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Discontinuous thinning in active microrheology of soft complex matter
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Employing theory and numerical simulations, we demonstrate discontinuous force thinning due to the driven
motion of an external probe in a host medium. We consider two cases: an ideal structureless medium (modeling
ultrasoft materials such as polymer melts) and a dilute bath of interacting repulsive particles. When the driving
of the probe exceeds a critical force, the microviscosity of the medium drops abruptly by about an order of
magnitude. This phenomenon occurs for strong attractive interactions between a large probe and a sufficiently
dense host medium.
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I. INTRODUCTION

Active microrheology (AMR) is an experimental technique
to determine local rheological properties of complex envi-
ronments by tracing actively manipulated probes (for reviews
see, e.g., Refs. [1–3]). For colloidal suspensions, it has been
employed close to the glass transition by dragging a magnetic
bead [4], for hard spheres over a wide range of volume
fractions [5], and to force the local melting of a colloidal
crystal [6,7]. It has also become an important technique for the
study of mechanical properties of biological matter [8,9] and
fluid interfaces [10]. Moreover, it allows quantitative insights
into the mechanical response of glassy materials [11–14] and
crowded systems [15].

An established theoretical model for AMR is the “simple
paradigm” of Squires and Brady [16,17], which has been
applied predominantly to hard-sphere suspensions. It allows
us to describe a broad class of materials governed by short-
ranged repulsions through a mapping onto hard spheres via
an effective diameter. Conventional macrorheology deals with
averages of quantities like stress and strain, which requires
sample materials to be both sufficiently homogeneous and
spatially extended. In AMR, however, the host medium is
strained only in the vicinity of the moving probe. It is this
locality of the induced flow fields that makes AMR so useful
for the exploration of media that are either confined (e.g., in
living cells), heterogeneous on mesoscopic length scales, or
just difficult to procure in larger quantities. Like macrorhe-
ology, AMR centers around measuring and understanding
the non-Newtonian behavior of complex fluids, albeit from
a more introversive angle. This predominantly concerns their
relaxation in response to perturbations [18,19] as well as their
thinning and thickening behavior under steady flows [20,21].
To this end, the simple paradigm relates changes in the
microstructure to microrheological properties.

Of particular importance are materials with discontinuous
flow curves. Such discontinuities give rise to rather spectacular
effects, a paradigmatic example being the sudden solidification
of cornstarch suspensions above some critical strain rate.
Although the phenomenon of discontinuous shear thicken-
ing [22] has long been known, its underlying mechanism
remains the subject of ongoing theoretical and experimental
investigations [23–25]. The opposite case, discontinuous shear
thinning, has received far less attention and so far has only been

reported in connection with order-disorder transitions under
shear flow [26,27].

Here we report the discontinuous thinning of a soft material
in response to the motion of a forced probe attracting the
surrounding host material. A numerical analysis based on an
extension of the simple paradigm formalism [16] reveals a
dynamically unstable regime within the velocity-force relation
of the driven probe. We corroborate our results with Brownian
dynamics simulations showing that, given sufficient density
and attraction strength, crossing a certain threshold in the
driving force induces a marked discontinuous drop in the
microviscosity of the host medium. Moreover, for finite-time
force protocols across this discontinuity, the dynamic lag of
the microstructure causes hysteretic behavior, showing up
as a loop in the corresponding flow curves. The underlying
mechanism of this discontinuous force thinning turns out to be
rather generic and intuitive. It can be accounted for solely in
terms of microstructure, i.e., the aggregation of bath particles
around the probe due to attraction and how this aggregation
is affected by the advection at increasing probe velocities. We
also discuss the impact of bath particle interactions on the
instability and establish a parameter range in terms of volume
fraction and relative particle size where our results extend to
hard-sphere bath particles.

II. MODEL

We model the host medium as N bath particles with
hydrodynamic diameter b suspended in a solvent and moving
in a periodic box of volume V (number density ρ ≡ N/V ).
A spherical probe of diameter a is pulled through the bath
by a constant external force f ex . Interparticle forces Fk =
−∇kU are derived from the superposition U = U ({xk}) of
pair potentials u(r) and ub(r), acting between the probe
and bath particles and among bath particles, respectively.
Throughout, we measure lengths in units of a, energies
in kBT , and diffusivity in (Da+Db), which is the relative
diffusivity between the probe and bath particles. The solvent
is assumed to be Newtonian with a viscosity η large enough to
render the colloidal inertia irrelevant. The resulting Brownian
motion generates particle trajectories xk(t) described by the
overdamped Langevin equations,

ẋk = μk[Fk + f exδ0k] + ζ k, (1)
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with k = 0 referring to the probe. The noise ζ k(t) has
zero mean and correlations 〈ζ k(t)⊗ζ l(t ′)〉 = 2μkδklIδ(t − t ′)
with identity matrix I. Stokes’ law of friction for spherical
particles yields (in our units) the mobilities μ0 = b/(1 + b)
and μ1...N = 1/(1 + b) of probe and bath particles with the
(relative) bath particle size b.

An equivalent description is given in terms of the joint
probability distribution �({xk},t) with local mean velocities
vk = μk(Fk + f exδ0k − ∇k ln �). After switching to bath
coordinates relative to the probe, {rk=1..N ≡ xk − x0}, all
gradients with respect to the absolute position x0 of the probe
vanish due to the homogeneity of the system. Conservation
of probability amounts to the many-body Smoluchowski
equation, which in the stationary case reads

N∑
k=1

∇k · (vk − v0)�s = 0. (2)

It determines the nonequilibrium steady-state distribution
�s({rk}; f ), which includes the microstructural deformations
induced by the external driving. Unless stated otherwise,
averages 〈·〉 are taken with respect to �s. For pairwise
interactions the mean frictional drag,

ρζ (f ) ≡ ex · 〈F0〉f = ρ

∫
dr (ex · er ) u′(|r|) g(r; f ), (3)

exerted on the probe reduces to an integral involving the
one-body density ρ1(r; f ) = ρg(r; f ) of bath particles around
the probe with conditional probability g(r; f ) to find a bath
particle at r given the probe at the origin. In general, this
density will depend both on the driving strength f and bath
density ρ. The ensuing velocity-force relation,

v(f ) ≡ ex · 〈v0〉f = μ0[f − ρζ (f )], (4)

expresses the nonlinear response of the probe to the external
driving, reducing the solution of the microrheological problem
to the calculation of g(r; f ).

The one-body density ρ1(r) is the first member of an open
hierarchy of conditional densities. In order to achieve closure,
we approximate the two-body density ρ2(r,r′) ≈ ρ1(r)ρ1(r′),
thereby neglecting any correlations between bath particles. For
strongly interacting particles, such an approximation would
correspond to the dilute limit. However, for now we use it as
a model for structureless soft media at arbitrary density such
as polymer melts with probe sizes larger than the microscopic
correlation length [28]. Within this approximation, we obtain
the pair-Smoluchowski equation,

∇ · [∇ + vex + u′(|r|)er ]g(r; v) = 0, (5)

which is essentially the constitutive equation of the simple
paradigm [16], including continuous pair interactions u(r)
between probe and bath particles. Equation (5) has the
form of an advection-diffusion equation with v quantifying
the advection of bath particles as seen from the moving
probe, which is of course equal in magnitude to the mean
probe velocity in the laboratory frame. In the units chosen
above, v is the Peclet number commonly used to quantify
the relative strength of advection versus diffusivity [16].
Note, however, that we do not follow the simple paradigm
in replacing v with μ0f in Eq. (5), which is admissible

only in the dilute limit ρ → 0, but rather continue with
an alternative way to solve the microrheological problem.
Solving Eq. (5) yields g(r; v) as a function of the mean
velocity v independent of density ρ, rendering the particle
drag ρζ (v) strictly linear in ρ. From Eq. (4) then follows
the force f (v) = ρζ (v) + v(f )/μ0 necessary to balance the
total drag (right-hand side) at a given mean velocity v. The
above considerations comprise the constant-force case of
microrheology, as opposed to the constant-velocity case, both
extensively discussed in the simple paradigm [16]. However,
in order to arrive at the constant-velocity case, where the
probe moves deterministically at some fixed velocity vc, the
only necessary adjustments are the replacement of v → vc in
Eq. (5), while changing the unit of diffusivity to Db.

Whereas in the hard-sphere case an analytical solution to
Eq. (5) is available in the form of a series expansion [16], here
we have to resort to a numerical scheme. To solve Eq. (5),
with the axial symmetry around the force direction taken
into account, we employ spherical coordinates and expand
g(r,θ ) into Legendre polynomials. Discretizing the modes
with respect to r leads to a system of linear equations, which
is solved by standard techniques. After having sampled the
microrheological flow curve with a sufficient number of value
pairs (v,f ), the f (v) relation can be numerically interpolated
and inverted to give the desired v(f ) velocity-force relation
for given density ρ.

III. RESULTS

A. Ideal bath

For the probe-bath interactions we choose the Lennard-
Jones (LJ) potential

u(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (6)

which combines attraction with a steep repulsive inner part.
In the case of a passive probe, i.e., f = 0, the isotropic equi-
librium distribution of bath particles is geq(r) = exp[−u(r)].
Driving the probe with finite f breaks isotropy and leads
to a characteristic, predominantly dipolar microstructural
deformation. For rather high interaction strength ε = 5 and
length scale σ = 1 of the LJ potential, Figs. 1(a)–1(d) depict
the evolution of g(r; v) with increasing probe drift velocity
v. In the case of a slowly moving probe [Fig. 1(a)] the
potential well is still highly populated with bath particles,
while the region of maximal excess is shifted downstream due
to advection. Naturally, dragging along these trailing particles
generates considerable frictional resistance against the probe
drift. Upstream, suction toward the potential minimum creates
a halo-like region of depleted bath density. With increasing
drift velocity v, the directional bias in the microstructure
becomes more and more pronounced, see Figs. 1(b) and 1(c).
As bath particles now have less time to react to the potential
forces while passing the probe, its upstream range of influence
contracts radially. Meanwhile, the probe trails behind it a
wake of ever-increasing spatial dilation. Although this wake
is still carrying an excess of bath particles, its peak density
is reduced. When the drift becomes strong enough, however,
advection dominates over the attractive potential forces and
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FIG. 1. (a–d) Microstructural deformation around the attractive probe for increasing mean velocities v in terms of the conditional probability
g(r; v) in the x-y plane. Probe and bath particles interact via a Lennard-Jones potential with ε = 5 and σ = 1. (e) Velocity-force relations
μ0f (v) for ascending values of μ0ρ (bottom to top) at a relative bath particle size b = 1/19. Above μ0ρ 	 0.036, the flow curves become
nonmonotonous and dynamically unstable regions emerge across intermediate v. Dashed lines and shaded areas represent a tentative equal-area
Maxwell construction to restore invertibility.

the downstream excess starts being swept away, resulting in
a more or less evacuated tail-like zone directly behind the
probe; see Fig. 1(c). Having cast off its “baggage,” the probe
can now propagate much more freely. It is only for very strong
driving that the distribution of bath particles starts to resemble
the typical hard-sphere picture [Fig. 1(d)], where regardless of
driving strength one observes a buildup of particles in front of
the probe and a depleted wake trailing it.

The velocity-force relations corresponding to this intrigu-
ing, highly nonlinear behavior are depicted in Fig. 1(e).
Plotting μ0f versus the average probe velocity v leaves μ0ρ =
ρb/(1 + b) as the only free parameter; cf. Eq. (4). The most
salient feature in Fig. 1(e) is that upon increasing the density ρ

for constant b, here specifically above μ0ρ 	 0.036, the flow
curves become nonmonotonous over an intermediate v-range.
This implies that the probe requires less forcing in order to
travel faster, which clearly constitutes a dynamically unstable
regime. At the same time, the function f (v) is no longer
globally invertible. Since the force f is the physical control
parameter, and stochastic dynamics guarantees a unique steady
state with an unambiguous drift velocity v, this implies a
discontinuous change of the velocity-force relation v(f ).

Nonmonotonous flow curves have been found to model,
e.g., shear banding [29,30] and shear thickening [24]. In
conventional thermodynamics such a behavior signals a phase
transition. For example, in the van der Waals theory the volume
as a function of pressure shows a similar loop due to the
competition between energy (favoring the dense phase) and
entropy (favoring the dilute phase). The Maxwell construction
replaces the loop by an isobar equating the free energies of
both phases. We note the analogy between intensive pressure
and force, and extensive volume and the distance traveled
by the probe. As a for now purely tentative measure to
restore invertibility, we propose, in the spirit of a Maxwell
construction, that the unstable sinusoidal part of f (v) ought to
be replaced by a horizontal line as shown in Fig. 1(e).

In order to assess the physical validity of the resulting flow
curves, we have performed Brownian dynamics simulations.

In contrast to solving Eq. (5) for given v, we now control
the driving force f directly, allowing us to sample the true
v(f ) relations over the critical region. There is, however,
a subtle discrepancy with respect to the ideal bath model:
In simulations, even for noninteracting bath particles with
ub(r) = 0, we cannot trivially rule out any bath correlations
as in the pair-Smoluchowski approach, since there is the
possibility of indirect correlations mediated by the probe. It
turns out, however, that in the case of small bath particles
b 
 1 these correlations become negligible and the two
approaches converge.

For N = 32 000 particles with relative size b = 1/19 plus
the probe, trajectories xk(t) are integrated according to a
time-discretized Euler scheme based on Eq. (1) with a time
step �t = 10−4. The system is allowed for τrel = 100 to relax
toward its nonequilibrium steady state prior to collecting any
data. An estimate of the mean probe velocity v(f ) is then
obtained as an average over 10 statistically independent runs
per given force f , corresponding to an average 〈·〉 with respect
to the noise {ζ k(t)}. Each run has a duration of τsim = 200,
which is roughly how long it would take for an isolated bath
particle to spread diffusively by roughly 34 probe diameters.

Introducing terminology from microrheology, we consider
the relative microviscosity ηmrh/η ≡ μ0f/v. Its definition hy-
pothesizes a Newtonian medium of the same viscosity, whose
purely Stokesian resistance to the probe equals the total friction
(v/μ0 + ρζ ) in the suspension. In contrast to a Newtonian
viscosity, however, the microviscosity ηmrh of complex fluids
will generally be a function of v or f , respectively, just as the
macroscopic shear viscosity will be a function of strain rate
or stress. The relative microviscosity ηmrh/η as a function of
driving force f is shown in Fig. 2(a) both for the Brownian
dynamics simulations and the solution of Eq. (5). In the
stable case with μ0ρ = 0.036 the two methods match almost
perfectly. Pronounced but continuous thinning takes place over
an intermediate force range, with the relative microviscosity
declining by more than one order of magnitude, followed by an
asymptotic decay with limf →∞ ηmrh(f )/η = 1. In this strong
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FIG. 2. (a) Relative microviscosity ηmrh/η = μ0f/v as a function
of driving force f for two different parameters μ0ρ. Solid lines
represent numerical solutions of the pair-Smoluchowski Eq. (5). Data
points from Brownian dynamics simulations with fixed b = 1/19
fall onto the numerical solution with statistical errors smaller than
the symbol size. In the unstable case with μ0ρ = 0.098, simulations
reveal a sharp discontinuous transition between two separate frictional
regimes. The transition force depends on the rate and direction
along which f is varied (see arrows), leading to hysteretic behavior.
(b, c) Individual probe trajectories x0(t) for initial forces (b) below
and (c) above the discontinuity. In order to escape the metastable
initial state, a rare fluctuation has to carry the system close enough
toward its stable steady state, followed by a marked and abrupt shift
in the probe velocity.

driving regime, where advection dominates over any pair
interactions with a finite energy scale, the particle contribution
ρζ to the total friction (v/μ0 + ρζ ) becomes increasingly
irrelevant. This result is in stark contrast to the singular be-
havior of a hard-sphere suspension, where the microviscosity
asymptotically converges to a quasi-Newtonian plateau given
by limf →∞ ηmrh(f )/η − 1 = 1

2 (ηmrh(0)/η − 1) [16].
Regarding the thinning behavior in the unstable case,

specifically for μ0ρ = 0.098 in Fig. 2(a), Brownian dynamics
simulations reveal a sharp discontinuous transition between
the two frictional regimes within the unstable region. The
microviscosity ηmrh/η suddenly drops (or surges) by more
than one order of magnitude, depending on the rate and
direction along which f is varied. Here, the fact that the
simulation results in Fig. 2(a) fork into two branches across
the instability is due to the rather long crossover time from
metastable initial states to the stable steady state. Hence, there
is a difference whether the initial relaxation of the system

starts with f = 0 and the force being slowly ramped up [see
Fig. 2(c)], or whether it starts with a force beyond the unstable
region, which is then gradually reduced toward its steady-state
value [see Fig. 2(b)]. For finite relaxation times, this leads to
hysteretic behavior around a critical force, which is compatible
with the estimate from the Maxwell construction, once again
represented by the shaded area in Fig. 2(a). We expect that
in the limit of infinitely long simulation time, which would
correspond to the true steady-state ensemble, the hysteresis
will contract to a single discontinuous step at the critical force.

B. Interacting bath particles

In a first step toward more realistic systems, we use
Brownian dynamics simulations to produce flow curves of
an attractive probe in suspensions where particles interact via
some pair potential ub(r) �= 0. A natural way to model media
with intrinsic structure, i.e., having spatial correlations, is to
incorporate volume-exclusion effects by having bath particles
interacting as hard spheres. Considering that the instability
requires rather strong local aggregation of particles in the
potential well, it is to be expected that volume exclusion effects
will significantly impact the microstructure and thus also the
microrheological thinning mechanism.

For numerical convenience, we approximate the singular
hard-sphere interactions by a continuous, purely repulsive
WCA potential,

ub(r) =
{

4εb

[(
σb

r

)12 − (
σb

r

)6] + εb, r � 2
1
6 σb

0, r > 2
1
6 σb ,

(7)

where the energy scale εb and length scale σb govern the
repulsive stiffness and the effective size of the bath particles,
respectively. In order to assess the impact of volume exclusion,
we gradually increase the effective particle size from zero, the
latter corresponding to the ideal-bath case studied above. To
this end, it is instructive to vary σb independently while fixing
all other parameters that would affect the microrheological
behavior. Explicitly, we choose a bath number density ρ =
0.92 and a hydrodynamic diameter b = 0.1. Regarding the
probe-bath attraction, we stick to the Lennard-Jones potential
from Eq. (6) with ε = 5 and σ = 1, as utilized above.

The Brownian dynamics simulation scheme remains es-
sentially the same as for noninteracting particles but for
N = 4000 particles with density ρ = 0.92. All results have
been numerically checked to be robust against an increase
in N within the margin of statistical errors. A time step of
�t = 1 × 10−6 ensures stable dynamics with regard to the
short length scales σb associated with the WCA potential. After
an initial random placement of particles, the system relaxes
by gradually adopting the proper probe-bath microstructure,
while the force f is slowly being ramped up from zero. The
initial relaxation period lasts for τrel = 20, during the second
half of which the force has reached its constant steady-state
value. For each force value, 15 independent runs are performed
with a duration of τsim = 10 each.

Simulation results are shown along with the corresponding
ideal-bath results in Fig. 3 in terms of the relative microvis-
cosity ηeff/η = μ0f/v for increasing values of σb. In order
to allow for better recognition of discontinuous behavior, the
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FIG. 3. Relative microviscosity ηmrh/η = μ0f/v as a function of force f at fixed εb = 1.0 and number density ρ = 6φ/(πb3) = 0.92 for
increasing bath particle size in terms of the WCA-potential range σb: (a) σb = 0.05, (b) σb = 0.10, and (c) σb = 0.20. Bath particles have a
relative hydrodynamic diameter b = 0.1 corresponding to a probe mobility of μ0 = 0.091. The flow curve according to the ideal-bath model
(dashed lines) serves as a reference for the noninteracting (σb = 0) case.

values of ηeff/η are shown both for the mean probe velocity
v averaged over single simulation runs (symbols) as well as
over all trajectories pertaining to a given force f (solid lines).
Due to the long persistence of metastable states close to the
discontinuity, simulations with a finite duration and relaxation
time yield trajectories where a transition has already taken
place at simulation start, some where it is still pending and
some where it occurs during the simulation.

It is clear from Figs. 3(a)–3(c) that the microrheological
behavior is impacted by volume exclusion among bath
particles. In the weak driving regime, i.e., before major
thinning occurs, the high value of ηeff/η predicted by the
ideal-bath model is strongly diminished by an increase in
bath particle extension σb. This is due to the fact that the
major contribution to the microviscosity for slow driving stems
from a pronounced aggregation of particles in the potential
well, which is naturally counteracted by volume exclusion.
As explained above, the instability is predicated upon the
high initial aggregation, which is eventually flushed out of
the potential well by advection, leading to a marked drop in
microviscosity. The simulations demonstrate that when this
aggregation is sufficiently weakened, the instability vanishes
as a consequence.

In the case of a rather small σb = 0.05, Fig. 3(a), the
discontinuity is still present, which can be inferred from
the vertical spread of data points pertaining to forces across
the unstable range. Most of these data points can be clearly
assigned to one of two distinct frictional regimes. While this
clearly shows the presence of discontinuous transitions on
the trajectory level, the superposition is merely of a transient
nature and due to some systems not having reached their
final steady state yet. Note that the few intermediate data
points do not indicate a continuous transition but rather
pertain to trajectories where the crossover has occurred during
simulation time, consequently yielding an average somewhere
in between the two regimes. Given a sufficiently long initial
relaxation period, all metastable states will eventually have

transitioned into stable steady states, resulting in a clear-
cut discontinuous step in the ηeff(f )/η flow curves. As σb

increases, the unstable behavior becomes less pronounced,
Fig. 3(b), and has vanished for σb = 0.2 (c). Note that the
strong-driving regime that follows the thinning transition turns
out to be more or less unaffected by the bath interactions.

To give an idea for which parameters one can expect
discontinuous force thinning, note that the microrheological
behavior remains invariant for

μ0ρ = b

1 + b
ρ = 6

π

φ

b2 + b3

!= const., (8)

following from Eq. (4) for the master curve ζ (v), which is
uniquely determined by the pair potential. Assuming now that
bath particles mutually interact as hard spheres, equal in size to
their hydrodynamic diameter b, density-induced correlations
will scale with volume fraction φ. That is to say, the first
higher-order correction to Eq. (5) due to correlations is O(φ)
and thus always vanishes for sufficiently small φ. According to
Eq. (8), any particular microrheological scenario can actually
be realized at arbitrarily low-volume fractions φ, so long as
the relative size of the bath particles b is lowered accordingly.

These considerations can be condensed into a dynamical
phase diagram in terms of φ and b shown in Fig. 4. Notably,
the unstable regime, here delineated for the LJ potential with
ε = 5 and σ = 1, persists to arbitrarily low volume-fractions
φ. The part of the unstable regime where the bath can actually
be considered dilute (in φ) is delineated by the shaded area
in Fig. 4. In contrast to the sharp crossover from the stable
to the unstable region, however, there seems to be no exact
threshold in φ below which volume-exclusion effects become
negligible. In order to give an estimate as to viable values of
φ, for which the instability is preserved even for hard-sphere
bath particles, we have to take into account the strong local
aggregation induced by the attractive probe-bath potential. The
pair distributions g(r) depicted in Figs. 1(a)–1(d) show that the
bath density reaches up to 100-times its bulk value locally. A
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FIG. 4. Mapping of dynamically stable and unstable regimes in
terms of volume-fraction φ and relative bath diameter b. Along
φ/(b2 + b3) = c = const (thin lines), the microrheological flow
curves are invariant. The thick line (red line) demarcates the two
regimes, here for a Lennard-Jones potential with σ = 1 and ε = 5.
The shaded area corresponds to the region that is unstable and dilute
(φ 
 1), where the pair approximation becomes valid even for a
hard-sphere bath. Letters (a)–(c) indicate the state points shown
in Figs. 3(a)–3(c) at constant density ρ = 0.92, with b equal to
the effective hard-sphere diameter bBH of the bath particles and φ

calculated accordingly.

reasonable value for which the bulk of a hard-sphere bath
would be considered dilute is φ ∼ 0.01. Further demanding
that even the local volume-fraction φg(r) never exceeds this
upper bound, we arrive at a value of φ ∼ 10−4. At this volume
fraction, according to Fig. 4 the system becomes unstable for
bath diameters below b ∼ 10−1. This claim is supported by
the simulation data from Figs. 3(a)–3(c), which are localized
in the phase diagram Fig. 4 by the encircled letters. To this
end, the hydrodynamic diameter b has been mapped onto to
the effective hard-sphere diameter bBH calculated according to

the Barker-Henderson mapping [31],

bBH ≡ 2
∫ ∞

0
dr[1 − e−ub(r)]. (9)

The case in Fig. 3(a) with σb = 0.05 can be mapped onto
bBH = 0.102 and φBH = 5.0 × 10−4, supporting the validity of
the values estimated above. And indeed, the ideal bath results
including the instability are reproduced reasonably well.

C. Asakura-Oosawa depletion attraction

As an alternative, physically more viable case of colloidal
interactions, we consider the well-known Asakura-Oosawa
(AO) model [32,33], which deals with the effective attraction
between colloids that are suspended among smaller depletants,
e.g., polymer coils. While the Lennard-Jones potential has
proven very ostensive in the exposition of the microstructural
mechanisms underlying the dynamical instability, the gains
from an analysis of the AO-potential are threefold: It is an
attractive potential that is actually relevant in the colloidal
context, giving the parameters explicit physical meaning.
Also, extending our analysis to another qualitatively quite
different potential supports the claim that the existence of
a microrheological instability is a rather generic feature of
sufficiently strong attractive probes and hence independent
of any particular shape or extension of u(r). Finally, as a
hybrid potential it comprises both colloidal volume exclusion
and a short ranged continuous attraction. Consequently, the
attractive part of the potential given in Eq. (10) with its finite
energy scale becomes negligible over the singular repulsion
in the strong-driving limit, allowing us to recover the limiting
hard-sphere behavior.

The following results are all based on an evaluation of the
pair-Smoluchowski Eq. (5) involving the pair potential,

uAO =

⎧⎪⎪⎨
⎪⎪⎩

∞, r < σc

−ηr
p(1 + q−1)3

[
1 − 3r/σc

2(1+q) + (r/σc)3

2(1+q)3

]
,

σc < r � σc(1 + q)
0, r � σc(1 + q),

(10)

FIG. 5. (a–f) Microstructural deformation around the moving probe in terms of the conditional probability g(r; v) in the x-y plane
parameterized by the mean probe velocity v. Probe and bath particles interact via the AO depletion-attraction potential uAO(r) with a polymer
reservoir packing-fraction ηr

p = 0.5 and polymer-colloid size ratio q = 0.10.
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FIG. 6. (a) Master-curves ζ (v) for the AO-model with polymer packing-fraction ηr
p = 0.5 and varying polymer-colloid size ratios q (dashed

lines) complemented by the hard-sphere case (solid line) corresponding to ηr
p = 0. (b) Velocity-force relations μ0f (v) based on the master-curve

ζ (v) (solid lines) at ηr
p = 0.5, q = 0.10 for ascending values of μ0ρ (bottom to top). Dashed lines represent Maxwell constructions across

unstable ranges. (c) Relative microviscosity ηmrh/η = μ0f/v as a function of force f for the same values of μ0ρ used in (b). Dashed lines
indicate discontinuous transition according to Maxwell construction.

acting between probe and bath particles. The attractive part is
a potential of mean force resulting from entropic depletion
forces. Here, ηr

p is the reservoir packing-fraction of the
depletant polymers and q = σp/σc is the polymer-colloid
size ratio. For the AO-model to hold, this ratio ought to be
sufficiently small [33], explicitly q < 0.155.

Figures 5(a)–5(f) contain the conditional probabilities
g(r; v) of finding a bath particle around the probe mov-
ing with different mean velocities v. The AO potential is
highly attractive only in a narrow perimeter around the
hard-sphere exclusion zone, inducing strong local aggregation
of bath particles with relative values of max{g(r)} ∼ 1000
for small v [Fig. 5(a)]. The linear-response regime v � 1
is characterized by a dipolar excursion from the isotropic
equilibrium distribution geq(r) = exp[−uAO(r)], in agreement
with the hard-sphere case. In the nonlinear regime, i.e., v > 1,
the microstructure becomes highly nontrivial. Analogous to
the Lennard-Jones potential, increasing advection first pushes
the aggregation zone behind the probe, Figs. 5(b)–5(d), and
finally flushes it out of the potential well entirely, leaving
behind a more or less evacuated wake Figs. 5(e) and 5(f). We
recognize this as the mechanism responsible for the instability.

The hard-sphere case, which corresponds to ηr
p = 0 in

terms of the AO model, is recovered for v → ∞. Accordingly,
the master-curves ζ (v), depicted in Fig. 6(a) for hard-spheres
along with the AO-model, converge for large v. Moreover, it
can clearly be seen that the unstable behavior is predicated on
a certain attraction-strength threshold, here specifically ηr

p =
0.5 and q 	 0.15, above which ζ (v) becomes nonmonotonous.
Only then is it possible to have a likewise unstable velocity-
force relation μ0f = v + μ0ρζ (v), provided a sufficiently
high value of μ0ρ. In Fig. 6(b), the flow curves are shown
for ηr

p = 0.5, q = 0.10 and ascending values of μ0ρ. The
threshold μ0ρ 	 0.12, above which unstable behavior sets
in, corresponds to a value of c = 0.063 pertaining to the
dynamical phase diagram in Fig. 4. The unstable part of
the flow curves has again been augmented by an equal-area
Maxwell construction to restore invertibility. Finally, the

microrheological behavior is shown in terms of the relative
microviscosity ηmrh/η in Fig. 6(c). Here, the dashed lines mark
the force at which the discontinuous jump in the microviscosity
is to be expected according to the Maxwell construction.

We have thus recovered the unstable microrheological
behavior in good qualitative agreement with the Lennard-
Jones case, confirming the generality of our central results
with regard to different forms of attractive potentials. Being
well-studied and experimentally verified, the AO model could
serve as a stepping stone towards realistic attractive potentials
of the kind needed to bring about the instability. The fact
that it involves two parameters that have a distinct physical
basis while being independently tunable clearly is an asset in
an attempt to find experimentally plausible scenarios. Lower
polymer packing fractions ηr

p can well suffice to bring about
the instability so long as the colloid-polymer size ratio q is
adjusted adequately. A caveat remains in that the AO model
is based on an equilibrium coarse-graining with respect to the
polymer configurations and consequently might break down
under nonequilibrium conditions [34]. Generally, effective
colloidal forces under flow are nonconservative and hence
cannot be represented by a pair potential. While for the
particular case of two colloids moving in tandem through a
suspension of smaller depletants, such force fields have been
studied both theoretically [34–36] and experimentally [37,38];
a similar calculation for the system at hand constitutes a
nontrivial task that would merit a future study.

IV. CONCLUSIONS

We have combined an extension of the simple paradigm
with simulations in order to demonstrate both the existence
and origin of discontinuous thinning of a soft environment
in response to a driven attractive probe. The underlying
mechanism rests on the aggregation of the host medium in
the potential well and thus depends primarily on attraction
strength. Specific details of the pair potential, however, are
not essential to the phenomenon itself. This claim has been
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substantiated by analyzing the effect for two alternative
types of attractive interaction, a Lennard-Jones potential as
well as Asakura-Oosawa depletion attraction. Considering a
structureless medium has allowed us to clearly expose the
principal physical contributions. While simulations involving
a (nearly) hard-sphere colloidal bath have revealed that
the instability is highly sensitive to density-induced bath
correlations, we were able to point out a physically relevant
parameter range in terms of volume fraction φ and relative
particle size b wherein our results remain valid even in the case
of strongly interacting bath particles. Higher-order corrections
to the pair approximation could be incorporated using, e.g., a
DFT-like approach [39,40] in the closure of the Smoluchowski

Eq. (2). On the practical side, our results show the importance
of carefully taking into account the interactions between
probe and medium in interpreting experimental data obtained
through active microrheology in terms of simple theoretical
models. They should also be relevant to predict the response
of, e.g., self-propelled colloidal particles in sticky viscoelastic
environments [41].
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