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Theory that predicts the phase behavior of interacting Yukawa spheres in a solution containing nonadsorbing
polymer is presented. Our approach accounts for multiple overlap of depletion zones. It is found that additional
Yukawa interactions beyond hard core interactions strongly affect the location and presence of coexistence regions
and phase states. The theoretical phase diagrams are compared with Monte Carlo simulations. The agreement
between the two approaches supports the validity of the theoretical approximations made and confirms that, by
choosing the parameters of the interaction potentials, tuning of the binodals is possible. The critical end point
characterizes the phase diagram topology. It is demonstrated how an additional Yukawa interaction shifts this
point with respect to the hard sphere case. Provided a certain depletant-to-colloid size ratio for which a stable
colloidal gas-liquid phase coexistence takes place for hard spheres, added direct interactions turn this into a
metastable gas-liquid equilibrium. The opposite case, the induction of a stable gas-liquid coexistence where only
fluid-solid was present for hard spheres, is also reported.
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I. INTRODUCTION

A colloidal dispersion can be regarded as a collection
of big atoms [1,2]. This colloid-atom analogy was used
by Einstein in his theory for Brownian motion of particles
suspended in a solvent [3]. The later experimental verification
by Perrin [4] of the colloidal barometric height distribution
following Boltzmann’s law constituted the starting point of
systematic studies on the dynamics and equilibrium properties
of colloidal systems [5]. The effective interaction between
colloidal particles mediates the physical properties of a
colloidal dispersion, the hard sphere (HS) model being the
simplest and widely used approach [6–8].

Perrin’s colloid-atom analogy also holds for the phase
behavior. In fact, nanoparticle dispersions exhibit the same
phase states as those found in atomic systems (i.e., gas,
liquid, and solid). Colloidal interactions beyond the pure
hard-core interaction influence the topology of the phase
diagram [9]. Attraction between the colloidal particles can
induce instability of the fluid phase, leading to a dilute fluid
(colloidal gas, G) coexisting with a denser fluid (colloidal
liquid, L). For a range of attraction greater than 1/3 of the
particle diameter, G-L coexistence can be stable [10–13]. The
phase behavior of a colloidal dispersion can be tuned, for
instance, by adding nonadsorbing polymers. This leads to an
effective attraction between the colloidal particles, as shown by
Asakura and Oosawa [14]. The strength and range of attraction
between nanoparticles can be controlled via the depletant
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concentration and the depletant-to-colloid size ratio (qD). The
depletion interaction is used to rationalize both fundamental
as well as practical issues [15–19].

Two different regimes for depletion interaction can be
distinguished. For qD � 0.15 a collection of spheres mediated
by depletants is pair-wise additive [20]. Otherwise, multiple
overlap of depletion zones needs to be accounted for. The
thermodynamical consequences of assuming pair-wise addi-
tion in the latter case have been analyzed and discussed in
detail [20,21]. Describing the mixture by an effective pair-
potential approach has been widely applied [21–27]. Contrary
to the usually complex or computationally based approaches
followed, the method reported here is simple, yet accurate, and
constitutes a systematic tool for predicting phase diagrams of
colloid-polymer mixtures. Moreover, the theory accounts for
multiple overlap of depletion zones.

Much attention has been paid to the phase behavior
of HS plus depletants [9,20,28–31] when multiple overlap
of depletion zones occurs (qD � 0.15). However, limited
theories are available for dispersed colloidal particles with
realistic interactions and added free polymers (acting as
depletants). Available approaches focused on short-range
repulsive colloids [16,32–35]. In real systems, more involved
(soft) interactions are often present. For example, in paint and
food dispersions, particles are often charged and/or partially
(de)stabilized by adsorbing polymers [36].

We show in this work how additional direct interactions
between the colloidal particles dramatically modify the
thermodynamic equilibrium of the colloid-polymer mixture.
The direct interactions between the spherical colloidal
particles are described via hard-core Yukawa potentials
[37–40] (HCYs). The nonadsorbing polymers are treated as
penetrable hard spheres [41] (PHSs). In the results section,
phase diagrams of HCY spheres in a sea of PHSs are presented
and compared with Monte Carlo (MC) simulations. It is
shown how additional direct interactions dramatically modify
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the topology of the phase diagrams, as well as the location of
the phase transition lines within the theoretical framework of
free volume theory (FVT) [10].

II. THEORY

The present section summarizes the tools required
for the calculation of the thermodynamic properties of
colloid-polymer mixtures, which are used to calculate phase
diagrams. The main modification with respect to the theory
for HS plus depletants [10] is presented to some extent, while
further details are shown in the Appendixes. Furthermore, the
pair potentials used as input for the MC simulation are also
introduced.

A. Pair potentials and second virial coefficient

The interaction potential between colloidal spheres is
described in this research via a hard-core plus Yukawa (HCY)
[40,42] attraction or repulsion. The Yukawa interaction enables
us to mimic a wide range of interactions, since both the
range and strength can be tuned: it could represent, for
instance, a screened double layer repulsion or a Van der
Waals attraction between the colloids [32,43–45]. Since the
focus is on the effect of the direct interaction (the additional
Yukawa interaction) on the phase behavior of colloid-polymer
mixtures, the depletants are treated in the simplest way.
Hence, the depletants are described as penetrable hard spheres
(PHSs): they do not interact with each other, but have a
hard-core repulsive interaction with the colloidal spheres.
The PHS approximation can be used to describe depletion

effects of dilute polymer solutions. The method developed can,
however, be extended towards polymers in θ and good solvent
conditions at elevated concentrations [34,46–51].

Due to radial symmetry of all interaction potentials, it is
convenient to work with the dimensionless distance between
the centers of two colloidal spheres x = r/σ , with r the center
to center distance and σ the HS diameter (σ = 2R, with R the
HS radius). The depletion thickness is δ, which is identified
here with the PHS radius. Furthermore, the relative range of the
Yukawa interaction is characterized by qY = 2/κσ = 1/κR,
with screening length κ . When the Yukawa interaction mimics
a double layer repulsion, its screening length is related to the
salt concentration and dielectric properties of the solvent. The
depletant to colloid size ratio qD = δ/R defines the relative
range of the depletion interaction.

The HCY pair potential between the colloidal spheres is
written in terms of x, qY , and ε, and normalized by the factor
β = 1/(kBT ) (with kB the Boltzmann’s constant and T the
temperature):

βUHCY(x; qY ,ε) =
{∞, x < 1

− βε

x
exp

[− 2
qY

(x − 1)
]
, x � 1

. (1)

In order to calculate the phase equilibria it is convenient to
consider the colloid-polymer mixture to be in equilibrium with
an external reservoir that does not contain colloidal particles.
In this reservoir, as explained in the next subsection, the PHS
concentration (φR

d ) fixes the fugacity of the depletants. In
this way the PHSs lead to an effective depletion attraction,
expressed in Eq. (2) in terms of qD and φR

d [41]:

βUD
(
x; qD,φR

d

) =
⎧⎨⎩

∞, x < 1

−φR
d

(
1

qD
+ 1

)3[
1 − 3

2
x

qD+1 + 1
2

(
x

qD+1

)3]
, 1 � x � 1 + qD

0, x > 1 + qD

, (2)

The strength of the Yukawa potential is set by the
(dimensionless) contact potential ε, defined such that ε > 0
implies a HCY attraction and ε < 0 a HCY repulsion. For
ε = 0 the HCY reduces to the HS interaction. Similarly, the
strength of the depletion potential depends on the relative
polymer concentration in the external reservoir, φR

d . When
φR

d = 0 the depletion pair potential reduces also to the HS
one. Some insight into the total interaction potential can be
obtained by taking the sum of the HCY and depletion contri-
butions (superposition approximation): UT(x; qD,φR

d ; qY ,ε) =
UD(x; qD,φR

d ) + UY (x; qY ,ε). The quantity UT provides
insight into the governing forces between the colloidal spheres
that determine the dispersion stability. Figure 1 presents the
depletion, HCY, and total potentials for two different sets of
parameters with the same |βε|. Note how the (local) attractive
or repulsive nature of UT sensitively depends on the key
parameters {qD,φR

d ,qY ,ε}. It should be also clarified that this
pair potential does not account for the multibody nature of the
depletion interaction [21,28,52,53].

Depending on the particular values for the additional
Yukawa potential considered, the effective excluded volume

between colloidal particles increases (repulsions) or decreases
(attractions) with respect to the hard sphere case. Such effect is
accounted for in the second osmotic virial coefficient (B2). Its
general expression in spherical coordinates can be simplified
for potentials that are hard core within the colloidal sphere’s
volume using the dimensionless distance x:

B2(x)/vc = 4 + 12
∫ ∞

1
x2(1 − exp[−βU (x)])dx, (3)

where the colloidal sphere volume vc has been introduced
(vc = πσ 3/6). This leads to higher (repulsions) or lower
(attractions) B2 with respect to the hard sphere case (BHS

2 =
4vc). As for the pair potentials, the excluded volume depends
on the total set {qD,φR

d ,qY ,ε} (as can be seen in Fig. 2). It is
further convenient to define the effective excluded volume per
colloidal particle volume as B∗

2 = B2/vc.
For attractive interactions, the Vliegenthart-Lekkerkerker

(VL) criterion [12] states that at the colloidal gas-liquid critical
point B2 has a unique value:

B2(CP) = −6vc → B∗
2 (CP) = −6. (4)
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FIG. 1. Hard-core Yukawa (HCY) attractive and repulsive poten-
tials, depletion potential, and visualization of the polymer to colloid
size ratio (qD) for the sets {qD,φR

d ,qY ,βε} = {0.4,0.4,0.25,0.5} (at-
tractive HCY) and {qD,φR

d ,qY ,βε} = {0.4,0.4,0.25,−0.5} (repulsive
HCY). Grey area represents the inner-colloid hard-core potential
(hard sphere). The superscript in UT holds for the nature of the
Yukawa interaction.

However, it has been recently reported that the VL criterion
does not hold when considering the gas-liquid (G-L) critical
point (CP) for spherical particles that attract one another via
the depletion interaction [53]. This effect is re-evaluated in
here in view of the results presented for the phase behavior.
Furthermore, B2 is also studied for repulsive HCY spheres in
a sea of polymeric depletants.

B. Basic elements of free volume theory (FVT)

Free volume theory (FVT) is used here for the calculation of
the phase diagrams of mixtures containing colloidal particles
and depletants in a background solvent. Within this theory,
a system (S) is considered at given temperature and held

FIG. 2. Second osmotic virial coefficient per particle volume (B∗
2 )

as function of depletant concentration (φR
d for {qD = 0.4,|βε| = 0.5})

for a collection of qY . Dashed curves correspond to attractions while
solid ones to repulsions.

in osmotic equilibrium with a reservoir (R). System and
reservoir are separated by a hypothetical membrane permeable
to the depletants and the solvent but impermeable to the
colloidal particles. The system of interest contains colloidal
particles, depletants, and solvent, while the reservoir only
contains solvent and depletants. This establishes the semigrand
potential 
(Nc,V,T ,μd ) that depends on the temperature (T ),
the depletant chemical potential (μd ) and the number of
colloidal particles (Nc) in a volume V . The grand potential
can be split into a canonical contribution plus a contribution
arising from the presence of depletants, which is related to φR

d :


(Nc,V,T ,μd )

= F (Nc,V,T ) +
∫ μd

−∞

(
∂
(Nc,V,T ,μ∗

d )

∂μ∗
d

)
dμ∗

d , (5)

where F (Nc,V,T ) is the Helmholtz free energy of the
suspension of interacting colloidal particles in S in the absence
of depletants [so, formally, F = F (Nc,V,T ; qY ,ε)].

As in R only depletants are present, φR
d fixes the depletant

activity (hence the state). The chemical potential of the deple-
tants in the reservoir and in the system are equal in equilibrium.
The colloid-depletant mixture (S) is characterized by the
colloid packing fraction (η) and the depletant concentration
in the system (φS

d ). The state of S depends on the particular
interaction between the colloids, the colloidal packing fraction
and the depletant concentration.

As established in original FVT, (i) the depletants are ideal
(no interactions between them), and (ii) the available free
volume in S for the depletants does not depend on φS

d (the
depletant concentration in the system).

This allows rewriting the semigrand potential 
 in dimen-
sionless units:


̃(Nc,V,T ,μp; qD,qY ,ε)

= F̃ (Nc,V,T ; qY ,ε) − α(η; qD,qY ,ε)�̃R, (6)

with


̃ = β
vc/V ; F̃ = βFvc/V ;

�̃R = β�vc; η = Nvc/V,

where α is the free volume fraction for the depletants in S,
�̃R is the osmotic pressure of depletants in R. The tilde over
the magnitude indicates dimensionless units. The chemical
potential of the colloidal particles (μ̃c) and the total osmotic
pressure of colloidal particles plus depletants in the system
(�̃T ) follow (in dimensionless units) as

μ̃c = (∂
̃/∂η)�̃R,T ,V , �̃T = ημ̃c − 
̃. (7)

Note here that μ̃c relates to the chemical potential of different
colloidal phases in S, as colloidal particles do not trespass the
fictional membrane. Since the depletants behave ideally, the
osmotic pressure in R (�̃R) follows van’t Hoff’s law:

�̃R = φR
d q−3

D . (8)

The depletant concentration in the system (φS
d ) is defined in

terms of the free volume fraction (α) and the concentration in
the reservoir as

φS
d = α(η; qD,qY ,ε)φR

d . (9)
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This free volume fraction and the HCY contributions to FVT
are quantified in Appendixes A and B respectively.

C. Calculation binodals and critical end point

Provided that all contributions to the grand-canonical
potential 
̃ are known (see Appendixes A and B), calculation
of phase diagrams of HCY interacting colloids plus PHSs
using FVT is possible. A phase diagram may contain various
characteristic quantities defined below. The limiting value of
the colloidal gas-liquid (G-L) coexistence is characterized by
the critical point (CP), which satisfies

∂μ̃F

∂η
= ∂2μ̃F

∂η2
= 0 ↔ ∂�̃T

∂η
= ∂2�̃T

∂η2
= 0, (10)

where μ̃ and �̃T are the chemical potential and the osmotic
pressure of the colloidal suspension. The triple point (TP) at
which colloidal gas and liquid phases coexist with a solid phase
satisfies the conditions

μ̃G = μ̃L = μ̃S and �̃G = �̃L = �̃S. (11)

Phase coexistence binodals are defined by the family of points
that satisfy

μ̃i = μ̃j and �̃i = �̃j , (12)

with {i,j} the colloidal solid (S), liquid (L), gas (G), or fluid
(F) phase.

For sufficiently short-range attractions, G-L coexistence
is metastable [10,11]. The critical end point (CEP) marks
the critical point that coincides with the triple point [13,50],
defined by

μ̃F = μ̃S and �̃F = �̃S, and
(13)

∂μ̃F

∂η
= ∂2μ̃F

∂η2
= 0 ↔ ∂�̃F

∂η
= ∂2�̃F

∂η2
= 0.

III. RESULTS AND DISCUSSION

This section focuses on the phase diagrams obtained for
mixtures of HCY spheres and PHSs. First, the binodals for
colloidal HS in a sea of PHSs are recalled, as a point of
reference for later phase diagrams. Subsequently, the effect of
added Yukawa interactions on phase diagrams is discussed.
Phase coexistence is considered for variable ranges and
strengths of the Yukawa interaction and depletant to colloid
size ratios. Further, the CEP that characterizes the topology
of the phase diagram and its dependence on the additional
Yukawa interaction are reported. The value of the second
osmotic virial coefficient at the CP is discussed for both
attractive and repulsive HCY spheres plus depletants. Finally,
the phase diagrams predicted using FVT are compared with
MC simulation results.

A. Phase diagram for hard spheres in a sea
of penetrable hard spheres

In Fig. 3, FVT phase diagrams for mixtures of HS and PHS
for a wide range of qD values are presented. In the absence
of depletants, F-S coexistence is found for η ∈ {0.49,0.55}
as computed from the fluid [Carnahan-Starling (CS)] and
solid [Lennard-Jones-Devonshire (LJD)] equations of state,

FIG. 3. Phase diagrams for mixtures of hard spheres plus
penetrable hard spheres for a wide range of qD values between
0.05 and 1. The cases qD = 0.1 and qD = 0.6 are compared with
simulation results (squares, taken from [28]). The relative depletant
size qD from qD = 0.05 (lowest curve) to qD = 1 (highest curve)
as qD,i = qD,i−1 + 0.05). Crosses refer to the critical points when
G-L coexistence is thermodynamically stable (qD � 0.33). See
Appendix E for three-dimensional (3D) representation of this plot.

in close agreement with computer simulations [54]. Colloidal
G-L phase coexistence is obtained for φR

d values above
the critical point and is characterized by a characteristic
U shape. For short-range depletion attractions (qD � 0.33)
only colloidal fluid-solid (F-S) coexistence is observed. Then
the G-L coexistence is metastable. For long-range depletion
attractions (qD � 0.33), colloidal G-L coexistence can take
place. The transition between these two regimes is defined
by the critical end point (CEP) [13,50], as discussed later in
this paper. Two binodal curves are compared with simulation
results as an illustration of the accuracy of FVT [28]. These
phase diagrams constitute the reference for the ones in the next
sections, where added Yukawa interactions are accounted for.

B. Yukawa contributions to FVT

Before presenting phase diagrams of mixtures of HCY
interacting spheres in a sea of PHSs, the influence of the
added Yukawa interaction on FVT is discussed. As shown in
Fig. 4, added Yukawa attractions lower the osmotic pressure �̃

of the colloidal dispersions while repulsions increase �̃ with
respect to the pure HS interaction. This can be explained by the
fact that an additional weak repulsion increases the effective
excluded volume of the colloidal particle [32]. An inverse
effect is expected for weak attractions. This has a significant
influence on the stability of G-L and F-S coexistence regions,
inducing different topologies with respect to the HS of the
phase space at given set of interaction (qD,qY ,ε).

In Fig. 5 the free volume fraction α for depletants in a
suspension of HCY spheres is plotted for different colloid-
polymer size ratios (qD). Results are shown for HS and for
both attractive and repulsive HCY spheres. The difference in α

between HS and HCY is small, but increases with qD and with
increasing strength (|ε|) of the Yukawa interactions. Further
effects are quantified in Appendix B.
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FIG. 4. Dimensionless osmotic pressure of the fluid phase of
hard-core Yukawa fluids for a contact potential ε = 0.5 (attractive,
dashed curves) and βε = −0.5 (repulsive, solid curves) for a
collection of qY . Inset plot holds for the solid phase on a logarithmic
scale. Thick dashed black curve holds for the pure hard sphere fluid
(CS) and solid (LJD) equations of state.

C. Complete phase diagrams and critical points

In this section, phase diagrams are presented for colloidal
spheres with HCY interaction plus PHS. As expected from the
pair potentials (see Fig. 1), the key parameters that determine
phase coexistence are the strength (βε) and range (qY ) of
the attractive or repulsive HCY interaction, the depletant
concentration (φR

d ), and the relative size of the depletant (qD).
In Fig. 6 phase diagrams calculated for a long-range

Yukawa interaction (qY = 2) combined with short-range de-
pletion attraction (qD = 0.15) are presented. For repulsive
HCY interactions (solid curves) there is only F-S coexistence
and the coexistence points are located at higher values of φR

D

as the repulsions become stronger (increasing |βε|). There is
G-L coexistence for this combination of {qY ,qD} when the

FIG. 5. Free volume fraction α for PHSs in a suspension of HCY
spheres (color curves) compared to α for PHS in a HS suspension
(black dotted curves) using SPT for qY = 1.0 and |βε| = 0.5 for a
collection of qD . Dashed curves hold for attractions (ε = 0.5), and
solid ones for repulsions (βε = −0.5).

FIG. 6. Phase diagrams in the {η,φR
d } phase space for hard-core

Yukawa spheres plus penetrable hard spheres as predicted via
FVT for long-range Yukawa interaction (qY = 2) and short-range
depletion interaction (qD = 0.15) for the contact potentials (|βε|)
indicated. Solid curves hold for Yukawa repulsions, and dashed curves
correspond to Yukawa attractions. Thick dashed black curve holds for
ε = 0.

attractions are strong enough (βε > 0.25). Such G-L coexis-
tence leads to a narrow liquid window for (βε = 0.5), and for
higher contact potentials the whole phase space gets unstable
(demixing). While HCY repulsions hardly affect the F-S phase
in {0.49 � η � 0.55}, additional HCY attractions broaden this
F-S coexistence region. Although obvious (but often ignored),
it is concluded here that added direct repulsions between
colloidal spheres stabilize (widen) the stability regions of
colloid-polymer mixtures while direct attractions decrease the
stable regions.

Phase diagrams obtained as a result of long-range deple-
tion (qD = 1) and short-range HCY interactions (qY = 0.15)
are presented in Fig. 7. Independently of the strength and
nature of the HCY interaction, the characteristic U shape
of G-L coexistence is always present for the combination
{qD,qY } = {1,0.15}. There is a remarkable increase of the
width between the two vertical curves corresponding to the
F-S coexisting phase at low φR

d when direct attractions are
incorporated (i.e., the HS F-S coexistence broadens due to
added direct attractions). Even though the Yukawa attraction
is short-ranged, the binodals are shifted tremendously. The
main trends (an increased stability region for more repulsive
interactions and decreased stability for attractions) of the shifts
in the phase lines are similar to those in Fig. 6. There is always
G-L coexistence at η < 0.4 for these sets of {qY ,qD,ε} values;
see the inset of Fig. 7.

These two limiting situations indicate how additional
Yukawa interactions modify the colloid plus depletant phase
diagram with respect to the HS case. Based on the results pre-
sented above, the following scenarios are expected: colloidal
G-L coexistence is observed at relatively low |βε| when it is
present in the hard sphere case (qD � 0.33). On the other hand,
for qD � 0.33 only F-S coexisting phases are expected.

Next, different combinations of Yukawa and depletion in-
teractions are explored by systematically varying the strength
of the Yukawa interaction for two different sets of ranges
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FIG. 7. Phase diagrams in the {η,φR
d } phase space of hard-core

Yukawa spheres plus depletants described as penetrable hard spheres
for short-range Yukawa interaction (qY = 0.15) and long-range
depletion interaction (qD = 1) for the contact potentials (|βε|)
indicated. Solid curves hold for Yukawa repulsions, and dashed
curves correspond to Yukawa attractions. Triangles (inset) represent
the colloidal G-L critical points. Thick dashed black curve holds for
ε = 0.

of the depletion and Yukawa interaction (Fig. 8). The most
striking observation is that the direct Yukawa interactions
change the topology of the phase diagrams with respect to
the HS case, inducing a stable G-L coexistence when only F-S
is present for HS [Fig. 8(b)] and vice versa [Fig. 8(a)]. This
topological change with respect to the HS case depends on
the particular HCY interaction. In the bottom panels of Fig. 8,
phase diagrams are presented using the depletant concentration
in the colloid-polymer mixture (φS

d ). As can be appreciated,
the topology in this phase space is significantly more sensible
when direct attractions are added as compared to the case that
direct repulsions between the colloidal particles are added.
This is in line with the experimental observation that added
repulsions between colloidal particles stabilize the suspension.

The following general trends can be withdrawn from com-
puted phase diagrams plotted in Figs. 6–8. Additional Yukawa
attractions between colloidal particles lower the depletant
concentration required for phase coexistence. This applies
independently of the nature of the coexistence phase (G-L or F-
S) and the ranges of the interactions considered. Equivalently,
added repulsions increase the required depletant concentration
for phase coexistence. The latter is in qualitative agree-
ment with computer simulations and experimental results for
charged nanoparticles in polymeric solutions [16,32,34,35].
Not surprising, the difference in the phase diagram with respect
to the HS cases is more dramatic for larger values of |βε| and
qY . Sufficiently strong, short-ranged Yukawa attractions turn
the G-L coexistence region eventually metastable, inducing a
thermodynamically stable F-S coexistence even at low colloid
volume fractions. This shows that it is possible to modify the
phase diagram topology of colloid-polymer mixtures by tuning
the Yukawa pair potential. Such tuning of the direct colloid
interactions in experimental systems can be achieved for exam-
ple by modifying the double layer repulsion [55,56] on brush
repulsion [57,58] or in near-critical solvent mixtures [59].

The width of the colloidal G-L region also varies with the
set {qD,qY ,βε}. The onset of the G-L region is marked by the
CP. It is noted that the G-L critical point can be metastable as
it might lay inside the more stable F-S coexistence phase. At
a fixed contact potential (ε), its position varies depending on
the range of the Yukawa interaction. In Fig. 9 the position of
the CP is plotted at a given |βε| for a collection of qY values.
As expected, increasing the range of repulsive interactions
increases the depletant concentration needed in order to obtain
a stable G-L coexisting phase. When extra attractions between
the colloidal particles are considered, φR

d (CP) is lowered with
respect to the HS case, as expected. This produces either a G-L
or a F-S phase coexistence, depending on the phases present
in the ε = 0 case and the strength of the contact potential. For
strong and long-ranged enough attractions, the coexistence
phase extends practically over the whole phase space. All
curves collapse at φR

d = 0, providing the qY value at which
a suspension of purely attractive-HCY spheres gets critical
at ε = 0.5 ({η,qY } = {0.15,1.66}). Note the inflexion point at
βε = 0 (HS case), which is particularly visible for small qD .

D. Critical endpoint

The main indicator of the topology of the phase diagram
is the critical end point (CEP). It has been demonstrated that
the CEP is correlated with an effective range of attraction
close to 1/3 of the particle diameter [11]. The CEP has been
determined both for HS in a sea of PHSs [50] and attractive
HCY fluids [13]. For a suspension of attractive HCY spheres
[13], the CEP is q

cep
Y (φR

d = 0) ≈ 0.26, while for HS in a sea
of PHSs, FVT provides [50] q

cep
D (ε = 0) ≈ 0.33. These values

establish a natural reference point for quantifying the effects
of added Yukawa interactions. If qD < q

cep
D , only stable F-S

coexistence takes place, given a certain Yukawa interaction
[specified via {qY ,βε}; see Eq. (1)].

In Fig. 10 binodals are presented for the set {qY ,qD} =
{0.26,0.33}, the corresponding CEP of purely attractive HCY
fluids, and HS in a sea of PHSs. The difference for HCY
spheres in a sea of PHSs with respect to the HS case is small and
follows the trends previously described. All binodals in Fig. 10
exhibit a shape of the fluid branch that is critical (or nearly criti-
cal), and a narrow G-L coexistence arises for repulsive Yukawa
interactions above |βε| = 0.5: due to combined short-ranged
indirect attractions and short-ranged repulsions, G-L coexis-
tence takes place, while it was metastable for HS plus PHSs.

The calculated CEP values are summarized in Fig. 11, and
further details are given in Appendix C.

For short-range Yukawa attractions (qY < 0.26), q
cep
D in-

creases with |βε| with respect to the HS case. Due to a
short-range direct HCY attraction that destabilizes colloidal
G-L coexistence, the range of the depletion interaction needs to
be increased in order to still achieve a stable G-L coexistence.
In contrast, if the range of the HCY attractions is long enough
(qY > 0.26), q

cep
D decreases with respect to the HS case with

increasing |ε|.
The trends observed for additional HCY repulsions are

opposite to those from Yukawa attractions. The change in q
cep
D

with respect to the HS case is less pronounced with added
Yukawa repulsions with respect to added Yukawa attractions
due to the different nature of the indirect depletion attraction
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FIG. 8. Top panels: Phase diagrams in the {η,φR
d } phase space for hard-core Yukawa spheres plus penetrable hard spheres as predicted via

free volume theory in the reservoir (top panels) and system (bottom panels) representations. For left panels, {qD,qY } = {0.4,0.25}; and for the
right ones, {qD,qY } = {0.25,1}. The contact potentials (−ε) are smoothly increased from the hard sphere case (ε = 0 to |βε| = 2). Solid curves
hold for repulsions, and dashed ones correspond to attractions. Triangles represent the G-L critical points, only plotted when G-L coexistence
is stable. Thick black long-dashed curves hold for ε = 0. Bottom panels as on top but in the {η,φS

d } phase space. See Appendix E for 3D
representation of the plots in the top panels.

and direct HCY repulsion interactions. These trends can
already be deduced from the phase diagrams presented in
Figs. 6–10.

Values of qY ≈ 0.26 result in values for q
cep
D that remain

fairly close to the one of the HS case by increasing |ε|
for both Yukawa attractions and repulsions. As expected,
φ

R,cep
d lowers with added Yukawa attractions and increases

with Yukawa repulsions. A stable G-L coexistence does not
necessarily imply the presence of a G-L critical point at
finite depletant concentration when strong and long-ranged
Yukawa and depletion attractions are combined; see Fig. 8(b)
for βε > 1 and Fig. 6 for βε > 0.25.

E. Second virial coefficient at the critical point

It is worthwhile to analyze the value of the second
virial coefficient at the critical point, given the tools for

systematically calculating the CP from FVT. In Fig. 12 the
normalized second osmotic virial coefficient (B∗

2 = B2/vc)
is plotted as a function of qD for various qY values at a
fixed contact potential (|βε| = 0.5). Especially for sufficiently
long-ranged repulsive potentials B∗

2 exceeds the HS (B∗,o
2 = 4)

value for small qD . As expected from previous research [53] the
Vliegenthart-Lekkerkerker (VL) criterion [B∗

2 (CP)VL = −6]
does not hold for a mixture of colloidal spheres and PHSs even
when the added direct attractions are sufficiently long ranged.
This is due to the indirect nature of the depletion interaction:
the VL criterion is based upon direct attractions. As expected,
indirect attractions lead to different physical behavior. As a
consequence, when qD is high enough, B∗

2 at the critical points
can be smaller than specified by the VL criterion even for
additional strong, long-ranged direct attractions (as can be
seen for qY = 1.5 in Fig. 12). Not surprisingly, low values
of qY exhibit trends closer to the HS case than high ones.
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FIG. 9. Critical G-L curves for a collection of qD for mixtures of
HCY spheres plus PHSs in the {η,φR

D} phase space (qD ∈ {0.2,1}).
Yukawa ranges of interaction are increased (qY ∈ {10−7,3}) at a
constant absolute contact potential (|βε| = 0.5). Crosses hold for
the CP of hard spheres in a sea of depletants; see crosses in Fig. 3.

As previously discussed, the range of depletion interaction
that provides a stable G-L coexisting phase (qcep

D ) at a given
contact potentials varies much more when extra attractions are
considered than for extra repulsions.

F. Comparison with Monte Carlo simulations

Finally, Monte Carlo simulation results are presented in
order to verify the theoretical FVT predictions. The free energy
of a collection of HS interacting via a depletion potential [UD,
Eq. (2)] plus a Yukawa potential [UHCY, Eq. (1)] is calculated,
using the analytical FMSA expressions as a reference for
estimating the depletion contribution to the free energy.
Contrary to the semigrand canonical theoretical approach
(FVT), the MC routine takes place in a canonical ensemble

FIG. 10. Near critical end point phase diagrams in the {η,φR
d }

phase space of hard-core Yukawa spheres plus depletants described
as penetrable hard spheres for {qY ,qD} = {0.26,0.33} for the contact
potentials indicated. Solid curves hold for repulsions, and dashed
curves correspond to attractions. Thick dashed black curve holds for
ε = 0.

FIG. 11. Relative depletant concentration in the reservoir, φ
R,cep
d ,

at the critical depletion interaction endpoint, q
cep
D , for various added

HCY interactions as predicted by free volume theory. All curves
coincide at ε = 0, the hard sphere case (black filled square).

(NVT). The details of the simulations performed and the
calculation of the free energies are presented in Appendix D.

Phase diagrams obtained using the free energies obtained
from MC simulations for HCY spheres plus the considered
depletion potential are presented as the data points in Fig. 13.
The trends observed match the ones of FVT for HCY spheres
plus PHSs (solid curves). The F-S coexistence arising from
the HS case is broader at high colloidal packing fraction than
predicted by FVT at sufficiently high {qD,φR

d }. This (most
likely) reflects to the lack of accounting for multioverlap of
the depletion zones in the MC simulations, which is accounted
for within FVT. In all cases studied, the MC-predicted phase
diagrams quantitatively match with the FVT results when

FIG. 12. Dimensionless second osmotic virial coefficient for a
collection of qY values with |βε| = 0.5. Dashed curves correspond
to attractive interactions, and solid ones to repulsive ones. Gray
dashed lines correspond to the HS [B∗

2 (HS) = 4] and the VL criterion
[B∗

2 (CP)VL = −6]. The black solid line holds for the hard spheres
plus depletants case. Inset plots presents qCEP

D as a function of qY .
Dashed curves hold for added attractions, whereas solid curves stand
for added repulsions.
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FIG. 13. Phase diagrams in the {η,φR
d } phase space for hard-

core Yukawa spheres plus penetrable hard spheres as predicted via
MC simulations for {qD,qY } = {0.4,0.25} (left), {qD,qY } = {0.25,1}
(right) for βε = −0.5 (top), ε = 0 (middle), and βε = 0.5 (bottom).
Solid black curves hold for the theoretical results. Blue crosses
correspond to F-S coexistence, and red dots to G-L coexistence. See
Appendix D for FVT-MC comparison at other βε values.

following the perturbation approach. Moreover, the results for
HS + PHSs differ from the original calculations [20], where
no G-L coexistence was found for qD = 0.4. Experimentally,
G-L coexistence has been reported for qD > 0.3 [50,60].
Future improvements of the simulation method are possible,
mainly accounting for the multibody nature of the depletion
interaction [28], without presuming the FMSA free energy
(i.e., performing two λ integrations for the free energy) or
using binary mixtures of hard-spheres and penetrable hard
spheres in a canonical or grand-canonical ensemble.

IV. CONCLUSIONS

The quantitative match between the Monte Carlo–generated
phase diagrams and those arising from free volume theory
implies that the tuning knobs that determine the phase diagram
of hard-core Yukawa (HCY) spheres in a sea of penetrable
hard spheres (PHSs) have been identified correctly within

our theoretical framework. The depletant concentration and
relative depletant size plus the range and strength of the
direct interactions allow controlling the stable phase regions
of colloid-polymer mixtures. Deviation from the hard sphere
(HS) case takes place as the direct HCY interactions become
stronger, inducing different phase coexistence regions than
those present for a pure suspension of HS in a sea of polymeric
depletants. Here we have identified how the critical end point
(CEP) is shifted due to combined interactions, leading to
values far from the pure HCY or depletion interactions. The
CEP determines the types of coexisting phases present given
a particular set interaction potentials.

In summary, the results shown in this paper pave the
way towards a better understanding of complex colloid-
polymer mixtures, providing the necessary tools required when
considering soft interparticle interactions.
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APPENDIX A: SCALED PARTICLE THEORY

Following Widom’s insertion method [61], the free volume
fraction for depletants in S can be related to W , the work
required for bringing a depletant into the colloidal suspension:

α = 〈Vfree〉
V

= e−βW , (A1)

where 〈Vfree〉 is the ensemble-averaged free volume for
depletants in S. Using the approximations made in original
FVT, 〈Vfree〉 is not affected by the presence of the depletants
and thus 〈Vfree〉 can replaced by 〈Vfree〉0, the undistorted free
volume.

The work of insertion (W ) is calculated by scaling the size
of the depletant inserted from 0 to its final size by a tuning
parameter λ (δ ↔ λδ). The actual work of insertion (λ = 1)
is calculated by connecting the λ → 0 and λ → ∞ limits via
expansion of W in a series of λ. This is the core idea of scaled
particle theory (SPT) [62–65].

In the limit λ 
 1, depletion zones do not overlap and
the volume of depletants is negligible so α only depends
on geometrical factors, hence not on the interaction potential
between the colloidal particles. This results in the following
expressions for α and W :

α(λ 
 1) = 1 − η(1 + λδ/R)3,

hence

βW (λ 
 1) = −ln[1 − η(1 + λδ/R)3]. (A2)
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In the opposite limit (λ � 1), W can be approximated as the
work required for creating a cavity of volume (4π/3)(λδ)3

against the osmotic pressure of colloidal spheres �S
c :

W (λ � 1) = 4π

3
(λδ)3�S

c . (A3)

Within original FVT, the osmotic pressure of the colloidal
suspension results from pure HS contributions. Here additional
Yukawa interactions are accounted for. As a consequence, the
total osmotic pressure of the colloidal particles is given as
�S

c = �HCY
c = �0

c + �Y
c , where �0

c and �Y
c are the HS and

additional Yukawa contributions.
The connection between the two limiting cases given in

Eqs. (A2) and (A3) provides

W (λ) = W (0) +
(

∂W

∂λ

)
λ=0

λ + 1

2

(
∂2W

∂λ2

)
λ=0

λ2

+ 4π

3
(δλ)3�S.

Taking λ = 1, multiplying with β, and using qD = δ/R gives

βW = − ln(1 − η) + 3qDy(η) + 1

2

{
6q2

Dy(η) + [3qDy(η)]2
}

+ 4π

3
R3βq3

D�S,

with

y(η) = η

1 − η
.

As �̃ = βvc�, and collecting the HS terms:

βW = − ln(1 − η) + Q(η; qD) + q3
D�̃Y (η; qY ,ε). (A4)

Inserting of Eq. (A1) into Eq. (A4) finally yields:

α = (1 − η)exp[−Q(η; qD)] exp
[−q3

D�̃Y (η; qY ,ε)
]
, (A5)

where the function Q(η; qD) arises from the hard spheres plus
depletants contribution [9,10]:

Q(η; qD) = (
3qD + 3q2

D + q3
D

)
y(η)

+
(

9

2
q2

D + 3q3
D

)
y2(η) + 3q3

Dy3(η). (A6)

The additional Yukawa interactions are accounted for in the
last term of Eq. (A5), exp[−q3

D�̃Y (η; qY ,ε)]. The quantity
�̃Y (η; qY ,ε) is expressed in Eq. (B6). SPT provides an essential
part of the information required for calculating the phase
behavior. As follows from Eq. (6), the free energy of the pure
colloidal suspension (F̃ ) is a key contribution to the grand
potential (
̃), and it is specified below.

APPENDIX B: FMSA CONTRIBUTION
TO FREE VOLUME THEORY

The free energy (F̃c) of the colloidal particles interacting
via hard-core Yukawa is described as consisting of a hard core
plus an additional Yukawa contribution [13,40]:

F̃c = F̃HCY = F̃HS + F̃Y . (B1)

The pure HS contributions to the free energy (F̃HS) are well
known [66,67]. For a fluid of HS, an accurate expression

up to η ≈ 0.5 follows from the Carnahan-Starling (CS) [67]
equations of state:

F̃ Fluid
HS = η

(
ln

η�3

vc

− 1

)
+ 4η2 − 3η3

(1 − η)2
, (B2)

while for a fcc crystalline solid phase the Lennard-Jones-
Devonshire (LJD) [66] equation of state reads

F̃ Solid
HS = 2.1306η + 3η ln

(
η

1 − η/ηcp

)
+ η ln(�3/vc),

(B3)

where ηcp = π/(3
√

2) ≈ 0.74 is the close packing fraction of
HS. The value 2.1306 derives from Monte Carlo simulations
of the pure HS system [68].

Tang et al. [37] derived an expression for the free energy
of a collection HCY spheres via a first-order mean spherical
approximation (FMSA). The HCY potential allows an ana-
lytical solution of the Orstein-Zernike integral upon using the
mean spherical closure approximation. This leads to analytical
expressions for the radial distribution function and the direct
correlation function up to first order in inverse temperature.
These expressions result in a Yukawa contribution to F̃ beyond
F̃HS (F̃ = F̃ k

HS + F̃Y , with k denoting the fluid or solid state).
Tang’s approach can be extended to Multi-Yukawa potentials,
and has been successfully applied to study the interactions
between charged colloidal particles [69] and Lennard-Jones
pair interactions [40]. This Yukawa contribution to the free
energy can be written in a van der Waals form [40,50]:

F̃Y (η; qY ,ε) = −γY (η; qY ,ε)η2,

where

γY (η; qY ,ε) = γ1(η; qY )βε + γ2(η; qY )(βε)2, (B4)

in which the functions γ1(η; qY ) and γ2(η; qY ) can be expressed
in terms of the auxiliary functions LY (η; qY ) and QY (η; qY ):

γ1(η; qY ) = 3q2
Y LY (η; qY )

(1 − η)2[1 + QY (η; qY )]
,

and

γ2(η; qY ) = 3qY

2[1 + QY (η; qY )]4
,

with

LY (η; qY ) = 1 + 2/qY + η(2 + 1/qY ),

and

QY (η; qY ) = 6η(1 − η)qY + 9η2q2
Y

2(1 − η)2

− 3ηq3
Y [1 + 2η − LY (η; qY )exp(−2/qY )]

2(1 − η)2
.

(B5)

Using Eqs. (B1) and (B4), the Yukawa contribution to the HS
osmotic pressure can be written as

�̃Y =
(

∂F̃Y

∂η

)
= −

(
2ηγY (η; qY ,ε) + η2 ∂γY (η; qY ,ε)

∂η

)
.

(B6)
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FIG. 14. Relative percentage difference between the free volume
fraction for PHSs in a HCY sphere suspension compared to the HS
case using STP for qY = 1.0 and |βε| = 0.5 for a collection of qD .
Dotted curves hold for attractions, and solid ones for repulsions.

For small values of |βε| the free energy is symmetric with
respect to the HS case (ε = 0). For large values of {|βε|,qY } the
HCY free energy becomes asymmetric due to the |βε|2 term
present in Eq. (B4). The consequences of this symmetry break
are discussed below. From the free energy of the pure colloidal
suspension, its osmotic pressure and chemical potential can be
calculated using standard thermodynamic relations:

μ̃c

(
φR

d = 0
) = (∂F̃ /∂η)T ,V , �̃c

(
φR

d = 0
) = ημ̃c − F̃c.

(B7)

In Fig. 14 the absolute percentage difference �%|αHCY −
αHS| is plotted for the same values as in Fig. 5. When compar-
ing the effects of repulsive to attractive Yukawa interactions
there is no full symmetry around the abscissa due to the
nonsymmetric Yukawa free energy defined by the FMSA [37]
[see Eq. (B4)]. Due to the lowering in osmotic pressure caused
by additional attractions (see Fig. 4), the work of insertion
lowers for bringing a depletant into the suspension and the
free volume available for the depletants increases with respect
to the HS case. Likewise, for added repulsions the free volume
for the depletants is decreased with respect to the HS case.

APPENDIX C: FURTHER DETAILS
ON THE CRITICAL END POINT

In Fig. 15 the relative depletant size at the critical end point
(qcep

D ) as a function of the contact potential (βε) is presented.
First the effect of added Yukawa attractions is discussed
(βε > 0, dashed curves). When short-range HCY attractions
are considered (qY < 0.26), the value of q

cep
D increases with

respect to the reference curve ({qY ,qD} = {0.26,0.33}). For
short-range Yukawa attractions (qY < q

cep
Y ) the relative size

of the depletants needed to achieve stable G-L coexistence
increases with βε. A combination of both short-range Yukawa
and depletion interactions broaden the F-S coexistence phase
at low colloidal volume fraction. Hence, qcep

D increases with βε

to compensate this effect. For qY > 0.26, the contact potential

FIG. 15. Relative depletant to colloid size ratio (qCEP
D ) as a

function of the Yukawa contact potential (βε) for a collection of
Yukawa ranges of interaction (qY ). Thick dashed curve holds for
{qY ,qD} = {0.26,0.33}. Inset plots zooms in the region of small |βε|.

βε necessary for achieving G-L coexistence lowers as qY

increases (qcep
D is lower with respect to the baseline at q

cep
D ≈

0.33 considered). For very long-range Yukawa attraction q
cep
D

becomes small: in this case the G-L coexistence phase extends
over practically the entire phase space (see Fig. 7 for η below
the F-S coexistence region). For very high {qY ,βε} values the
numerical solution for the CP provides a negative value of φR

d ,
which induces the large unstable coexistence region observed
for instance in Figs. 6 and 7 (dashed curves, attraction).

Second, the effect of HCY repulsions is examined. The
intricate combinations of depletion-mediated attraction and
direct Yukawa repulsion give rise to an interesting behavior.
For small values of |βε|, the following scenario is observed.
When qY < 0.26, the q

cep
D value is lowered with respect to

the HS (βε = 0) case with decreasing βε. For qY > 0.26,
the q

cep
D value is slightly higher than for the HS scenario.

FIG. 16. Relative depletant concentration at the CEP (φR,CEP
D ) as

a function of the Yukawa contact potential (βε) for a collection of
Yukawa ranges of interaction (qY ). Dashed lines correspond to values
of qY < qCEP

Y . Thick dashed curve holds for {qY ,qD} = {0.26,0.33}.
Inset plots zooms in the region of small |βε|.
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FIG. 17. Normalized total (depletion plus repulsive Yukawa)
interaction pair potential between two colloidal spheres at the critical
end point for βε = −0.5, for different qY (normalized by the contact
potential). Inset plot shows how a bigger range of repulsion increases
the total contact potential required for achieving a G-L coexistence
phase.

Upon exceeding a certain value for βε (dependent on the
particular qY considered), q

cep
D is lower again with respect

to the HS case for all qY values. Further insight about this
counterintuitive behavior is provided in Fig. 16, where the
depletant concentration in the reservoir at the CEP is plotted
as a function of βε for the same collection of qY as in
Fig. 15. The trends followed for φ

R,cep
D are straightforward.

For βε < 0, the required depletant concentration for achieving
G-L coexistence increases with qY and |βε|. Opposite to
this effect, added attractions βε > 0 make G-L coexistence
more favorable and hence take place at lower depletant
concentrations. Not surprisingly, the topology of the phase
diagrams presented (Figs. 3–10) are in concordance with the
predictions from Figs. 10 and 15. A proper analysis of the CEP

at each set of {qY ,qD,βε} provide the topology and hence main
features of the phase diagrams.

It is noted that the different trends observed around ε = 0
in Figs. 15 and 16 can be understood in terms of the symmetry
breaking of the Yukawa contribution within the FMSA
framework considered. As the free energy of the
Yukawa interaction is not symmetric with respect to βε,
none of the magnitudes that depend on this parameter are
at large values of |βε|. Moreover, as the linear terms dominate
for |βε| 
 1, q

cep
D and φ

R,cep
D are symmetric around βε = 0

for small values of |βε| (as illustrated in the insets of Figs. 15
and 16).

Further insight of the CEP is withdrawn from the nature of
the total pair interaction that allows a stable G-L colloidal
coexistence. Figure 17 presents the total potential at the
CEP for a given repulsive contact potential and varying
range of repulsion [normalized by the contact potential, as
UT (x)/U (x = 1)]. The depletant concentration and the deple-
tant to colloid size ratio increase as the range of the interaction
increases (inset of Fig. 17). This produces a lowering in
the total (attractive) contact potential as repulsions become
stronger. However, the local repulsive potential increases while
the attractions close to colloidal particle’s surface becomes
stronger. This indicates a competition between long-range
direct repulsion interaction and the indirect depletion attraction
which makes possible colloidal G-L coexistence for repulsive
colloidal particles.

In view of the computed values for the CEPs, it can be
concluded that systems with very strong repulsions (both
in range and contact potential) exhibit a G-L coexisting
phase if the depletant concentration is high enough and the
depletant to colloid size ratio is above approximately 0.33. For
added Yukawa attractions, colloidal G-L coexistence becomes
metastable at lower colloid-polymer size ratio with increasing
direct attractions (both in range and contact potential) when
the range of the Yukawa attraction is above the one of the pure
attractive Yukawa fluid.

FIG. 18. Comparison of the MC averaged free energies for HCY spheres without added depletant at a fluid (left) or solid (right) phase for
qY = 0.25 at different contact potentials (ε). Curves hold for the FMSA analytical free energy expressions: solid for repulsions, dashed ones
for attractions, and the black, long-dashed one for the HS case. Data points correspond to MC simulation results.
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FIG. 19. Phase diagrams in the {η,φR
d } phase space for hard-

core Yukawa spheres plus penetrable hard spheres as predicted via
MC simulations for {qD,qY } = {0.4,0.25} (left) {qD,qY } = {0.25,1}
(right) for βε = {−1,−0.25,0.25,1} (top to bottom); solid black
curves hold for the new theoretical results. Blue crosses correspond
to F-S coexistence, and red dots to G-L coexistence.

APPENDIX D: DETAILS ON THE MONTE CARLO PHASE
DIAGRAM CALCULATION

In a simulation box at constant volume and temperature,
a collection of 256 HS interacting via a depletion potential
(UD) plus a Yukawa potential (UHCY) was employed (NVT
ensemble). The pair potentials as specified in Eqs. (1) and
(2) were used as input for the MC routine. The simulation

approach is based on the method of Dijkstra and co-workers
[20,32,70].

A collection of {η,φR
d } state points in the phase diagram

is considered for each set of {qD,qY ,βε} (hence, the total
interaction UT is set at each state point). The free energy
of the ensemble at each {η,φR

d } is estimated using the
λ-integration method for the depletion interaction, with a
ten-point Gauss-Legendre integration (for further details of the
integration method, see [20,32,70] and references therein). The
MC simulations ran for 32 000 lattice sweeps at each λ value,
enough for the system to equilibrate in (practically) all state
points studied. The considered free energy of the system was
averaged over the last 3200 MC cycles at each state point. The
collected energy can be associated with the (dimensionless)
free energy of the system:

F̃ MC
NVT =

⎛⎜⎜⎜⎜⎜⎝
〈

Nc∑
i<j

UHCY(xij)

〉
︸ ︷︷ ︸

HCY contri.

+
∫ 1

0
dλ

Nc∑
i<j

〈UD(xij)〉︸ ︷︷ ︸
λ-inte. depletion

⎞⎟⎟⎟⎟⎟⎠
vc

VMC

1

kBT

≈ F̃HCY︸ ︷︷ ︸
Analytical

+ F̃Dep︸︷︷︸
Fit

, (D1)

where the angular brackets (〈. . .〉) indicate ensemble averages.
Even though already proven [13], we checked the feasibility
of the FMSA. In Fig. 18, the MC-averaged free energies in
the absence of depletants (φR

d = 0) are compared with the
analytical expressions. The match between the MC-averaged
free energies and the analytical FMSA expressions invites us,
indeed, to perform the λ integration only over the depletion
pair potential.

On this basis, the depletion pair-wise additive contribution
to the free energy (F̃Dep) can be estimated by subtracting the
analytical FMSA free energy (which, for HS, reduces to CS or
LJD equations of state) to the total free energy of the system:

F̃Dep ≈ F̃ MC
NVT − F̃HCY. (D2)

FIG. 20. 3D representation of the phase diagram in Fig. 3.
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FIG. 21. Left: 3D representation of the phase diagram in Fig. 8,
top panel, left. Right: the phase diagram of interacting HCY spheres
in absence of depletants.

This allows treating this depletion contribution as a pertur-
bation from the FMSA free energy, as a simple third-order
polynomial fit in η for each φR

d (provided {qD,qY ,βε}). The
chemical potential and osmotic pressure are obtained applying
standard thermodynamic to the total free energy obtained as
a sum of the FMSA free energy and the fitted depletion free
energy:

μ̃MC
c = (

∂F̃ MC
NVT/∂η

)
, �̃tot = ημ̃MC

c − F̃ MC
NVT. (D3)

It is noted that this method does not account for multiple
overlap of depletion zones [20,28], which becomes especially

FIG. 22. Left: 3D representation of the phase diagram in Fig. 8,
top panel, right. Right: the phase diagram of interacting HCY spheres
in absence of depletants. Red cross corresponds to the G-L critical
point, and green line to the triple point.

relevant for qD > 0.4 [21]. Using the same approach done
with the analytical FVT phase diagrams but in a canonical
ensemble, colloidal G-L and F-S coexistence points are
calculated from the simulation data (see Sec. III F and Fig. 19).

APPENDIX E: 3D PLOTS OF THE PHASE DIAGRAMS

In Figs. 20–22 of this short Appendix, an alternative
visualization of some of the phase diagrams is presented.
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