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Negative pressure in shear thickening band of a dilatant fluid
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We perform experiments and numerical simulations to investigate spatial distribution of pressure in a sheared
dilatant fluid of the Taylor-Couette flow under a constant external shear stress. In a certain range of shear stress,
the flow undergoes the shear thickening oscillation around 20 Hz. We find that, during the oscillation, a localized
thickened band rotates around the axis with the flow. Based upon experiments and numerical simulations, we
show that a major part of the thickened band is under negative pressure even in the case of discontinuous shear
thickening, which indicates that the thickening is caused by Reynolds dilatancy; the dilatancy causes the negative
pressure in interstitial fluid, which generates contact structure in the granular medium, then frictional resistance
hinders rearrangement of the structure and solidifies the medium.
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I. INTRODUCTION

A fluid with suspended particles have an apparent viscosity
different from that of the medium fluid. If the total volume of
particles is much smaller than that of fluid, the suspension
behaves as a Newtonian fluid with the viscosity given by
the well-known Einstein’s viscosity formula [1]. In the case
of a high-volume fraction, the fluid exhibits non-Newtonian
behaviors. The viscosity decreases with increasing shear rate
(shear thinning) [2] in many materials such as mud, paint, and
ketchup. Shear thickening behaviors, i.e., increasing viscosity
with shear rate, are also observed in some other suspensions.
In the extreme case such as the dense suspension of starch
particles in water, the fluid almost solidifies under shear
stress; the viscosity increases discontinuously by orders of
magnitude [3–5]. They are often called “dilatant fluid” due to
apparent analogy to Reynolds dilatancy of granular media [6],
and their fascinating and unintuitive behaviors are popular
subjects for science demonstrations [7–11].

The mechanism of discontinuous shear thickening (DST)
is still under debate. A promising explanation is related to
the dilatancy and jamming [12]. As stated in the Reynolds
principle of dilatancy, dense granular media must dilate when
they deform. If a suspension is confined, the dilation leads
to jamming and then shear stress abruptly increases. It is
numerically [13] and experimentally [14] demonstrated that
contact friction between particles is important for DST in a
shear flow of dry granular systems. The frictional contacts
is found to be essential for DST also for the hard-sphere
suspensions [15–17]. Lin et al. recently found that even
in continuous shear thickening the contact forces between
particles dominate hydrodynamic interactions [18]. With these
results, it is argued that DST is a consequence of jamming
caused by dilatancy in a medium of frictional particles.

It has been known that the uniform steady shear flow is
unstable for shear thickening media, and noisy fluctuation or
periodic oscillation under a constant external shear stress has
been reported [11,19–21]. Such oscillation is a general feature
of a shear thickening fluid with the S-shaped flow curve [22]
and may be interpreted as shear thickening oscillation, i.e., a
periodic alternation between the thickened and thinned state
of the media under a constant external stress that is in the

unstable branch of the flow curve. This oscillation has been
predicted by a fluid dynamics model for shear thickening
media [23,24] and observed experimentally in shear flows of
macroscopic width of several centimeters [11]. The frequency
of the oscillation is expected to depend weakly on the width
of the flow if one assumes spatially uniform thickening, but
spatial inhomogeneity develops quickly, and usually only one
thickened band remains after initial transient. Even with such
spatial inhomogeneity, a clear oscillation around 20 Hz appears
in the experiment with a macroscopic flow width around 5 cm,
and its frequency hardly depends on either the flow width or
the external stress [11]. There are also experiments that report
similar oscillations in the shear flows with narrower width,
typically 1 mm or less than 100 particle diameters [19–21], in
which case the particle discreteness may play some role.

In this work, we investigate the Taylor-Couette flow of
a dilatant fluid by experiments and numerical simulations.
We measure the off-center force on the axis and the local
pressure at the wall of the outer cylinder. We also perform
numerical simulations for a three-dimensional system using a
fluid dynamics model developed by the authors [23,24]. The
comparison of the simulation results with the experimental
data reveals the spatial distribution of pressure and viscosity in
the flow. We find that the thickening region strongly localizes
and forms two types of thickening bands, which distinctly
have positive and negative pressure. It is remarkable that, even
in the DST regime, the dominant thickening bands extend
in the stretching direction under negative pressure; namely,
the system jams due to tensile stress. Our local pressure
measurement uncovers that the negative pressure is limited
by the Laplace pressure, suggesting that the jamming under
the tensile stress is sustained by the interstitial fluid.

II. EXPERIMENT

A. Systems

Our experimental setup is shown in Fig. 1(a). The container
consists of an acrylic outer cylinder (15 cm inner diameter) and
an acrylic center rod (5 cm diameter) with an aluminum base
plate and a lid; the gap h between the outer cylinder and the
central rod is h = 5 cm. The fluid fills the container up to
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FIG. 1. (a) Schematic illustration of the experimental setup. A
cylindrical container with a rotatable center rod is filled with a starch-
water mixture. A pair of weights are hung through steel wires wound
around the center rod to give constant torque to the rod in CCW
direction. The flow width h, i.e., the gap between the cylinder and the
rod, is 5 cm. (b) Top view of the upper fixed end of the center rod. The
ball bearing is supported at four points by load cells to measure the
force acting on the rod. (c) Micrograph of the potato-starch particles.

� = 23 cm from the bottom with its surface open to the air.
The center rod is supported with a couple of ball bearings:
one embedded in the base plate and the other in the lid of
the container. Constant torque in the counterclockwise (CCW)
direction is applied on the center rod by a pair of weights
on the opposite sides through steel wires wound around the
rod. The weights are hung through spring-dumper systems
to reduce the vibration transmitted from the rod. The both
weights are the same so that no net force should be applied on
the rod. We use the weights in the range of 0.20–4.00 kg, which
corresponds to the external shear stress Se = 0.08–1.68 kPa at
the rod surface. In order to enforce the no-slip condition, the
surface is lined with waterproof sand paper.

The off-center force on the center rod from the suspension
is measured by four load cells (Kyowa LMB-A-100N), which
support the upper ball bearing at four points as shown in
Fig 1(b). To measure both negative and positive force, the
load cells are pressed by screws, and the zero-point of the load
cells is set when the rod is stationary before each experiment.
We label them as “north,” “south,” “east,” and “west” by their
directions. Note that precise calibration in the off-center force
measurements is difficult due to the friction at the contacts
between a load cell and the ball bearing.

We also measure the normal pressure pn at the surface of
the outer cylinder by four pressure sensors (Kyowa PGM-
G-02KG). They are located to the “north” of the center and
aligned along the axial direction at intervals of 2 cm with the
shallowest one located at 7.5 cm below the fluid surface; they
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FIG. 2. Flow curves (a) and the first normal stress difference N1

(b) of the potato-starch suspension density-matched by CeCl. The data
are obtained by a cone-plate rheometer (Haake Mars) with the cone
angle 82◦, the gap size 140 μm, and the cone diameter 35 mm. The
data beyond DST are not meaningful because samples are fractured
upon solidification. The solid curves are those for the model used in
the simulations (Sec. III A).

are labeled as “ch1,” “ch2,” “ch3,” and “ch4” from the top to
the bottom. The normal pressure obtained by these sensors is
the sum of the pressures by both the interstitial liquid and the
particles.

We use the potato-starch particles (Hokuren) of irregular
shape with their sizes distributed over the range of 5–30 μm
[Fig. 1(c)]. The powder is dried for 24 hr at 60 ◦C and 35%
humidity, and then the water-starch mixture is prepared with
the density matched aqueous solution (ρ = 1.75 g/cm3) of
cesium chloride (CsCl).

B. Results

1. Rheology of the media

First, the flow curves and the normal stress difference
N1 measured by a cone-plate rheometer for the water-starch
mixtures are shown in Fig. 2 to present rheological properties
of the media that we are going to study. DST is clearly observed
except for the 38 wt% mixture. The data presented in the rest
of this report are for the 39 wt% mixture. In our experimental
setup of Fig. 1(a), the shear thickening oscillation of 20 Hz is
observed for Se � 0.1 kPa, as will be presented below. This is
in the unstable branch of the flow curve in Fig. 2(a), and thus
is consistent with our interpretation that the 20 Hz oscillation
is the shear thickening oscillation. The solid curves and gray
plots in Fig. 2(a) are the flow curves upon increasing shear rate
and the unstable branch, respectively, by the model used in the
simulations with the parameters listed in Table I. One can see
that the rheology of the media is well reproduced by the model.
A detailed description of the model is given in Sec. III A. The

TABLE I. Parameters used for the plots (solid and dotted lines)
by the model in Fig. 2. The values for τ0 and �0 are estimated for
ρ = 1.75 × 103 kg/m3.

Concentration [wt%] φM S0 [Pa] η0 [Pa · s] A τ0 [s] �0 [cm]

40.0 0.87 10.0 7.0 1 0.7 5.3
39.5 0.86 8.0 2.2 1 0.28 1.9
39.0 0.85 15.0 0.8 1 0.53 0.49
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FIG. 3. Time evolutions of the off-center force on the center
rod and the normal pressure at the wall of the outer cylinder.
The hydrostatic pressure is subtracted from the normal pressures.
(a) Off-center forces for Se = 1.46 kPa. (b) The off-center force
on the north load cell and the normal pressures for Se = 1.46 kPa
plotted with the common time axis. (c), (d) Normal pressures for
Se = 1.05 kPa and for Se = 0.84 kPa. The suspension is a 39 wt%
mixture of potato starch and an aqueous solution of CsCl with a
density of 1.75 g/cm3.

normal stress differences N1 shown in Fig. 2(b) are negative
for small shear rate, but upon DST they jump to large positive
values in agreement with previous results [25].

2. Measurement by Taylor-Couette cell

Figure 3 shows the typical time developments of the off-
center force frod on the center rod and the normal pressure pn

at the outer cylinder during the shear thickening oscillation. In
Fig. 3(a), the results from the four load cells at east, south, west,
and north are shown for Se = 1.46 kPa [26]. The curves are
roughly sinusoidal shape with the period τb � 1.4 s overlaid
by the characteristic oscillation of shear thickening with the
period τsto � 0.05 s. The time shifts between the plots for the
neighboring load cells are 1/4 of their periods, indicating that
the direction of the off-center force rotates with the flow to the
CCW direction.

Figure 3(b) shows the temporal variations of the off-center
force frod on the north load cell along with the normal
pressures pn measured by the four pressure sensors on the
outer cylinder wall in the north. Note that the hydrostatic
pressure is subtracted from the normal pressures. We observe
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FIG. 4. Normalized rank plots, i.e., the integrated distributions,
of the peak values of the normal pressure pn for the negative pulses
(left panels) and the positive pulses (right panels) for various external
shear stresses Se. The data ranks are plotted against the bare peak
values in the upper plots while the peak values are scaled by the
external stress Se in the lower plots. The plots for the various Se

overlap with each other better in the bare plots for the negative pulse
while data scatter is smaller in the scaled plots for the positive pulse.

periodic negative pulses in pn with the width τp � 0.6 s. They
are slightly ahead of the peaks in the “north” component of
frod. One may notice that the negative pulses are occasionally
preceded by relatively weak positive pulses. It is also notable
that many of the pulses are detected only by a couple of sensors,
which reveals that the pressure fluctuation is localized in a
region of a few centimeters thickness in the axial direction.
These features are also seen in the pn data for Se = 1.05 and
0.84 kPa in Figs. 3(c) and 3(d).

3. Positive and negative pressure pulses

Figure 4 shows the integrated distributions of the peak
values of pn for the positive and the negative pressure pulses
for various external shear stresses. The integrated distributions
are plotted against the peak values in the upper panels, while
the horizontal axes are scaled with the external shear stresses
Se in the lower panels. For the negative pulse, the plots in
the upper panel collapse along a single common curve better
than those in the lower panel. As for the positive pulse, better
collapse is obtained by the scaled plots in the lower panel.

The better collapse for the scaled data of the positive pulse
means that the pressure in the positive pulse is proportional to
the externally applied shear stress. This result may corresponds
to the linear correlation between the first normal stress
difference N1 and external shear stress reported by Lootens
et al. [20] and accords with the picture of the jamming
mechanism.

In contrast to the positive pulse, the peak pressure distri-
bution of the negative pulse is almost independent of Se, and
the maximum negative pressure in the distributions is −14 to
−10 kPa. These values are close to the Laplace pressure
−2γ /R, which gives −10 kPa for the average particle size
of our potatostarch particles (15 μm) and the surface tension
of water (73 mN/m).
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III. NUMERICAL SIMULATION

A. Model

We performed three-dimensional (3D) simulations for the
Taylor-Couette flow using a fluid dynamic model of a dilatant
fluid [23,24]. The model is based on the incompressible
Navier-Stokes equation

ρ
Dvi

Dt
= ∂

∂xj

(−pδi,j + σi,j ) (1)

with the stress and the strain rate tensors

σi,j = η(φ)γ̇i,j , (2)

γ̇i,j ≡ ∂vi

∂xj

+ ∂vj

∂xi

, (3)

where the Lagrange derivative is denoted by

D

Dt
≡ ∂

∂t
+ vi

∂

∂xi

,

and Einstein’s rule for the summation is employed. The scalar
field φ is a phenomenological parameter supposed to represent
the internal structure of the medium, such as the contact
number of grains, but not a conserved quantity like the volume
fraction. The pressure p is determined by the incompressible
condition

∂vi

∂xi

= 0. (4)

The viscosity of the medium η is a function of φ, and local
value of φ(r) is driven by the shear deformation to the value
φ∗ determined by the local shear stress S of the medium,

r
Dφ(r)

Dt
= −γ̇ (φ(r) − φ∗(S)), (5)

where r is a dimensionless parameter and

γ̇ 2 ≡ 1
2 γ̇i,j γ̇j,i , (6)

S2 ≡ 1
2σi,j σj,i . (7)

Note that in Eq. (5) the time derivative is assumed to be
proportional to the strain rate, which means that the change
of φ is driven by the strain and the dimensionless parameter r

represents the strain scale that drives φ. We also like to remark
that our model is not for the shear rate thickening, but for the
shear stress thickening because the viscosity is determined by
the shear stress S through the function φ∗(S).

The functional forms of φ∗(S) and η(φ) are chosen so
that the model can simulate behaviors of the dilatant fluid.
Employing simple functional forms

φ∗(S) ≡ φM

(S/S0)2

1 + (S/S0)2
, (8)

η(φ) ≡ η0 exp

[
A

φ

1 − φ

]
, (9)

we have demonstrated that the model reproduces most of the
characteristic behaviors of the dilatant fluids [11,23,24].

Assuming the steady uniform shear flow under an external
shear stress S, the shear rate γ̇ is given by

γ̇ = S

η[φ∗(S)]
. (10)

This gives the S-shaped flow curve, which has the unstable
branch between the low and the high stress stable branches.
In Fig. 2 this relation is compared with the experimental
flow curves obtained by increasing stress. The solid curves
for the model are drawn by assuming that the stress jump
from the low-stress branch to the high-stress branch at the end
of the low-stress branch. The model parameters used in Fig. 2
are listed in Table I.

In this model, the system is characterized by the dimen-
sional material parameters, ρ, S0, η0, and the dimensionless
model parameters, φM , r , A. As for the dimensional param-
eters, we can define the unit system where η0 = S0 = ρ = 1,
then the time, length, and mass are measured by the units

τ0 ≡ η0

S0
, �0 ≡

√
η0

ρ
τ0, m0 ≡ ρ�3

0, (11)

respectively. As for the dimensionless model parameters, we
took

φM = 0.85, r = 0.1, A = 1

in the 3D simulations. The time and the length units given by
Eq. (11) are listed also in Table I for the present system with
ρ = 1.75 × 103 kg/m3.

We have already demonstrated that the model reproduces
basic properties of a dilatant fluids such as DST, the hysteresis
upon changing shear rate, or instantaneous solidification by
an external impact [23]. The shear thickening oscillation had
been predicted by this model and was experimentally observed
as had been predicted [11].

We employ the Highly Simplified Marker and Cell (HS-
MAC) algorithm [27] for numerical simulations. As for the
boundary conditions at the cylinder and the rod surfaces, we
emulate the ones in our experiment, i.e., the no-slip fixed
boundary at the outer cylinder and the no-slip boundary with
the rotating center rod, which rotates so as to give an average
shear stress on the surface equal to the applied shear stress
Se; we ignore the mass of the rod. As for the boundaries in
the rotating axis direction, however, we employ the periodic
boundary condition for simplicity. We set the diameter of
the center rod d = 2, the flow width h = 1.5, and the fluid
depth � = 2.6 by the units (11). With the parameters for the
present medium, they are comparable with the ones for our
experimental set up.

B. Results

A uniform steady flow is unstable for the external stress Se

beyond a certain value. Figure 5 shows the system evolution
during the first 2.5 rotations of the central rod under the
external stress Se = 1.5, which is in the unstable regime. The
system is initially in the uniform relaxed state. The upper
panels show the isosurfaces at η = 2 (green) and the lower
panels show those for the isotropic pressure p = +1 (red)
and for p = −1 (blue). The results show that the viscosity
and pressure distribution are not cylindrically symmetric.
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(a)

(b)

FIG. 5. Snapshots of the numerical simulation of Taylor-Couette flow from the uniformly relaxed initial state by a phenomenological fluid
dynamics model of a dilatant fluid [23,24]. The depth of the flow is � = 2.6, the gap between the two cylinders is h = 1.5, and the external stress
on the surface of the center rod is Se = 1.5. The arrow indicates the direction of rotation. (a) Isosurface of viscosity for η = 2. (b) Isosurface
of isotropic pressure for p = 1 (dark red) and p = −1 (light blue). The unit system is defined in the text.

High-viscosity regions initially appear near the center rod
(t � 3.6), then gradually merge into a few flat regions (t �
21.2), and eventually form a single fan-shape thickening band,
in which positive and negative pressure segments extend in
different directions (t = 66.4), i.e., the compressing and the
stretching directions in the shear flow caused by the rotating
center rod. The thickening band with the positive and negative
segments rotates slowly with the center rod. As a result, the
positive pressure segments always go ahead of the negative
pressure segments at the surface of the outer cylinder. This is
in agreement with the results of our normal pressure measure-
ment, where the positive pulses precede the negative pulses.

In the simulations, the localized thickening band shows the
shear thickening oscillation whose period is much faster than
that of the rotation. This oscillation in the simulation should
correspond with the 20 Hz oscillation in our observation. The
basic mechanism of the oscillation is the same with that in
the 2D simple shear flow [24]; in the S-shaped flow curve,
there exists a range of the shear stress where the steady flow is
unstable; under an external shear stress in the unstable range,
no steady shear flow is possible, and the system oscillates
between the thickened and the relaxed states. In the shear
stress thickening, the spatially uniform flow in the directions
perpendicular to the shearing is intrinsically unstable because
localized thickened bands can take most of the external stress,
leaving the rest of the medium in the unthickened state under
low stress.

By the simulations of the Taylor-Couette flow, we can
observe the dynamics of the thickened band; starting from
the uniform relaxed state, the thickening regions first appear
in the initial transient time near the inner rod, where the shear
rate is large. Then some of the regions extend outwards,
but eventually only one of them remains and reaches the
outer cylinder. When the band reaches the outer cylinder,
the flow decelerates. Then it starts flowing again because
the external stress is not large enough to keep the whole
band in the thickened state. As the system starts flowing,
the thickened band breaks in the outer regions, then the flow
accelerates further until the shear stress causes thickening in

the broken part of the band. During the oscillation cycle, only
a part of the thickening band disappears, but the rest remains
thickened.

IV. DISCUSSION

The results of our numerical simulations and experiments
are consistent and show that the thickening band distinctly
has two types of segments: the positive pressure segment
extending along the compressive direction of the shear flow
and the negative pressure segment along the tensile direction.
The remarkable finding is that the negative pressure segment
of the shear thickening domain is dominant in volume when
the medium exhibits the shear thickening oscillation in the
Taylor-Couette flow.

The pressure observed by the sensors is the total pressure
from both the fluid and the particles, but it should be noted
that the negative contribution to the pressure comes only from
the fluid because the particles cannot exert tensile force on
the sensors. This may entail to the observed differences in
the external shear stress dependence of the pressure in the
regions of positive and negative pressure as shown in Fig. 4;
the pressure in the positive domains increases linearly with the
external shear stress Se, while the negative pressure does not
seem to depend on Se, but remains below the Laplace pressure.
Such linear dependence of the positive pressure has been
reported also in Ref. [20] and suggests that the positive pressure
is dominated by the particle pressure, which propagates along
force chains in the jammed granular medium. As for the nega-
tive pressure, it should be caused by the fluid in the interstitial
space that tends to expand upon deformation of the medium
due to Reynolds dilatancy. In the experiment, thickening band
does not reach to the fluid-air interface at the top. Therefore, the
fact that the negative pressure is limited by the Laplace pressure
indicates that there exist the fluid-air interfaces possibly at the
surface of microbubbles in the medium.

The shear thickening due to jamming in the negative
pressure region has not been discussed in the literature, but
it is natural for the granular medium with friction because
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the negative pressure in the interstitial fluid should increase
contacts among the granular particles and the friction resists
against rearrangement of the contact structure in the medium.
It should be also noted that the shear thickening in the tensile
deformation is easily observed in a simple demonstration by
just pouring the starch-water mixture out of a cup, and the
effect of shear thickening on drop formation in a granular
suspension has been studied [28].

Although our experiments clearly show the existence of
the negative pressure regions, it has not been reported in the
literature [29]; some experiments report only positive pressure
when DST occurs [4,20,30]. These experiments, however, do
not observe the spatial variation of the pressure, but measure
only total force on the upper plate of a cone-plate or plate-plate
type rheometer, using small samples. In such measurements,
the effect of the negative pressure may be hidden by the
large positive pressure under strong external shear stress in
the case where the value of the negative pressure is limited,
even though the size of the negative pressure region is not
small in comparison with that of the positive pressure.

In conclusion, our experiments and numerical simulations
show that the negative pressure segment along the tensile
direction is dominant in the shear thickening band of a dilatant
fluid. The negative pressure in the thickening bands indicates
that the thickening is caused by Reynolds dilatancy; the
negative pressure caused by the dilatancy generates contact
structure in the granular medium, and the solidification of
the medium is due to the frictional resistance against the
rearrangement of the structure.
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