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The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical
importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current
understanding of these processes is however limited by the lack of quantitative models that can relate how the
elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this
shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven
by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams
that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that
the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and
exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that
these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize,

select, and separate colloids based on physical properties.
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I. INTRODUCTION

The separation and trapping of micron-sized and nanosized
colloidal particles by porous media have been and still are the
object of a number of studies with important outcomes in a
variety of disciplines. In chemical engineering and the food
industry [1], efficient filtration processes heavily depend on
the design of membranes targeting colloidal particles [2] and
their treatment on the formation of cakes [3,4]. In medicine,
effective strategies to capture circulating tumor cells (CTCs)
in the bloodstream could enable the detection of certain
forms of cancer at an early stage and improve treatment
with patient-specific therapies [5,6]. To address those needs,
researchers and engineers have developed a large spectrum of
microfluidics [7], membranes [8], and experimental techniques
[9] aimed to capture and separate colloidal particles, most of
them using particle size as the segregation criterion.

Separation based on the physical properties of particles,
such as deformability and adhesion or wetting, is however
less common. In spite of our limited understanding of these
processes, recent techniques have been devised based on
the apparent correlation between colloid properties (surface
tension and particle elasticity) and their ability to permeate
through narrow pores. These techniques could indeed be
critical in the separation and trapping of particles with similar
sizes but different properties, which include, for instance,
CTCs and leucocytes [10]. In this context, efforts have focused
on microfluidic devices that possess gradual variations in pore
size [11] such that particles of distinct mechanical properties
can be separated [12] or trapped [13] depending on their
position in the device. Recently, studies by Sarioglu et al.
[14] and McFaul et al. [15] have further shown that pore shape
can be used as a design criterion for particle separation. These
studies indeed showed that anisotropic pores or microfluidic
diodes [16] could act as valves allowing deformable particles to
travel in only one direction. One key lesson from these studies
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is that deformability, in addition to size, should be considered
in the design of filtration membranes and microfluidic devices.
However, particle separation is not the sole application of
these technologies; the critical pressure and deformation of
a particle in a nanopore (or channel) may also be used to
learn about its mechanical response. For instance, Evans and
Yeung [17] proposed the use of a micropipette aspiration test
to determine the surface tension, membrane elasticity, and/or
viscosity of soft colloids. This technique is now considered as
a standard [18] for quantifying the mechanics of a variety of
particles including cells [19] and vesicles [20]. Variations of
this strategy have also been proposed, including, for instance,
the use of conical microchannels to determine the elastic
properties of bacteria based on their equilibrium position under
a pressure gradient [21].

A number of theoretical studies have been proposed to
understand and guide experimental efforts but to date have
exclusively targeted the critical pressure that is necessary for
a particle to enter a pore. These include the derivation of
analytical expressions relating surface tension and elasticity
to the entry of a vesicle in a cylindrical channel mimicking a
micropipette [ 18] or anopore membranes [22]. An extension to
noncircular openings was also proposed analytically by Bruus
[23] for more complex pore shapes. However, when more
complex pore or vesicle shapes are considered, solutions must
be derived numerically as discussed by Leong et al. [24] in
the context of vesicle properties and Zhang et al. [25] in the
context of pore shapes. Besides deformability, the physical
interactions between a pore and a particle, particularly their
mutual adhesion, are also known to be an important factor in
the permeation problem [26], but surprisingly studies on this
topic are scarce in the literature. Indeed, while the physics
of adhesion between a vesicle and a substrate is widely
known, it was not until the work of Fournier and Galatola
[27] that it was applied to the permeation of a vesicle through
axisymmetric pores of varying cross sections (both cylindrical
and conical). Using an enhanced version of the Laplace law
accounting for both the bending stiffness and the adhesion of a
lipid membrane, the authors derived relationships between the
pressure applied along the channel and the shape acquired by
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avesicle. The relationship between entry pressure, permeation
pressure, and the deformability, size, and adhesion energy of
a colloidal particle in an arbitrary pore is however still poorly
understood.

In this work we propose to fill this gap by adopting a
semianalytical approach that considers the interactions of a
vesicle characterized by its surface tension, size, and adhesion
energy with an axisymmetric pore of arbitrary cross section.
We particularly aim at understanding the interplay between
pore geometry and particle adhesion on the physics of vesicle
permeation, which includes the phenomena of entry, exit,
and trapping within pores. Results are presented in terms of
pressure and energy diagrams that enable the visualization of
the various mechanical instabilities undergone by a vesicle
traveling through a pore and how they are affected by pore
aperture, curvature, and asymmetry. We further show that the
exit pressure, in addition to entry pressure, is a key feature for
the permeation of moderately adhesive particles.

II. EQUILIBRIUM MECHANICS OF A VESICLE
IN A PORE

We concentrate here on a class of deformable particles, or
vesicles, whose structure can be represented by an inner fluid
surrounded by a thin viscous membrane with surface tension
y. Such a system constitutes a generic model for a variety
of living and nonliving particles including cells, liposomes,
droplets, or microbubbles. Note that although this approach is
exact for immiscible fluid droplets, it is usually not the case
for particles coated by a thin shell (lipids, for instance). In this
case, areal extension can arise from two different phenomena:
(a) a stretch of thermal fluctuations associated with a rise in
surface tension [28] as seen in liposomes [29] and (b) the
unfolding of excess area stored in the membrane in the form
of wrinkles [17]. This has been observed in the deformation of
neutrophils wherein the change in tension was negligible [30].
We further note that in the case where a vesicle is not spherical,
the approach should incorporate the effect of the lipid shell
bending rigidity « [31,32]. Thus, in general, Helfrich [33]
has shown that a vesicle at equilibrium possesses a pressure
drop across its interface A P; that depends on the membrane
properties as

AP; =2yH —2k[2H(H? — K) — A H], (1)

where H and K are the mean and Gaussian curvatures on
the membrane, respectively, and A; is the surface Laplacian
operator. Fully solving the immersed membrane problem
usually requires a sophisticated numerical approach such as
that proposed by Foucard er al. [34]. For simplicity, the
present approach considers the case of apparently spherical
vesicles that possess small surface fluctuations that can stretch
under force. In this case, as pointed out by Fournier and
Galatola [27], Eq. (1) degenerates to the classical Laplace law
A P; = 2y H when the minimum radius of curvature verifies
R > /x/y. Thus, for a majority of apparently spherical
vesicles whose surface tension is on the order of 1073 N/m
[35] and bending resistance « =~ 10~ N m [36] the Laplace
law holds for radii larger than a critical value R, = 0.1 pum.
For microbubbles however, the surface tension and bending
modulus are on the order of 1072N/m [37] and 10~"° Nm
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FIG. 1. Scheme of a vesicle in equilibrium due to a pressure
difference P; — P, in an axisymmetric pore with minimum aperture
radius s. The vesicle is divided in three parts by the two contact lines
x; = [r1,z1] and X, = [r,,z2]: two spherical caps with radii R, and
R, and the contact region in between. The spherical caps meet the
pore at the contact line i with an angle of 6, which is defined by the
tangent at the pore t, and the vesicle t,. The volume of each cap is
defined by their radius inner angle «; between the horizontal and the
radius at the detachment point. These magnitudes are all related by
the angle that the pore tangent makes with the vertical §;, defined as
positive counterclockwise in the top cap and clockwise in the bottom
one.

[38], respectively, and the Laplace approximation is restricted
to smaller critical radii, near R, = 0.01 um. The case of cells
is however more complex since the presence of the cortex
gives them a viscoelastic behavior [39] in both stretching and
bending. Hence, this approach is only valid in cases where
the deformation is purely due to the membrane unfolding as
observed in the micropipette aspiration of neutrophils [40].
Let us consider an incompressible vesicle of radius R > R,
trapped in an axisymmetric pore whose smallest aperture is
s < R (Fig. 1). At equilibrium, the deformation of this vesicle
depends on the pressure drop across the pore AP = P, — Py,
the surface tension of the vesicle y, and its contact angle with
the pore 6 (7 < 6 < 7 for partially wetting vesicles [41]).
Contact angles below 7 /2 would imply a preference for the
vesicle to wet the pore by splitting and/or sticking to the side of
the pore surface [42]. This situation is fundamentally different
from the objective of our study and is therefore not considered.
For small capillary numbers [18] and in the absence of body
forces, the morphology of the vesicle can be divided into three
sections: two free spherical caps whose curvatures p; and
P> are determined by the Laplace law p; = (P, — Pp)/2y,
with Py, the internal vesicle pressure, and a confined section
(shaded in Fig. 1) whose geometry is restricted by the pore
shape. Mathematically, these regions are characterized by the
coordinates of two contact lines x; = [ry,z1] and x» = [r,22]
and the pore shape parametrization x = [r(z),z], where (7,z)
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are cylindrical coordinates about a system whose origin is at
the center of the pore. The global equilibrium of the vesicle
can be easily derived by taking the difference between p, and
p1 in order to obtain

AP =2y(p2 = p1). 2

Note that this expression is only valid for equilibrium or
quasistatic systems in which the inner vesicle pressure is
homogeneous and there is no fluid flow around the pore. A
dynamic approach would require solving the Navier-Stokes
equations coupled with the membrane governing equations
[43]. By simple geometrical relations, one can show that
the cap curvatures can be related to the pore geometry by
pi = —cos(0 + B;)/r;, where r; and B; = arctan[r’(z;)] are
the radii and the signed tangent angle (withr’ = dr/dz) of each
contact lines (Fig. 1). Using the Young-Dupre relation [41],
the contact angle can further be related to the adhesion energy
I" between the vesicle and the pore by cos(@) = —I'/y — 1,
allowing us to express the cap curvatures in terms of the surface
energy as

P = L[ycosﬂi +I‘<c0s,3i +sin ;[ —1 —ZZ)] 3)
Yri I

This relation, together with Eq. (2), can be used to compute
the pressure drop across a vesicle in a pore, as long as one
knows the position of the contact lines x; and x,. It can
be useful, for instance, to characterize the tendency of a vesicle
to enter a pore by measuring its sudden pressure drop AP as
it first makes contact with the pore surface. At this point, the
two contact lines are confounded (i.e., r; = r, and 8 = —f8,)

and we are left with the term AP = 4sin(ﬂ1)% [—1-2%,

which measures the suction pressure that drives a vesicle into
the pore. A simple observation of this equation show that this
pressure increases with adhesion energy I" and pore orientation
angle B; but decreases with the contact line radius ;.

It can also be seen that, taking 8, = %, Br=0,and r, =
s, (3) directly yields the formula proposed by Fournier and
Galatola [27] for the pressure AP describing the entry of a
vesicle in a cylindrical micropipette of radius s:

<l 1 r )

AP =2yl -——+—). (G))
K R, ys

Again, we clearly see here how the adhesion energy triggers
a suction pressure via the term I'/ys, which was neglected
in the original work of Evans and Yeung [17]. While Eq. (3)
is useful for a variety of theoretical investigations, it is not
sufficient to compute the positions of the contact lines x;
and x,. To close our formulation, we need to enforce the
volume conservation of the vesicle during the permeation
process. Considering a spherical vesicle of radius R, this
implies 47 R*/3 =Y VS + V', where V¢ is the volume of
the spherical caps (i = 1,2) and V' is the volume of the
section of the vesicle confined in the pore throat. The former
can conveniently be expressed in terms of angles «; made
between the radius of the vesicle at the point of contact and
the horizontal axis (Fig. 1) as V¢ = r(z;) h(a;)/3, with
h(a;) = [2 + 3sin(e;) — sin®(a;)]/ cos® ;. Further noticing
that p;7; = cos «;, the complete system of equations describing
the equilibrium of an incompressible vesicle confined in a pore
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is comprised of Eq. (2) and the volume conservation equation
in the form

2y<cosa2 3 cosm) _ AP, 5)
r(z2)  r(z2)

S+ [ dv = e 6
g o <i Q; /;/(_ - 577 v ( )

with «; = 6 + arctan[r/(z;)] — 7. This nonlinear system ad-
mits the coordinates z; of the two contact lines as the solution
(when this solution exists), given a pressure drop A P across
the pore.

For convenience and ease of analysis, it is preferable
to nondimensionalize the above equations. For this, note
that the above system has the general form g = AP —
f(y,s,6,R,x) =0, where the parameters in f describe the
physical properties of the vesicle-pore complex. Scaling forces
and lengths by y and s (the pore aperture), respectively, the
Buckingham 7 theorem states that our problem can be cast in
the form A P* = AZ—I;S = f(6.%.%). In other words, we define
a normalized vesicle radius R* = R/s and pore coordinate
z* = z/s such that

AP = ZTV FO.R" .2, )

Implicitly, this relation states that the permeation pressure
depends on vesicle deformability, which we measure here
as the pressure difference across its surface. Indeed, a larger
surface tension will increase this pressure difference, making
vesicles appear less deformable and exhibit more resistance
to pore permeation. In contrast, a larger pore size reduces
the permeation pressure by increasing the length scale of the
system. A larger curvature indeed yields a lower pressure
within the vesicle and hence a lower resistance to deformation.

III. ANALYSIS OF VESICLE INSTABILITY
AND CRITICAL PERMEATION PRESSURE

Numerous experimental observations show that vesicle de-
formation and permeation across a pore are largely dependent
on both pore geometry [44] and vesicle adhesion [4]. We aim
here to closely investigate these relationships by concentrating
on a restricted, yet ubiquitous, set of pore morphologies found
in microfluidic devices [45], micropipette aspiration studies
[46], filtration membranes [47], and particle trapping devices
[15]. The generic axisymmetric pore is described by a tapered
hyperelliptical profile with semimajor and semiminor axes
of length a and b, a shape factor n that controls the pore
curvature, and a slope factor m that controls its asymmetry.
The parametrization is written

nql/n
) } —rL, ®)

mfor 3

where 2r; is the exterior diameter of the pore (Fig. 1). As
shown in Fig. 2, the shape of the pore ranges from a cylindrical
channel of height 2b for n — oo to a toroidal pore with
an ellipsoidal section of axis a,b when n = 2. The slope
factor further introduces an asymmetry to the pore such that
m = 0 exhibits a symmetrical top-bottom shape, while more

Z

b
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FIG. 2. Three-dimensional representation of the axisymmetric
pore. In the top three figures, the value of m is kept constant at 0
while we vary the sharpness parameter n. In the bottom figures n is
constant and equal to 5 while m is varied.

pronounced conical shapes are obtained as the magnitude of
m increases; Eq. (8) can be used into the system of (5) and
(6) to obtain an explicit form of the governing equations and
a numerical solution for a variety of pore-vesicle systems
(details are provided in Appendix A).

A. Equilibrium diagrams

The equilibrium states of a soft vesicle confined in a
pore can be visualized by the pressure diagram, showing the
position of the center of mass of the vesicle in terms of the
pressure drop A P across the pore. Figures 3(a) and 3(b) show
such diagrams for a normalized radius R* = 1.5, adhesion
energy I' = 0, and toroidal and cylindrical pore geometries. It
can be seen that for symmetric pores (m = 0) and nonwetting
vesicles (solid lines), the diagram possesses three distinct
regions (ascending, descending, and ascending), delimited in
order by the maximum and the minimum values of the pressure
drop A P. The first region starts when the vesicle is tangent
to the pore in its underformed configuration (point A;), which
corresponds to a zero pressure drop. As the pressure increases,
the vesicle enters the pore following the A-C; branch until it
reaches the maximum pressure at C;. In a pressure controlled
system, this point yields to an instability where the vesicle,
under an infinitesimal pressure increment, would dramatically
leave the pore space by rapidly transforming its stored elastic
energy into kinetic energy [forward motion in Fig. 3(a)]. This
behavior is typically observed in the micropipette aspiration
of neutrophils and the values of the critical pressure have
been well estimated using a similar approach [40,48]. In a
displacement driven system, however, the motion of the vesicle
towards the pore center A3 (region 2) would require a decrease
in pressure until it reaches point C, and eventually A, as it
exists the pore. For backward motion (the vesicle starts from
the bottom of the pore), the first contact occurs in A, and
the vesicle encounters its instability at C,, both of which are
analogous to A; and C;. For a cylindrical pore, the pressure
diagram displays similar trends with two notable differences:

PHYSICAL REVIEW E 94, 062613 (2016)

(1) the A;-C; and A,-C, branches are steeper owing to the
fact that a sharper pore opening requires a larger vesicle
deformation and (ii) the flat region around As; corresponds to
a situation where the vesicle is free to slide along a cylindrical
channel without pressure variations.

The nature of the pressure curve is reminiscent of the
equilibrium diagram of a ball on a hill that first requires energy
to reach the top, but that restitutes this potential energy as it
loses elevation. Following this analogy, we take an energetic
approach wherein the stored mechanical energy in the vesicle
is expressed as the difference AE in surface energy between
the deformed and undeformed vesicle configurations. For an
axisymmetric vesicle, this is expressed by

AE — V(Z S; — So — 27 /Zl r(z) cos 9(z)dz>, )

22

where S, = 47 R? is the initial surface area of the vesicle
and S; = 277 (z;)*(1 — sina;)/ cos(e;)* are the surface areas
of top and bottom spherical caps. We observe here that for
nonwetting vesicles (8 = ), this energy is proportional to an
increase in the vesicle’s surface area due to deformation. The
normalized energy landscapes (AE* = AE/y Sp) in Figs. 3(c)
and 3(d) clearly show that as the vesicle moves forward and
deforms, energy must be provided until it reaches the center
point z = 0, while energy is restituted afterward. We also note
that the A-C; branch is stable (concave region), the Ci-Aj
branch is unstable (convex region), and the inflection point C|
denotes the onset of instability. We finally observe that point
Aj corresponds to a metastable equilibrium with maximum
mechanical energy (largest vesicle deformation); any small
deviation in pressure would therefore push the vesicle towards
Aj or A,.Itcan also be seen that for a cylindrical pore (n = 50)
the energy is constant around Aj since no additional force has
to be provided to deform the vesicle in the cylindrical section
of the pore. Additionally, these energy diagrams provide
important information regarding the direction of motion of
the vesicle. In the absence of an external pressure, a vesicle
will move towards the closest minimum energy point until
it reaches an equilibrium position. The dynamics of motion
involves complex processes such as internal fluid flow [18]
and/or the appearance of a lubrication layer [49] between the
vesicle and the pore, whose study is beyond the scope of this

paper.

B. Role of adhesion

Adhesive pore-vesicle complexes display very different
pressure and energy landscapes compared to their nonwetting
counterparts. This effect, shown in Fig. 3 with dashed lines
for an adhesion energy I'/y = —0.19, is twofold: (a) The
pore exerts a suction pressure A Py, < 0 as the vesicle first
touches the pore (point D/) and (b) the system displays several
equilibrium positions whose number and stability strongly
depend on the pore shape. In particular, for both toroidal and
cylindrical geometries, we find that when a vesicle becomes
in close proximity to the entry point, it will naturally enter the
throat to reach the equilibrium position A} (or A} for backward
entry). If a positive pressure is applied, the vesicle follows a
stable branch until it reaches the local pressure maximum at C;,
similarly to a nonwetting vesicle studied above. By contrast, a
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FIG. 3. Equilibrium and energy diagrams for two vesicles of radius R* = 1.5 and adhesion energies I' = 0 (solid lines) and I' = —0.19

(dashed lines) in a toroidal (n = 2) and a cylindrical pore (n = 50) withm = O and a = b = 2s. (a) and (b) Variation of the equilibrium pressure
with the relative position of the center of mass z., /b for both vesicles in each respective pore. The A; mark the locations of the points at 0
pressure, C; the maximum entry pressure, and B; and D; the local and absolute maximum suction pressure, respectively. The section of the
most relevant positions is show in the top insets. The red lines show the path followed by a pressure-driven vesicle in both directions. (c) and
(d) Variation of the energy with the relative position of the center of mass z.n, /b and the corresponding position of each point.

pressure increment at this point would not push the vesicle out
of the pore but rather move it to the next equilibrium branch,
C;-A/, for the toroid or A%-B;, for the cylinder. A much larger
pressure A Py, needs to be applied to completely remove the
vesicle from the pore at D). It can therefore be concluded
that for a partially wetting vesicle in a toroidal pore, the
critical permeation pressure is the maximum of A P(C}) and
A P(Dj). Interestingly, when the pore changes from toroidal
to cylindrical, point A changes from an unstable to a stable
position. In other Words, during its permeation, the vesicle may
jump from one stable position to another (A to A to A}) until
it is allowed to leave the pore when the maximum pressure at
D; is applied. The permeation pressure is now determined by
the competition between AP(C{), AP(D}), and AP(B;).

C. Critical permeation pressure

A number of experimental and theoretical studies
[18,19,22,25,50] have focused on evaluating the maximum
pressure drop [critical permeation pressure (CPP)] for a vesicle
to go through (i.e., enter and exit) a pore. The distinction

between pore entry pressure (EP) and CPP is however not
explicit in these studies and the effects of pore throat geometry
(rather than opening) and adhesion are often neglected. Here
we aim to show that these effects are in fact critical to the
physics of vesicle permeation and/or trapping and that it is
possible to tune the pore geometry and chemistry to achieve
desired behaviors. We have seen in Figs. 3(a) and 3(b) that
two quantities become particularly important when studying
the CPP: the maximum EP at C; (or C, for backward motion)
and the maximum exit pressure (XP) at D, (or B;) that
typically increases with adhesion energy. Generally, the CPP
can therefore be defined as the maximum between the EP and
the XP; Fig. 4(a) illustrates this relation for a cylindrical pore
(n = 50), where the maximum of the equilibrium diagram
(CPP) shifts from the EP to the XP as the contact angle is
decreased from & to m /2. Figure 4(b) further shows that the
relationship between CPP and adhesion is not trivial and it is
dictated by the pore-vesicle interactions during either the entry
or the exit of the pore. Four main regimes are observed, each
of them associated with one of the four types of equilibrium
diagrams depicted in Fig. 4(a): For small adhesion energies
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FIG. 4. (a) Equilibrium diagrams of four vesicles of the same relative size R* = 1.5, but with different adhesion energies corresponding to
0 = 0.557,0.77,0.97, and 7, in a pore with geometrical properties n = 50, a = b = 2s, and m = 0. The position of maximum entry pressure
has been labeled with a square, while the exit pressure has been labeled with a triangle. (b) Critical permeation pressure, the maximum of EP
and XP, plotted versus the adhesion energy 6 for the permeation of a vesicle with relative size R* = 1.5 in a cylindrical pore with n = 50,
a = b = 2s,and m = 0. The graphic displays four different regimes depending on the permeation mechanism of the vesicle, which have been
differentiated by the vertical shading. In each of them, there is an inset showing an example of the position of the vesicle when the critical
pressure was achieved. The dotted lines show the analytical expressions derived for this problem in its range of validity.

(contact angle near 6 = 1), the critical pressure is dictated
by the EP (Fig. 4, inset 1), which for a perfectly cylindrical
channel can be expressed in terms of the contact angle as [22]

AP 9[( 2 —3cosO + cos’ 6 )1/3 1i|
= cos _
ki sinf — sin30 — 4R*3 cos3 6 — 2

(10)

and which occurs at Cj, highlighted with a square in Fig. 4.
As the adhesion energy increases, the equilibrium diagrams
shift to the point where the pressure at C; coincides with D,
in Fig. 4(a), the mechanism of vesicle permeation becomes
capillary driven, i.e., CPP = XP (red triangles in Fig. 4).
The next three regimes are therefore dominated by XP, rather
than the entry pressure. In the second regime, for low to
intermediate adhesion energies, the model shows that the
vesicle exits the pore via a peculiar mechanism in which
both contact lines merge, yielding no room for pore-vesicle
contact. This corresponds to the maximum of an equilibrium
diagram such as the one with & = 0.9 in Fig. 4(a), where the
vesicle shape is described by two coexistent spherical caps of
different radii that are barely in contact with the pore as shown
in Fig. 4, inset 2. In this regime, the pressure coincides with the
expression previously calculated for the case when x; = xj:

sin(3) sin 0
r*(2)
until the mechanism drastically switches to regime 3. Indeed,
for intermediate values of the adhesion energy, the model
shows that the loss of vesicle equilibrium occurs through a

flattening of its upper cap while remaining in contact with the
lower portion of the pore (Fig. 4, inset 3). As the top curvature

AP}, =2 , (11)

vanishes, the force balance (2) on the vesicle can no longer
be satisfied, forcing the particle out of the pore space. In this
situation, the critical pressure can be analytically approximated
by considering a single spherical cap whose contact line radius
is larger than the pore aperture:

1
APy = —[(1 — cos 6)(sin? 6 + 1 — cos6)/41'3, (12

This expression (derived in Appendix B) agrees reasonably
well with our numerical solution at n = 50. Note that despite
the fact that the associated equilibrium diagram in Fig. 4(a)
has its maximum in a very similar position, the CPP evolution
is quite different due to a different exit mechanism. Finally, for
a contact angle approaching 7 /2, yet another exit mechanism
is predicted by the model. Here the adhesive interaction is so
strong that the pressure required to exit its stable position at A,
[Fig. 4(a), point 4], becomes larger than the suction pressure at
D),. This means that the vesicle is forced out of the pore without
settling in its stable position at Aj. In this case, the CPP can
be analytically approximated by (derivation in Appendix B)

AP}, = sin(0) + cos(6). (13)

We note here that the small discrepancy between this expres-
sion and numerical results observed (region 4 in Fig. 4) is
due to the fact that the above solution is based on an opening
curvature (n — 00), while the numerical solution is based on
a finite value of the curvature (n).

D. Asymmetric pores

Asymmetric pores can be designed to enable easy vesicle
permeation in one direction but block their entry in the other
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FIG. 5. (a)Equilibrium diagram of a vesicle with radius R* = 1.5
and contact angle & = 0.9 inside a pore withm = 0.4,a = b = 2s,
and n = 50. The relevant positions of the vesicle have been labeled,
with Ay, A,, and Aj the positions at zero pressure, C; and C, the entry
pressure, and D, and D, the exit pressure. (b) Equilibrium diagrams
for the cases where m = 0, 0.2, and 0.4 for the same contact angle to
illustrate the effect of pore asymmetry on the curves’ evolution.

[51]. For instance, Guo et al. [52] showed that the critical
pressure of cells in conical pores depends on their direction and
its value is well estimated by the present model. In Fig. 5(a)
we show the typical vesicle deformation and the associated
pressure diagram for a conical pore whose slope parameter is
m = 0.4 (other relevant parameters are n = 50, R* = 1.5, and
I'/y = —0.05). A few key observations can be made related to
the pore asymmetry. (i) The equilibrium diagram is no longer
symmetric since the entry and exit mechanisms are different
depending on whether a vesicle moves forward or backward
into the pore. (ii) Since vesicle entry is almost exclusively
driven by the geometry of the pore mouth but not its throat, the
pressure diagram is almost unaffected by the pore asymmetry
before EP is reached. A similar EP is therefore observed for
cylindrical and conical pores with the same entry radius s and
curvature (or shape factor n) as shown in Fig. 5(b). (iii) The XP
is strongly affected by pore asymmetry. Indeed, for this system,
the XP (pressure at D) is around 0.1 for a vesicle moving
forward, while it is on the order of 0.5 for a vesicle moving
in the reverse direction. To understand the consequences of
these observations, consider a vesicle undergoing a forward-
backward cycle into the pore [Fig. 5(a)]. On its way forward,
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the vesicle first reaches its equilibrium position at AP =0
before it slowly moves into the pore under increasing pore
pressure. The entry instability is reached at point C;, after
which any additional increase in pressure forces the vesicle out
of the pore, since the XP is less than the EP. In other words,
the forward permeation pressure is CPP™ = EP ~ 0.3 in this
system. On its way backward, the vesicle first settles in its
equilibrium position at A, before it is forced into the pore under
anegative pressure drop. After reaching the entrance instability
at C,, the vesicle jumps into the next equilibrium branch. It
will finally be forced out of the pore if the pressure drop
exceeds (in magnitude) the XP at D;. For backward motion, the
critical permeation pressure is therefore CPP~ = XP ~ 0.5
in this system. Figure 5(b) shows that the pressure diagram,
particularly the region corresponding to the exit mechanism,
is very sensitive to the slope of the conical pore. This implies
that the geometric design of the pore can be harvested to tune
the difference between the CPP for forward and backward
motion, a feature that is important, for instance, for designing
microfluidic diodes.

IV. VESICLE SEPARATION, TRAPPING, AND PROFILING

The design of pores that are capable of targeting specific
particles for fractionation, separation, and trapping is key to a
number of technological applications. We focus here on three
important problems in membrane science, vesicle profiling,
and the design of microfluidic diodes for complex fluids and
colloids.

A. Vesicle separation

In membrane filtration or separation techniques [53], we
aim to separate populations of deformable particles using
criteria such as size, deformability, or adhesion properties.
We ask here whether it is possible to design pore geometries,
characterized by their aperture size s/R = 1/R* and curvature
(or shape parameter n), in order to achieve very distinct CPPs
for two vesicle populations. For this, we first investigate the
effect of curvature at a fixed relative vesicle size by varying the
pore shape from a toroidal shape (n = 2) to a cylindrical shape
(n = 50) and determined the CPP for a range of contact angles
/2 < 6 < m as shown in Fig. 6(a). We find that smoother,
more rounded pores tend to (a) decrease the CPP for all ranges
of adhesion and (b) shift the transitions between different
permeation regimes to the left. This trend is particularly true
for toroidal pores (n = 2) where the mechanism associated
with (13) completely disappears. To understand the effect of
pore aperture, we performed a similar study by varying R* at
fixed pore curvature n = 2 [Fig. 6(b)]. The model shows that
pore aperture and vesicle adhesion play two competing roles
during the permeation process. For low adhesion, the process
is dominated by the EP required to deform the vesicle into
the pore; this explains why the CPP increases sharply with
vesicle size in this region [right-hand side of Fig. 6(b)]. By
contrast, for larger adhesion, the process becomes dominated
by capillary effects (i.e., XP). Interestingly, we find that this
pressure decreases with increasing vesicle size (or decreasing
aperture) and that this phenomenon yields an inversion of the
trends: Small apertures yield a smaller CPP. This observation
can be understood by looking at the force balance on the vesicle

062613-7



EDUARD BENET AND FRANCK J. VERNEREY

x ¥

R*=1.5

1.0

R*=2.0 R*=2.5

Critical Permeation Pressure (CPP)
(=1
[o)}

N T
02 : @) :
0.5 0.75 1.0 0.5 0.75 1.0
Contact Angle (6/m) Contact Angle (6/m)
0.7 L
— Current
. — .
% 0o o Fournier
-9
2
) UI]
2 Stabye
5
& 0.6-
(@)
g
=
a
e
~
n
0.5
0 10

5
Position (&/2s)

FIG. 6. The CPP variation with the contact angle 6 in (a) three
different pore shapes (n = 2,5,50) witha =b =2s, m =0, and a
vesicle of R* = 1.5 and (b) three different values of the relative
vesicle size (R* = 1.5,2.0,2.5) on a toroidal pore (n = 2) with a =
b =2s and m = 0. For clarity, six insets depict the shape of each
pore with the respective vesicle tangent to them. (c) Detail of the
equilibrium diagram for three different pores with a = 2s, b = 20s,
and n = 3,5,50, for the same vesicle (R* = 1.5 and I' = 0) and its
comparison by the solution proposed by Fournier and Galatola for
the equilibrium pressure in a cylindrical pore. The vesicle’s position
is determined here by the distance (£) of its leading edge inside the
pore. Three insets depict the position of the vesicle at the moment
when the EP is achieved. Note that the volume of the axisymmetric
vesicle remains constant regardless of its configuration and despite
the apparent change in projected areas seen in the figures.

as shown in Fig. 7. In the case of high adhesion, the curvature
of the inner cap is typically small compared to that of the
outer cap (see insets 2—4 in Fig. 4). This implies that vertical
forces pulling the vesicle inward mostly arise from the surface
tension in the outer cap. Since capillary forces are proportional
to curvature, smaller vesicles (or increasing apertures) tend to
display a higher resistance to exit the pore. With these compet-
ing mechanisms, we observe that for a toroidal pore, the CPP
curves for different vesicle sizes intersect at a value close to
6 ~ 0.87. In other words, two vesicles with equal surface ten-
sion and adhesion but different sizes can exhibit the same CPP.

PHYSICAL REVIEW E 94, 062613 (2016)

FIG. 7. Schematic of the forces acting on the vesicle. The
resultant from the tension on each cap 7; is directly proportional
to its curvature and tangent to the contact point. These surface forces
are balanced by the resultant of the pressure difference across the
interface P, — P;.

Valuable insights can be gained from the above predictions.
For instance, two particles with the same surface tension
but different size and adhesion can be separated by properly
designing a pore that ensures a very distinct CPP. This strategy
can further be optimized by altering the wetting properties
of pores with techniques such as electrowetting [26]. In the
context of deformability-based particle separation [12,13,25],
we note that our predictions are for normalized pressure
AP* = APs/2y, implying that pore opening s and surface
tension must also be accounted for to distinguish between two
particles with different mechanical properties. Dimensional
versions of the diagrams presented in Fig. 6 may therefore be
preferable for design purposes.

B. Vesicle profiling

Quantitative observations of particle deformation in narrow
pores [21] and micropipettes [54] have traditionally been used
as a method to indirectly measure their physical properties. We
here concentrate on micropipette aspiration for which standard
experiments and modeling efforts have focused on cylindrical
pipettes with constant cross sections. Using this technique,
a relation between vesicle shape and suction pressure can
be measured and used to estimate various properties such
as surface tension, elasticity, or viscosity [55]. A typical
issue, however, is that not all vesicles’ equilibrium positions
entering a micropipette are stable [19] and since the aspiration
technique is pressure driven, a vesicle only remains stable
when the suction pressure is below the EP. We have seen in
Fig. 3(b) that for a cylindrical pore with a sharp corner, the EP
is reached at very small vesicle deformation. In other words,
this classical design suffers from two major drawbacks: (i)
The deformation of the vesicle is highly sensitive to suction
pressure, a feature that can affect the measurements’ accuracy,
and (ii) the vesicle’s response can only be surveyed within
the range of small deformation, which strongly restricts our
ability to fully characterize its mechanical response. A solution
to these limitations is suggested in Fig. 3(a), where we found
that a more rounded pore tends to both postpone the EP and
decrease the slope of the pressure-displacement curve. Based
on this idea, we show in Fig. 6(c) the pressure diagram for
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FIG. 8. (a) Scheme of a pore with a funnel shape that has a different critical pressure depending on what direction it is crossed, forward
CPP* or backward CPP~. The difference between these two is defined as the trapping efficiency [A P.] and it indicates how probable it is to
trap a vesicle using these technique. Four-dimensional maps showing the variation on axisymmetric pressure with the relative vesicle radius
R*, the slope m, and the shape parameter n are shown for two different vesicles: (a) with I' = 0 and (b) with I' = —0.19 (§ = 0.87). The
red zones indicate where the axisymmetric pressure is positive and the pore traps particles on top. In contrast, the blue zones have a negative
pressure asymmetry and vesicles are trapped on the bottom. A circled inset shows the optimal pore and corresponding vesicle in each case.

a cylindrical pipette whose mouth curvature is varied from
n =50 (very sharp) to n =3 (very smooth). As expected,
we find that decreasing n postpones the onset of instability,
decreases the entry pressure, and allows one to probe the
vesicle for a larger range of deformation by making it less
sensitive to shape changes. In these regimes, however, we note
that the predictions of standard models, such as that proposed
by Fournier and Galatola [27], are limited to the unstable
branch of the pressure diagram [shown by squares in Fig. 6(c)]
and become less accurate as n decreases. Semianalytical
approaches, such as that discussed in this paper, therefore
would need to be used in combination with new pipette designs
(based on smooth mouth opening) to better probe the properties
of vesicles and other soft colloidal particles. Note that certain
colloidal particles (bacteria and cells, for instance) may display
more complex mechanical behaviors and remain stable under
the classical pipette aspiration tests [48]. In these cases, a more
thorough analysis can be performed to identify pipette designs
that enable a better characterization of their properties.

C. Microfluidic diodes

The concept of a fluid diode has been long used in microflu-
idics [16,56,57] with applications in biomedical engineering.
The separation of particles that exhibit distinct mechanical
properties from their surroundings have motivated the design
of asymmetric microfluidic devices that can sort soft and rigid
particles under oscillatory flow [14,15,52]. To examine the

role of pore geometry in particle trapping, we propose here
to define a measure of trapping efficiency as the difference
[AP.] = |CPP"| — |CPP| between the CPP as a vesicle
moves forward (superscript +) and backward (superscript —)
through the pore [Fig. 8(a)]. With this definition, it is clear that
the sign of [A P.] defines the trapping direction: If [A P, ] > O,
vesicles are trapped on the top side of the pore (forward diode),
while if [A P,] < 0, they are trapped on the bottom (backward
diode). Figure 8(a) also illustrates the range of pore pressures
(CPP~ < AP < CPP™) for such a diode to operate efficiently;
pressures above CPP™ allow the permeation of vesicles in both
directions, while values below CPP~ do not allow particle
permeation in any direction. We finally note that the symmetric
pores studied in the previous section are inefficient at trapping
particles since the antisymmetry of the pressure-displacement
diagram implies [A P.] = 0.

To investigate the role of pore size, shape, and asymmetry
in trapping efficiency, we performed a parametric study
that consisted of sweeping the space (m,n,R*) in order to
obtain a three-dimensional graphical representation of the
dependence [A P.](m,n,R*). Results for a nonwetting (I" =
0) and an adhering (I' = —0.19) vesicle are provided in
Figs. 8(b) and 8(c), respectively. For convenience, we focused
here on forward trapping, i.e., our study was restricted to
[AP.] > 0. Trends in backward trapping can then be deduced
by symmetrically inverting the system. The following key
observations can be made regarding the trapping of nonwetting
particles [Fig. 8(b)]. (i) The relationship between pore design
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and trapping efficiency is nonlinear and exhibits an optimum.
(i) The optimal design is a slightly tapered (moderate n)
conical shape. Indeed, we found that pronounced conical
shapes (large m) would lose their “asymmetric power” by
providing an overly restrictive pore opening. (iii) Trapping
efficiency is promoted by larger pore curvatures, controlled
by the shape parameter n. Figure 8(c) further shows that
the mechanics of asymmetric trapping is strongly affected by
adhesion. This observation can be explained by the fact that the
CPP is dominated by the XP, which involves mechanisms very
different from those associated with vesicle entry. In this case,
the following pattern emerges. (a) The optimal pore is still a
cone, but with a more pronounced slope. (b) The position of the
optimal cone is reversed (m < 0) and to catch a vesicle on top
we would need the opposite slope, which is not at all intuitive.
(c) The optimal pore aperture is smaller with adhesion. This
is a consequence of the different regimes dominating the XP
on each side of the pore. As can be seen in Fig. 6, small
vesicles indeed have larger values of XP, which clearly end up
dominating the system.

The above analysis could have far reaching potential in
the design of membranes, microfluidic devices, and fluidic
diodes for complex fluids. The three-dimensional maps shown
in Fig. 8 directly pinpoint the design that offers the highest
trapping efficiency for a given particle in order to devise
deformability-based systems aimed to separate particles of
similar size and adhesion. These maps, however, need to be
complemented by the knowledge of the actual dimensional
values of CCP* and CPP~ in order to precisely determine the
operating pressure corresponding to the device. This can be
achieved by reversing the nondimensional framework.

V. CONCLUSION

We have derived a set of nonlinear equations that can
describe the permeation of surface-tension-dominated ad-
hering vesicles in arbitrary axisymmetric pores. We found
that this problem can be studied in terms of pressure and
energy landscape that exhibit various equilibrium positions
and mechanical instabilities as the vesicles penetrate, travel
through, and exit from the pore. Interestingly, the maximum
pressure for vesicle permeation (CPP) is highly dependent
on the mechanisms by which the vesicle interacts with the
pore and in particular their adhesion energy. In particular,
model predictions showed that capillary effects produced by
vesicle adhesion can play a significant role by creating a
suction pressure (XP) that tends to retain the vesicle within the
pore. Eventually, vesicles with even slightly different adhesion
properties can display significant changes in their permeation
abilities. Overall, the results presented in this paper show
that one can optimize the design of microfluidic devices,
diodes, and membranes to specifically target populations of
colloids based on their size, surface tension, and adhesion
properties.
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APPENDIX A: SOLUTION PROCEDURE

Let us consider the problem of a vesicle trapped in an
axisymmetric pore spanning in the z coordinate from —b to
b and whose geometry is given by (8). The solution is found
by solving the system of equations R formed by Eqgs. (5) and
(6). However, the solution to this system is not trivial since
(1) it is highly nonlinear and (ii) each value of the pressure
drop A P leads to multiple solutions for the vesicle position.
The latter issue can be simply addressed by enforcing the z
coordinate of one of the contact lines z; and solving for the
corresponding pressure drop and the second detachment point.
This operation may be thought of as a displacement-driven
boundary condition, known to be more stable than a force-
driven condition for mechanical systems displaying unstable
behaviors. The solution of the system is then expressed as
the optimization problem min[R(u),u € F ={u:up < u <
uyp}], where ur g and uyg are the upper and lower bounds of
the solution. The nonlinearity of the system is primarily caused
by the arbitrary definition of the geometry r(z). This implies
that, in general, one cannot find a closed form expression for
the enclosed volume of the vesicle and the term f% dV in
(6) has to be computed numerically. This has been done by
dividing the central volume in N horizontal slices and using a
trapezoidal rule

Ve = / 2 nlrp —r(2)dz

21
2 1Zk1 — 2kl
(s -z,

(AD)

N
A2
5 (A2)
k=1
where r,, is the average between r;y; and r;. Hence, since
finding a general analytical solution is not possible, we used a
trust-region-reflective algorithm with an initial approximation
uy = {z; = b, AP = 0} and a tolerance of |R| = 10~'2. This
algorithm is widely implemented in multiple platforms and one
can use, for instance, the function lsqnonlin built in MATLAB.

APPENDIX B: DERIVATION OF ANALYTICAL
SOLUTIONS ON A CYLINDRICAL CHANNEL

In a cylindrical pore, one can find analytical solutions
for the exit pressure similar to the ones that Nazzal and
Wiesner derived for the entry pressure. We derive here the
corresponding expressions for the exit pressure in regimes 3
and 4, which correspond to Eqs. (5) and (6). Note that these
are approximate results that will match our model when the
pore has a sharp transition at the edge n — oo.

1. Regime 3

The exit mechanism of the vesicle in this regime occurs
when the top cap becomes perfectly flat (p; = 0) so the force
balance cannot be satisfied beyond this point. For a nonwetting
vesicle and a cylindrical pore, this can only happen when z;
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is right at the edge of the cylinder (the curvature is constant
within its walls). In that scenario, the vesicle is equivalent to
a droplet on a flat surface and we can find our solution by
equating the original volume to a spherical cap resting on a
flat surface:

Vo = Veap: (B1)
4 L 1 1 3

—nmRy = —m—(2 —3cos6 + cos’ 0), (B2)
3 37 p3

SO we obtain pg = (1 — cos0)(sin*@ + 1 — cos 0)/4R8. The
Laplace law in this particular case is simply AP* = p, and
by introducing the value of the curvature we directly obtain
Eq. (12).
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2. Regime 4

This exit mechanism occurs when the contact angle
approaches /2 and the value of the curvature inside the
cylinder tends to zero. In this situation, the force opposing the
external pressure arises from the bottom cap and it will reach
its maximum when its radius is minimum. In a cylindrical
pore the minimal radius is equal to the pore radius s and can
only occur when the lower detachment point is exactly at the
pore edge z, = —b and R, = s/sin(f). The top cap is then
inside the cylindrical channel and constrained by its walls,
so its radius is simply R; = s/ cos(f). By normalizing these
quantities and introducing them into the Laplace law we obtain
the analytical expression for regime 4:

AP* =cosf +sind. (B3)
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