings, on the other hand,
are characterized by a typical antinematic order in which the
ring normals preferentially point perpendicular to the nematic
director (hence the peak at θ = π/2). This is in complete
accordance with the structures that have been established in the
simulation model [19]. In view of the normalization of ρ(r,û)
[Eq. (2)] the eigenfunctions must obey

∫ 1
−1 d(cos θ )f ∗(θ ) = 0.

While the incipient nematic order of the disks follows the
typical P2 form [Fig. 5(a)], the antinematic order of the rings
cannot be fitted to such a form [Fig. 5(b)]. The nematic
order parameter is given by S ∝ ε

∫ 1
−1 d(cos θ )f ∗(θ )P2(cos θ )

(ε > 0) and yields S = ε/5 for the disks [39] and a similar
but negative value for the rings, S ≈ −0.2ε (note that perfect
antinematic order would give S = −0.5). In-plane biaxiality,
in which the rings develop a preferred direction within the
lamellar plane, is not accounted for here, but the effect appears
very weak in the simulation [19]. We do not expect biaxiality
to affect the stability or structure of the smectic phases, at least
in the concentration ranges explored thus far.
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FIG. 5. Characteristic eigenfunctions f ∗ [from Eq. (5)], indicat-
ing the preferred orientational order in the new phase: (a) nematic
phases of pure disks show regular uniaxial nematic order, whereas
smectic phases of pure disks exhibit typical antinematic order (b). The
orientational distribution of the rings in the smectic phase deviates
from the standard second-order Legendre polynomial form (black
curve).

We now briefly illustrate the role of antinematic order
in the stabilization of smectic structures by analyzing the
orientational entropy. Let us assume that the normalized
orientational probability density in a strongly ordered reg-
ular uniaxial nematic phase can be described by a simple
Gaussian, fN(θ ) ∼ (α/4π ) exp(−αθ2/2), complemented with
its mirror form fN(π − θ ) for the probability density an-
tiparallel to the director [40]. The variational parameter α is
proportional to the nematic order parameter and we require
α � 1. The distribution in the antinematic (AN) phase is
peaked around the perpendicular polar angle θ = π

2 and the

Gaussian distribution reads fAN(θ ) ∼
√

α/(2π )3 exp[−α(π
2 −

θ )2/2] in normalized form [41]. The orientational entropy
per particle associated with these distributions is defined as

σ or ∝ −kB

∫
dûf (û) ln[4πf (û)] and yields σ or

I = 0 for the
isotropic phase, σ or

N ∼ −kB ln α for the nematic, and σ or
AN ∼

− 1
2kB ln α for the antinematic phase up to leading order in

α � 1. From this we infer that the orientational entropy of
the antinematic phase is much higher than that of the nematic
phase, at least in the limit of asymptotically strong alignment.
This provides a clue as to why smectic order might be preferred
over nematic order. The antinematic organization of the rings
is primarily driven by the additional free volume that is
generated when the ring centers-of-mass are coplanar and
their normal vectors are mutually perpendicular, as observed
in the simulations [19]. In this configuration the rings are
allowed to interpenetrate completely [cf. the cusp in Fig. 2(a)].
A similar reduction of pair excluded volume could have
been achieved by a simple nematic alignment of the ring
normals, but the associated orientational entropy would be
much smaller. Antinematic smectic order then may become
thermodynamically favorable over simple nematic alignment
if the gain in orientational entropy outweighs the reduction of
the translational entropy of the smectic phase associated with
its nonuniform lamellar structure.

V. CONCLUSIONS

Inspired by recent simulation evidence of porous lamellar
structures formed in assemblies of nanorings, we have pro-
posed a simple second-virial route to investigating the onset of
liquid crystal order in systems of hard ring- and disk-shaped
objects, as well as mixtures of both species. Our main finding
is that a simple, nonideal fluid description based on the virial
expansion, originally devised for regular convex bodies, is also
capable of predicting the salient features of liquid crystalline
order in assemblies of nonconvex, hollow particles. Our simple
second-virial theory predicts the emergence of smectic phases
at finite particle concentration along with the typical lamellar
spacing as well as an antinematic intralamellar orientational
order. Since our model is based on mathematical rings with
no internal volume, the packing fraction of these smectic
phases is essentially zero, indicating empty structures. We have
rationalized the stability of these mesophases (with respect
to regular nematic phases) from the favorable orientational
entropy associated with the antinematic orientational order of
the rings within the smectic layers.
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