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Shear-induced solidification of athermal systems with weak attraction
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We find that unjammed packings of frictionless particles with rather weak attraction can always be driven
into solidlike states by shear. The structure of shear-driven solids evolves continuously with packing fraction
from gel-like to jamminglike, but is almost independent of the shear stress. In contrast, both the density of
vibrational states (DOVS) and force network evolve progressively with the shear stress. There exists a packing
fraction independent shear stress σc, at which the shear-driven solids are isostatic and have a flattened DOVS.
Solidlike states induced by a shear stress greater than σc possess properties of marginally jammed solids and
are thus strictly defined shear jammed states. Below σc, shear-driven solids with rather different structures are
all under isostaticity and share common features in the DOVS and force network. Our study leads to a jamming
phase diagram for weakly attractive particles, which reveals the significance of the shear stress in determining
properties of shear-driven solids and the connections and distinctions between jamminglike and gel-like states.
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I. INTRODUCTION

Particulate systems such as colloids, emulsions, foams,
and granular materials can form disordered solids at high
packing fractions [1–11]. The critical packing fraction of the
transition from liquidlike to solidlike states is sensitive to
the interaction [11–13] and geometry [14–17] of particles.
Consider the simplest case of static packings of spheres. If
the spheres are frictionless and purely repulsive, the transition
happens as the jamming transition at a critical packing fraction
φj [5,18–22]. The jamming transition is signaled by the sudden
formation of a rigid and isostatic force network, i.e., the
average coordination number is equal to twice the dimension
of space. The physics of jamming is of great importance
and broad interest in understanding various transitions from
liquidlike to solidlike states for various materials and the nature
of amorphous solids.

Over the past two decades, the jamming transition has
been almost exclusively studied for purely repulsive particles.
Our knowledge about the jamming of attractive particles
remains rather poor over a surprisingly long time, while such
knowledge is important in practice because many real systems
unavoidably contain cohesive particles. Up to date, what we
can learn about the jamming of attractive particles may be
still from an early experimental study [3]. That work shows
expectable results that the presence of attraction smears out
φj , so that a nonvanishing yield stress or glass transition
temperature extends to low packing fractions. However, there
are in-depth questions that ought to be but have not yet been
attacked. For instance, in the zero attraction limit, will attrac-
tion simply act as a perturbation and hence just quantitatively
extend the jamming phase diagram of purely repulsive particles
or lead to qualitatively different phenomena? Moreover, in the
presence of attraction, gels are formed at low packing fractions
and evolve into glasses or jamminglike states at high packing
fractions [7–10,12]. This at least implies that there are distinct
regimes in the “jammed” region of the jamming phase diagram
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for attractive particles [3] that should be partitioned, and the
roles of packing fraction, shear stress, and temperature in
identifying various solidlike states need to be carefully figured
out.

Here we attack the above questions by investigating how
attraction affects the picture of jamming established for purely
repulsive systems [5] at zero temperature (T = 0) and finite
shear stresses. We study the formation and properties of
shear-driven solids of particles interacting via a repulsive core
and a tiny attractive tail. By applying quasistatic shear, we
can always find solidlike states below the jamming transition,
where the probability of finding solidlike states is almost zero
in the absence of shear. By minimizing a thermodynamiclike
potential [23,24], we sample solidlike states at fixed packing
fraction φ and shear stress σ , and analyze their structure, force
network, and vibrational properties. The analysis enables us to
construct a jamming phase diagram in the σ -φ plane at T = 0.
In particular, there is a packing fraction independent shear
stress σc. When σ = σc, shear-driven solids exhibit features
of marginally jammed solids, e.g., being isostatic and having
a flattened density of vibrational states (DOVS) [5,25–27].
Solidlike states driven by σ > σc are thus strictly defined shear
jammed states.

II. MODEL AND METHODS

To avoid crystallization, we put N/2 large and N/2 small
spherical particles with equal mass m into a box with side
length L in all directions. The diameter ratio of the large to
small particles is 1.4. The interparticle potential is [12,28]
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where rij and dij are the separation between particles i and j

and sum of their radii, and μ is a tunable parameter to control
the range and strength of attraction. We study both harmonic
(α = 2) and Hertzian (α = 5/2) systems. We set the units of
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mass, energy, and length to be particle mass m, characteristic
energy scale of the potential ε, and small particle diameter ds .

The shear deformation is realized by introducing the shear
strain γ and applying the Lees-Edwards boundary conditions
[29]. Without shear (γ = 0), we generate static states at fixed
packing fraction by applying the fast inertial relaxation engine
(FIRE) method [30] to minimize the potential energy U =∑

ij U (rij ) of random configurations, where the sum is over all
pairs of particles. To perform quasistatic shear, we successively
increase the shear strain γ by a step strain �γ , followed by
the minimization of U . To well control the shear stress σ , we
instead minimize a thermodynamiclike potential H = U −
σγLd [24], where d is the dimension of space. During the
minimization, σ is fixed, while γ becomes a variable.

The structure of the system is characterized by the static
structure factor S(q) = 〈|∑j exp(i �q · �rj )|2〉/N , where q = |�q|
is the angular wave number, �rj is the location of particle
j , 〈.〉 denotes the average over states, and the sum is over
all particles. The normal modes of vibration are obtained
from diagonalizing the Hessian matrix using ARPACK [31].
The DOVS is then calculated as D(ω) = 〈∑l δ(ω − ωl)〉/dN ,
where ωl is the frequency of the lth normal mode of vibration,
〈.〉 denotes the average over configurations, and the sum is
over all modes.

III. RESULTS

In this work, we are mainly concerned about the solidifica-
tion in the σ − φ plane at T = 0. If not specified, results are
shown for N = 1024 harmonic systems in two dimensions.
We will also show (and specify) results of system size effects,
Hertzian systems, and three-dimensional harmonic systems to
generalize our major findings.

A. Shear-induced solidification

We vary the strength of attraction μ from 10−2 to 10−6,
approaching the zero attraction limit. Figure 1(a) shows the
probability P0(φ) of finding solidlike states for different values
of μ by quickly minimizing the potential energy of 10 000
random states without shear. With increasing μ, P0(φ) shifts
to lower packing fractions. Employing the definition in early
work [5], we determine the jamming transition threshold φj,μ

from P0(φ). As shown in Fig. 1(b), φj − φj,μ ∼ μ1/3 in the
small μ limit, where φj ≈ 0.842. Without shear, the attraction
seems to play the role of a perturbation.

Figure 1(a) indicates that well below φj,μ, by the direct-
quench sampling without shear, it is almost impossible to
find solidlike states. Starting from unjammed states, we apply
quasistatic shear. As shown in Fig. 1(c), in the early stage of
the quasistatic shear, the system remains unjammed (σ = 0).
Interestingly, as long as the step strain �γ is small enough,
nonzero shear stress emerges and fluctuates when γ > γc,
signaling the formation of solidlike states. The solid forming
ability under quasistatic shear decreases when packing fraction
decreases, demonstrated by the growth of 〈γc〉 in Fig. 1(d),
where 〈.〉 denotes the average over independent runs of
quasistatic shear.

A similar phenomenon called shear jamming has also been
observed in packings of frictional particles [11]. For frictional

FIG. 1. (a) Probability of finding jammed states without shear,
P0(φ), for different strength of attraction μ. The lines are a guide
for the eye. (b) Critical scaling of the jamming transition threshold:
φj − φj,μ ∼ μ1/3, with the line having a slope of 1/3. (c) Stress-strain
relation of an initially unjammed state at φ = 0.60 and μ = 10−3

under quasistatic shear. The arrow points to the onset shear strain
γc at which solidlike states start to be explored. (d) Packing fraction
dependence of 〈γc〉 for different μ.

particles, jamming can happen at packing fractions lower than
φj [13,32], where both jammed and unjammed states exist.
Consequently, originally unjammed packings of frictional
spheres can jam under quasistatic shear [11]. The underlying
physics of such a shear jamming phenomenon still remains
elusive and is a hot topic in the field of granular materials
[33,34]. In comparison, the shear-induced solidification of
attractive particles illustrated in Fig. 1 may convey richer and
more complicated physics, at least because of the possible
existence of various types of solidlike states. Furthermore,
attraction and friction are intrinsically distinct in stabilizing
particles. It is interesting to know how attractive particles
behave under shear and whether their behaviors could also
shed some light on our understanding of shear jamming of
frictional particles.

B. Yield stress

During quasistatic shear, the shear stress fluctuates and
is not controllable, as shown in Fig. 1(c). To have a clear
picture of the shear stress dependence (which turns out to be
important), we instead sample shear-driven solids by a recently
developed algorithm [23,24] to well control the shear stress.
By minimizing a thermodynamiclike potential H of random
states, as introduced in Sec. II, we can quickly look for solidlike
states at desired shear stress. As shown in Fig. 1, it takes
some shear strain to find shear-driven solids. Furthermore, it
is impractical to let γ → ∞. We thus set a maximum strain
γm = 20. The search for shear-driven solids fails once γ > γm.

For each pair of φ and σ , we run 1000 independent trials and
calculate the probability of finding solidlike states P (σ,φ), as
shown in Fig. 2(a). At fixed φ, P (σ ) ≈ 1 when σ is small.
For finite size systems, P (σ ) decreases with increasing σ

near the yield stress σy [23,24,35], which we determine from
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FIG. 2. (a) Probability of finding solidlike states under applied
shear stress σ , P (σ ), at various packing fractions φ for μ = 10−3.
The horizontal dashed line labels P (σ ) = 0.5. It intersects each P (σ )
curve at σy , defined as the yield stress. The solid lines are a guide
for the eye. (b) Yield stress curves σy(φ) scaled by the strength of
attraction μ. The vertical dashed line labels φ = φrp .

P (σy) = 0.5. Figure 2(b) shows σy(φ) for different strength
of attraction μ. σy decreases with decreasing φ, and remains
nonzero down to rather low packing fractions. At fixed φ,
σy decreases when μ decreases. Interestingly, roughly below
the rigidity percolation threshold at φrp ≈ 0.689 [12], σy ∼ μ,
while it breaks down when φ > φrp. We will see later that φrp

does not happen to do so. Figure 2(b) indicates that in the small
attraction limit the attraction does not act as a perturbation
[36–40] in the presence of shear. As will be shown, the
attraction always induces multiple types of solidlike states
far below the jamming threshold and qualitatively alters the
jamming phase diagram for purely repulsive particles.

Systems at φ > φj,μ are essentially jammed without the
need of shear, which does not interest us here. The focus of
this work is on the regime of φ < φj,μ, where direct quenching
always finds unjammed states and solidlike states can be
explored with the help of shear. In the following, we will
mainly discuss shear-driven solids at φ < φj,μ. Results for
φ > φj,μ are presented just for comparison.

C. “Time step” issue of the minimization
and protocol dependence

The FIRE method that we use to find solid-like states is
based on molecular dynamics simulation, which involves a
tunable “time step” δt [30]. Because the strength of attraction μ

that we study is so small, the preset δt has to be small enough to
ensure small enough step increases of shear strain. Large step
increases of shear strain induced by a large preset δt will break
bonds and lead to the failure of finding shear-driven solids. As
shown in Fig. 3(a), at fixed packing fraction, the probability
of finding shear-driven solids P (σ ) under applied shear stress
σ increases with decreasing the initial input value of δt as
expected and becomes saturate when δt is small enough. We
always use small enough δt when calculating P (σ ).

It has been known that the critical packing fraction φj of the
jamming transition for purely repulsive particles depends on
protocols [5,18–22]. For instance, φj could vary with the rate
of compression and initial states. A relatively unbiased way to
locate φj is to quickly quench ideal gas states to local potential
energy minima and calculate the probability of finding jammed
states at fixed packing fraction, as discussed in Ref. [5] and
in Fig. 1(a). This protocol unbiasedly samples the inherent

FIG. 3. (a) Evolution of probability of finding shear-driven solids
P (σ ) with the initial input value of “time step” δt required by the
FIRE method, for systems at φ = 0.80 (μ = 10−3). The lines are a
guide for the eye. (b) Shear strain γ evolution of the shear stress
σ under quasistatic shear of a system at φ = 0.70 (μ = 10−3). The
initial state at γ = 0 is unjammed. Shear-driven solids are formed
after γ = γc (black curve), as pointed by the arrow. The system is
sheared backwards to γ = 0 (red curve) after γ reaches 0.9. The
inverse direction of the shear leads to negative values of the shear
stress.

structures [19], which do not encounter the compression rate
or route dependence.

In this work, we employ the same protocol to sample
shear-driven solids at fixed packing fraction φ and shear stress
σ , by minimizing the thermodynamiclike potential H . We
estimate the probability of finding shear-driven solids P (σ )
and determine the yield stress from it. Therefore, each data
point on the yield stress curve σy(φ) shown in Fig. 2(b) results
from the direct sampling of the configurational space under
the constraint of constant packing fraction and shear stress. It
has nothing to do with the route approaching yielding, e.g.,
along constant packing fraction or along constant shear stress.

We have to acknowledge that, if we approach the yield stress
by successively compressing (decompressing) states at fixed
shear stress or decreasing (increasing) shear stress at fixed
packing fraction, the yield stress may show route dependence.
This route dependence should be a quite interesting issue to
attack, which is out of the scope of current study. We hope to
investigate it in detail in follow-up studies. The presence of
attraction may lead to more complicated protocol dependence
than purely repulsive systems. As demonstrated in Fig. 3(b),
under quasistatic shear, an initially unjammed state with
attraction evolves into solidlike states when the shear strain γ

is greater than the threshold value γc. When we quasistatically
shear the system backwards, the system cannot return to the
unjammed state, but remains rigid. This hysteresis results from
the presence of attraction and implies the possible complexity
of the protocol dependence, which has also been observed in
the same system under compression and decompression [12].

D. Shear stress and packing fraction dependence

Figures 4(a)–4(f) are configurations with force network of
shear-driven solids at different packing fractions and shear
stresses. At φ 	 φj,μ, attraction (red bonds) dominates and
the states look gel-like with fractal structures. Slightly above
φj,μ, the structure looks uniform and particle interactions
are predominantly repulsive (blue bonds). In between, with
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FIG. 4. (a)–(f) Snapshots, (g)–(i) static structure factor S(q), and (j)–(l) DOVS D(ω) for solidlike states (μ = 10−3) driven by different
shear stresses and at different packing fractions: φ = 0.60 (top row), 0.75 (middle row), and 0.84 (bottom row). For (a)–(c), σ = 10−6 (well
below the yield stress), while for (d)–(f) σ = 6 × 10−6, 2 × 10−5, and 2 × 10−4, respectively, which are all near the yield stress. The red (blue)
lines in (a)–(f) are attractive (repulsive) interactions, with the thickness illustrating the strength. To have a better vision, we normalize the
interaction strength by the maximum value for every snapshot. The shear stress values of the D(ω) curves are listed in the legend of the S(q)
panels to the left.

increasing packing fraction, the structure evolves from gel-like
to jamminglike.

Figures 4(g)–4(i) demonstrate the packing fraction and
shear stress evolution of the static structure factor S(q). The
structure is almost independent of shear stress, while it evolves
strongly with packing fraction. At φ 	 φj,μ, the low q part
of S(q) exhibits the typical gel-like feature S(q) ∼ q−df with
df � 2 being the fractal dimension [41]. The low q part of S(q)
moves down with increasing packing fraction, and eventually
becomes flat (jamminglike feature [42–44]) near φj,μ.

Purely from the packing fraction evolution of S(q), we
cannot determine the boundary between gel-like and glass or
jamminglike states. Note that the solidlike states are shear
induced. Although the structure is insensitive to the change
of shear stress, other quantities may exhibit shear stress
dependence and provide useful information to distinguish
states. Comparing states at the same packing fraction but
different shear stresses [e.g., Figs. 4(b) and 4(e)], we can
tell that the shear stress indeed remarkably affects the force
network: More particles interact and repulsion plays a more
important role with increasing shear stress.

Resulting from significant changes in the force network,
vibrational properties of shear-driven solids exhibit strong
shear stress dependence. Figures 4(j)–4(l) show the shear
stress evolution of the DOVS, D(ω). When φ > φj,μ, applying
shear stress only weakly affects the force network and elastic

properties [23,24]. As shown in Fig. 4(l), D(ω) at different
shear stresses overlap. Interestingly, Figs. 4(j) and 4(k) show
that D(ω) has strong shear stress dependence when φ < φj,μ.
For solidlike states induced by small shear stresses, there is
a low-frequency peak in D(ω), indicating the aggregation of
soft modes. With increasing shear stress, the peak moves down
and to higher frequencies, implying the decrease of the amount
of soft modes and that shear-driven solids become stiffer and
more stable.

At all packing fractions below φj,μ, the motion of the
low-frequency peak in D(ω) with the change of shear stress
follows the same trend. However, at low packing fractions
where shear-driven solids are typically gel-like, until at the
yield stress, the peak is still present. In contrast, near φj,μ,
the peak disappears at a crossover shear stress σc < σy .
Meanwhile, D(ω) exhibits a plateau, which is actually one of
the most representative features of marginally jammed solids
of purely repulsive particles [25–27,45]. When σ > σc, the
evolution of D(ω) looks like that of marginally jammed solids
under compression, but here the shear stress is the driving force
instead of the packing fraction.

For marginally jammed solids, the flattening of D(ω)
is associated with isostaticity [25–27,45], i.e., the average
coordination number z = zc = 2d with d being the dimension
of space. Is the emergence of the plateau in D(ω) at σc also
related to isostaticity?
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FIG. 5. Left column: Shear stress dependence of the average
coordination number z(σ ) for shear-driven solids (μ = 10−3) at
φ < φj,μ. At each packing fraction, the blue (red) symbols denote
data below (above) the crossover shear stress σc and with (without)
low-frequency peak in the DOVS. The horizontal and vertical dashed
lines label z = zc and σ = σc. Right column: Jamming phase diagram
for weakly attractive particles (μ = 10−3) at T = 0. The circles and
diamonds are the yield stress σy(φ) and crossover shear stress σc(φ),
respectively. The solid and dashed vertical lines are φ = φj,μ and
φ = φrp . F, SJ, SG, I, and J denote regimes of flowing (white), shear
jammed (red), shear gel like (blue, φ < φrp), intermediate (blue,
φrp < φ < φj,μ), and jammed (gray, φ > φj,μ) states, respectively.
The top, middle, and bottom panels are for two-dimensional harmonic
(zc = 4, σc ≈ 1.2 × 10−5), two-dimensional Hertzian (zc = 4, σc ≈
7.1 × 10−7), and three-dimensional harmonic systems (zc = 6, σc ≈
2.3 × 10−5), respectively, all with N = 1024. Note that the rigidity
percolation packing fraction is φrp ≈ 0.524 in three dimensions.

E. Isostaticity and strictly defined shear jamming

Figure 5(a) shows the shear stress evolution of the average
coordination number (rattlers excluded) at φ < φj,μ. When
the shear stress is small, there is a plateau in z(σ ). The plateau
value approaches zc from below with increasing packing frac-
tion. Approaching the yield stress, the coordination number
grows quickly and collapses onto a master curve. In each
z(σ ) curve, data points at σ < σc and with the low-frequency
peak in D(ω) are denoted by blue symbols, while red symbols
represent data at σ > σc. Surprisingly, z = zc = 4 is exactly
the boundary between two colors, indicating that isostaticity
is indeed coupled to the flattening of D(ω) at σc. Moreover,

the collapse of all data at z > zc implies that the value of σc is
independent of the packing fraction.

Now we see that solidlike states driven by a shear stress
greater than σc possess important features of marginally
jammed solids, such as z > zc and jamminglike D(ω). It is
thus plausible to strictly define them as shear jammed solids.
The transition into shear jamming is driven by the shear stress,
which resembles the jamming transition of frictionless and
purely repulsive particles driven by the packing fraction, but
now a critical-like point at φj is replaced by a range of packing
fractions.

F. Jamming phase diagram

Our major findings lead to the jamming phase diagram
for weakly attractive particles in the σ -φ plane at T = 0.
Figure 5(b) is an example of the diagram for μ = 10−3.

Strictly defined shear jamming (SJ) is encircled by φ =
φj,μ, σy(φ), and σ = σc. Interestingly, σ = σc intersects σy(φ)
roughly at the rigidity percolation threshold φrp. As mentioned
earlier, solely from S(q), it is hard to determine the crossover
packing fraction to separate gel like states from jamminglike
states. Now that SJ states only exist at φ > φrp, together
with the evidence shown in Fig. 2(b), φ = φrp is a plausible
candidate of such a crossover.

Shear-driven solids lying below σ = σc share some com-
mon features, e.g., existence of the low-frequency peak in
D(ω), z < zc, and attraction dominant, although they cover
a wide range of packing fractions and exhibit progressive
packing fraction evolution of the structure. States between
φrp and φj,μ are particularly interesting. They have similar
structures to shear jammed states but resemble shear gel like
states at φ < φrp in mechanical and vibrational properties. We
tentatively name them as intermediate states. The existence of
intermediate states can only be found by the careful study of
the shear stress dependence. It also warns us about the danger
to identify various types of amorphous solids from structure
[41] or vibrational properties [46] alone.

In order to verify that our major findings are not limited
to specific potential and to two dimensions, in Figs. 5(c)–
5(f), we show z(σ ) and the jamming phase diagram for
two-dimensional Hertzian systems and for three-dimensional
harmonic systems, respectively. Our major findings hold for
all these systems.

G. Finite size effects

One may wonder if the existence of the SJ region discussed
with the jamming phase diagram is a finite size effect. For
purely repulsive particles, previous studies have shown that
small size systems can jam below the critical packing fraction
φj of the jamming transition. However, as an example shown
in Fig. 1(a), the probability of finding jammed states in the
absence of shear with μ = 10−3 is statistically zero when φ <

0.81, while SJ states still survive below φ = 0.70. Therefore,
attraction and shear stress are both essential to the formation
of SJ states, which is not simply due to finite size effects
discussed above.

It has been shown that the yield stress of jammed solids of
purely repulsive particles decreases with increasing system
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FIG. 6. (a) System size dependence of the yield stress σy(φ) for
harmonic particles with μ = 10−3 in two dimensions. The horizontal
solid lines label the crossover shear stress σc. The dashed lines are
a guide for the eye. (b) System size scaling of �σ = σy − σc, i.e.,
the shear stress gap between the yield stress σy and σc in which SJ
states exist, at φ = 0.75 (circles) and 0.80 (squares). The solid lines
are power-law scaling fits to the data: �σ − �σ∞ ∼ N−1, where
�σ∞ = 2.26 × 10−6 (6.90 × 10−6) for φ = 0.75 (0.80).

size and approaches a limiting value in the large system
size limit [23,24,43]. Figure 6(a) shows that the yield stress
of shear-driven solids with attraction also decreases with
increasing system size. For all system sizes studied, we find
that the crossover shear stress σc at which shear-driven solids
are isostatic and have a flattened density of vibrational states
is constant in packing fraction. With increasing system size,
σc decreases as well, but σc(φ) and σy(φ) always intersect
approximately at φ = φrp ≈ 0.689, so the density interval for
SJ states to exist seems almost insensitive to the change of
system size. In Fig. 6(b), we show the system size dependence
of �σ = σy − σc for SJ states at two different packing
fractions. �σ at both packing fractions can be well fitted with
the same power-law scaling: �σ − �σ∞ ∼ N−1, where �σ∞
is the extrapolation in the N → ∞ limit. At both packing
fractions, �σ∞ > 0. Therefore, our results suggest that SJ
regime does not vanish in large systems.

IV. DISCUSSION AND CONCLUSIONS

In summary, in the presence of weak attraction, athermal
solidlike states are explored by shear over a wide range of

packing fractions below the jamming transition. Our careful
study of the packing fraction and shear stress dependence re-
veals that the static structure of shear-driven solids is sensitive
to the change of packing fraction, but not to shear stress. In
contrast, the DOVS and force network evolve unexpectedly
and progressively with shear stress. The strong shear stress
dependence enables us to determine strictly defined shear
jamming and construct a jamming phase diagram in the σ -φ
plane.

As shear stress increases, the rigidity of shear-driven solids
at φ < φj,μ increases, reflected in the decay of soft modes and
increase of the coordination number and elastic moduli (not
shown). In contrast, increasing shear stress slightly softens
jammed solids well above φj,μ. This opposite behavior on
both sides of φj,μ is analogous to that of thermal systems:
With increasing temperature, glasses are hardened below the
jamminglike transition, while slightly softened above [47,48].
Therefore, we provide evidence supporting that the shear stress
can have similar effects as the temperature on transitions
between liquidlike and solidlike states and properties of
amorphous solids [49,50], as proposed by the original jamming
phase diagram [1].

Our work is relevant to experimental systems like granular
materials and non-Brownian colloids. For colloidal systems
with Brownian motion, how temperature affects shear-induced
solidification is interesting to attack next. Both the thermal
motion and shear can harden systems at φ < φj,μ. It is quite
interesting to figure out whether and how they may compete
or help each other to induce unpredictable results in dynamics
and phase behaviors.
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