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Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow
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Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced,
nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations
where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display
complex, nonlinear behavior such as collective depinning and local transport via density excitations. These
phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen
this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to
the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the
critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of
important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous
systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these
incommensurate systems we find that the particle transport is dominated by density excitations resembling the
so-called “kink” solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the
corresponding “antikinks” do not move.
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I. INTRODUCTION

Understanding the nonlinear response of dense colloidal
systems to shear or other mechanical driving forces on
a microscopic (i.e., particle-resolved) level has become a
focus of growing interest. Recent examples include density
excitations (determining frictional properties) in driven col-
loidal monolayers [1–4], the stick-slip motion involved in
the transmission of torque in driven colloidal clutches [5],
as well as heterogeneities [6–9], and diverging stress- and
strain correlations [6,10] in sheared colloidal glasses. Related
complex microscopic behavior occurs in sheared granular
matter [11] and sheared suspensions of non-Brownian par-
ticles [12]. Developing a microscopic understanding of such
shear-induced behavior is interesting not only in the general
context of nonequilibrium behavior of soft-matter systems, but
also is crucial for applications in nanotribology, the design of
novel materials and of efficient nanomachines.

In the present paper we are concerned with the shear-
induced microscopic response of thin films of spherical col-
loidal particles between two planar walls (slit-pore geometry).
By using Brownian dynamics (BD) computer simulations and
an analytical approach, we aim at understanding transport
mechanisms under shear for both mono- and bidisperse
systems.

The structural behavior of colloidal suspensions in the
presence of spatial confinement is nontrivial already in equilib-
rium; in particular, it is well established that the particles spon-
taneously form layers (see, e.g., Ref. [13]), which, moreover,
become crystal-like (“capillary freezing”) in lateral directions
at sufficiently high densities [14]. Exposing such highly
correlated systems to shear flow (along a direction within
the plane of the walls) leads to a breakdown of crystalline
in-plane ordering after overcoming a “critical” shear rate, and
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a subsequent recrystallization at higher shear rates, as both
computer simulations [15,16] and experiments [17] reveal.
In two earlier publications [16,18] we have analyzed this
behavior in detail, for the exemplary case of a colloidal bilayer
(of monodisperse particles) under constant shear rate [16] or
constant stress [18] (both of these external control strategies
can be experimentally realized). One main conclusion was that
the breakdown of crystalline order is related to “depinning”
transitions in terms of the layer velocity from a locked into
a running (sliding) state [16]. In this sense, the dynamical
behavior of confined colloidal layers under shear bears strong
similarities to the well-studied case of one-dimensional (1D)
particle chains or two-dimensional (2D) particle monolayers
driven over a periodic substrate [19–21].

Inspired by this similarity, we here propose an analytical
model that allows us to predict the shear-induced depinning
on the basis of the structure in thermal equilibrium. The model
is essentially a variant of the well-known Frenkel-Kontorova
(FK) model [22,23], which has been extensively used to
model friction between solid (atomic or colloidal) surfaces
and has also proven to be crucial for understanding driven
monolayers [1,2]. It should be stressed, however, that despite
all similarities, there is one crucial difference between our
system and the case of driven monolayers: in the latter
case, the periodic substrate represents a fixed external field,
whereas in our case, the “substrate” rather corresponds to a
neighboring layer that can respond to the shear flow itself
by in- and out-of-plane deformations. Indeed, one main goal
of the present study is to elucidate the implications of this
difference.

A further major goal is to explore the impact of incommen-
surability, that is, a mismatch of structural length scales, in
our sheared system. To this end we consider an asymmetric
system where a layer of small colloids is sheared with respect
to (crystalline) layers of larger particles. As expected from
the FK model as well as from previous, experimental [1],
and theoretical [2,24,25] studies of driven monolayers, we
observe moving defect structures with locally enhanced
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density (“kinks”) or locally reduced density (“antikinks”).
These kinks and antikinks correspond to soliton solutions of
the continuum version of the FK model (i.e., the sine-Gordon
equation). Contrary to the theoretically predicted scenario,
however, in our system only the kinks participate in the particle
transport, whereas the antikinks remain essentially “locked”
within the moving layer.

The rest of the papers is organized as follows. In Sec. II
we describe our (mono- or bidisperse) model systems and
the details of our BD simulations. In Sec. III we give a first
overview of the behavior of the different films by considering
simulation results for the average motion of the layers. We
then proceed by presenting our analytical model, which targets
mainly the bilayer system (in Sec. IV). However, we also
discuss its application to a monodisperse trilayer system (in
Sec. V). Section VI is devoted to the bidisperse system, for
which we discuss in detail the local transport via density
excitations. We close with a summary and conclusion in
Sec. VII.

II. MODELS AND SIMULATION DETAILS

A. Model systems

We consider a colloidal suspension consisting of macroions
of diameter di , salt ions, counterions, and solvent molecules.
Focusing on the macroions, the influence of the solvent is
considered implicitly by employing the Derjaguin-Landau-
Verwey-Overbeek (DLVO) approximation. In this framework,
the electrostatic interaction of the macroions is screened by
the salt- and counterions leading (on a mean-field level) to a
Yukawa-like potential,

UDLVO(rij ) = Vij

exp(−κ rij )

rij

, (1)

with the pair interaction strength Vij , the inverse Debye
screening length κ , and the particle distance rij . The interaction
parameters are set in accordance to real suspensions of charged
silica particles with a diameter of about d ≈ 26 nm [26],
yielding κd ≈ 3.2. In order to account for the steric repulsion
between the macroions we supplement the DLVO potential by
a soft-sphere (SS) potential, which is given by the repulsive
part of the Lennard-Jones potential,

USS(rij ) = 4εSS

(
dij

rij

)12

, (2)

with the interaction strength εSS and the mean particle diameter
dij = (di + dj )/2. Therefore, the total particle interaction
between two macroions reads

Uinter(rij ) = UDLVO(rij ) + USS(rij ). (3)

Following previous studies, the total particle interaction
potential is truncated at a cutoff radius rc ≈ 3d and shifted
accordingly [16,18].

To mimic the slit-pore geometry, the colloids are confined
by two plane-parallel soft walls extended infinitely in x and
y direction and separated in z direction by a distance Lz (see
Fig. 1). The interaction between the colloids and the walls is

FIG. 1. Sketch of the model system, involving colloidal particles
in narrow slit-pore confinement and linear shear flow in x direction
with gradient γ̇ z in z direction. Periodic boundary conditions are
applied in x and y direction. The width of the slit-pore is set to Lz.

described by

Uwall(zi) = 4πεw

5

[(
di,w

Lz/2 − zi

)9

+
(

di,w

Lz/2 + zi

)9
]
, (4)

with zi being the z coordinate of particle i, the mean wall
diameter di,w = (di + dw)/2, the wall diameter dw = d, and
the wall-interaction strength εw. Equation (4) is obtained
by integrating over a half-space of continuously distributed
uncharged soft wall particles, where the interaction between
the wall and the fluid particles is set to the repulsive part
of the Lennard-Jones potential [see Eq. (2) with diameter
dw]. It is widely adopted as a model for the fluid-wall
interaction [26,27].

In this study, we focus on systems where Lz is of the order
of the particle diameter and the density is rather high. In such
situations the colloids arrange in well-defined layers with a
solidlike in-plane structure (at least in equilibrium). Further,
we consider both one-component systems and a special type
of a binary mixture. The latter involves particles with two
different diameters, the idea being to create a structure with
a mismatch of the underlying structural length scales of the
corresponding pure systems. Specifically, we aim to create a
structure where small colloidal particles form a “top” layer
on a crystal of larger particles. In order to stabilize such an
asymmetric situation (which would not arise with a symmetric
external potential), we supplement the confinement potential
by a linear “sedimentation” potential,

Used(zi) = εsedd
3
i zi , (5)

with the sedimentation potential strength εsed. This potential
can be formally interpreted as the first-order term of a Taylor
expansion of the gravitational potential in zi [28–30]. The
resulting force Fsed(ri) = −∇ri

Used(zi) depends for constant
εsed only on the diameter di of the particle i and therefore leads
to the sedimentation of large colloids. For appropriate values
of εsed we find stable configurations consisting of crystalline
layers of large particles at the bottom and a layer of small
particles on top.
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FIG. 2. Average velocity 〈vR〉 in flow (x) direction of the top layer relative to the bottom layer(s) for (a) the one-component bilayer, (b) the
one-component trilayer, and (c) the two-component trilayer system. The corresponding in-plane structure is indicated by the filling pattern.

B. Simulation details

We perform standard (overdamped) BD simulations to
examine the nonequilibrium properties and dynamics of our
model systems. The position ri of particle i is advanced
according to the equation of motion [31],

ri(t + δt) = ri(t) + μFi({r})δt + δWi + γ̇ ziδtex, (6)

where Fi is the total conservative force (stemming from two-
particle interactions [see Eq. (3)], particle-wall interactions
[see Eq. (4)], and the sedimentation potential [see Eq. (5)])
acting on particle i, {r} = r1, . . . ,rN is the set of particle
positions, and δt is the time step. Within the framework of BD,
the influence of the solvent is mimicked by a single-particle
frictional and random force. The inverse friction constant
defines the mobility μ = D0/kBT , where D0 is the short-time
diffusion coefficient, kB is the Boltzmann constant, and T

is the temperature. The random force is modeled by random
Gaussian displacements δWi with zero mean and variance
2D0δt for each Cartesian component. The time scale of the
system was set to τ = d2/D0, which defines the so-called
Brownian time. We impose a linear shear profile γ̇ ziex [see
last term in Eq. (6)] representing flow in x and gradient in
z direction. The strength of the flow is characterized by the
uniform shear rate γ̇ . This ansatz seems plausible for systems
where the impact of the walls on the driving mechanism can be
neglected, such as charged colloids confined between likewise
charged, smooth walls [26,32]. For this situation, the distance
between the colloids and the wall is naturally rather large,
suggesting that the motion of the colloids is not directly
coupled to that of the particles comprising the wall. Thus,
one may assume that the shear flow away from the wall is
approximately linear. We note that, despite the application of
a linear shear profile, the real, steady-state flow profile can
be nonlinear [33]. The present simulation approach has also
been employed in other recent simulation studies of sheared
colloids [34–36]; the same holds for the fact that we neglect
hydrodynamic interactions.

For the one-component bilayer and trilayer system, the
number density ρd3 = 0.85 and the slit-pore width Lz =
2.2d,3.2d are chosen following previous studies [16,18]. The
particle interaction parameters are set according to experimen-
tal setups for particles with diameter d ≈ 26 nm and valency
Z = 35 [26,37], yielding κd ≈ 3.2. For the two-component
system, an additional small particle species is introduced

with diameter d2 = 0.42d and valency Z2 = 0.17Z, which
are set according to experimental setups [37], where we set
κd ≈ 3.3 for all particles. The number density ρd3 = 1.226
and the slit-pore width Lz = 2.65d of the two-component
system are chosen such that the volume density is comparable
to the one-component system. The sedimentation potential
strength is set to εsed = 300 kBT /d4 for the two-component
system and zero for all one-component systems. In fact,
we find stable asymmetric configurations in the range of
250 � εsed d4/kBT � 450. For smaller values of εsed, the
sedimentation force is insufficient to prevent mixing. On the
opposite side, larger values of εsed lead to reentrant mixing due
to an unrealistically strong compression of the layers.

We consider N = 1058 and N = 1587 large particles for
the one-component bilayer and trilayer system, respectively.
The two-component system consists of N1 = 1058 large
particles and N2 = 529 small particles. All systems were
equilibrated for more than 107 steps (t > 100τ ), with the
discrete time step δt = 10−5τ . After that, the shear force
was switched on and the simulation was carried out for an
additional time period of t = 100τ , in which the systems
reached a steady state. After this period we started with the
calculation of material properties.

III. SIMULATION RESULTS FOR AVERAGE MOTION

As a starting point, we analyze the dynamics of the model
systems by calculating the average velocity 〈vR〉 of the crystal
layers in flow (x) direction relative to each other. The average
relative velocity in y and z direction vanishes for all considered
systems. Results for 〈vR〉 in the one-component bilayer and
trilayer system as well as the two-component system are
plotted in Figs. 2(a)–2(c). In those figures, the dynamical states
of the considered systems are indicated by different patterns.
These states were distinguished by monitoring the four- and
sixfold in-plane angular bond order parameters 	4,	6 [16].

For the one-component bilayer system [Fig. 2(a)], we
observe a pronounced depinning transition at the critical shear
rate γ̇ BD

c τ ≈ 214. For subcritical shear rates γ̇ < γ̇ BD
c , the

system is “locked,” with the colloids being pinned (apart from
thermal fluctuations) on the sites of the crystalline layers with
quadratic in-plane structure. Increasing the shear rate then
leads to a depinning of the crystalline layers and melting of the
in-plane structure. For large shear rates, a hexagonal crystalline
order is recovered, which is accompanied by a collective zigzag

062605-3



SASCHA GERLOFF AND SABINE H. L. KLAPP PHYSICAL REVIEW E 94, 062605 (2016)

motion of the colloidal crystal layers [16]. A similar depinning
transition (yet no subsequent crystallization) is found for
driven monolayers on a periodic potential [1,2,38,39]. Using
this connection, we can formulate a simple model to estimate
the critical shear rate. This is discussed in detail in Sec. IV.

We now consider the one-component trilayer system. Here,
the dynamics can be characterized by the average velocity of
the top layer relative to the two bottom layers, which is plotted
in Fig. 2(b) [40]. In contrast to the bilayer system, the trilayer
system displays a continuous onset of motion (i.e., no jump of
the velocity) due to a new intermediate laned state. Again, for
small shear rates the colloidal layers are pinned in quadratic
in-plane lattices. However, upon increasing the shear rate, the
middle layer becomes unstable and splits into two sublayers,
which are each pinned to one outer layer. The colloids in
the sublayers form lanes, moving with the velocity of the
respectively closest outer layer [41]. This leads to a nonlinear
velocity profile 〈vR〉(z) until the melted state is reached, where
a quasilinear velocity profile is recovered. For large shear rates,
the system forms a hexagonal steady state, similar to the bilayer
system (see also Sec. V).

Introducing a second species to the system, the average
velocity behaves very different to the one-component systems,
as seen in Fig. 2(c). Specifically, we consider the average
velocity of the top layer consisting of small colloids relative
to the bottom layers consisting of large colloids. The latter are
locked in a quadratic crystalline structure for all considered
shear rates. Contrary to the one-component systems, the top
layer of the binary system is never pinned to the bottom layers.
Instead, the top layer (which is weakly ordered, i.e., 	4 = 0.7
and 	6 = 0.36 for γ̇ τ = 0) transitions continuously into a
melted state with increasing shear rate. This is accompanied
by a continuous onset of motion and results in a finite average
velocity for all nonzero shear rates. In order to understand this
dynamics, we investigate the local structure and dynamics of
the top layer in Sec. VI.

IV. THEORY OF DEPINNING IN THE BILAYER SYSTEM

In this section we will present a simple model, which allows
us to estimate the critical shear rate of the depinning transition
based on the equilibrium configuration. Within this model,
we map the dynamics of the bilayer system to the motion of
a single particle in a 1D periodic potential. This is in the
spirit of the FK model [42], which considers a 1D chain
of (harmonically) coupled colloids on a periodic sinusoidal
substrate potential. Importantly, the resulting equation of
motion can be solved analytically, allowing a direct (yet
approximate) calculation of the average relative velocity and
also of the shear stress of the bilayer system.

A. Driven monolayers

The 1D overdamped equation of motion for a particle i in
a driven monolayer is given by [2,21]

μ−1ẋi =
NL∑
j �=i

Finter(xij ) + Fsub(xi) + Fd + 
i(t), (7)

with NL being the number of particles in the monolayer, Finter

the two-particle interaction force, Fsub the periodic substrate
force, Fd the constant driving force, and 
i = μ−1Ẇi the
random force.

In the following we focus on a special case, which involves
an infinitely stiff crystalline monolayer (corresponding to the
strong coupling limit). In this limit, the average velocity of all
particles is determined by the velocity of the center of mass,
X, where X = N−1

L

∑NL

i=1 xi . Indeed, for a large number of
particles, NL → ∞, the random forces acting on X vanish.
Further, considering radial pair interactions, the sum of all
interaction forces vanishes due to the crystal symmetries.
We can thus restrict our consideration to the motion of X,
determined by

μ−1Ẋ = Fsub(X) + Fd . (8)

For a sinusoidal substrate force Fsub(X) = Fmax sin (2πX/a),
this equation can be solved analytically [21]. The resulting
average relative velocity is given by [2]

〈vR〉 = a

(∫ a

0
Ẋ−1dX

)−1

= μ

√
F 2

d − F 2
max. (9)

Equation (9) expresses the fact that the crystal monolayer
is pinned (〈vR〉 = 0) for driving forces smaller than the
critical driving force (Fd,c = Fmax) and displays a running
state (〈vR〉 > 0) for larger driving forces.

B. Mapping to shear-driven system

In order to relate the behavior of the driven monolayer to
the dynamics of colloidal layers under shear flow, we need to
formulate, for the shear-driven systems, an effective substrate
force as well as an effective driving force. To this end, we focus
on the dynamics of the top layer, whereas the bottom layer is
assumed to act as a “substrate.” From Eq. (6), the equation
of motion of the center of mass �R = N−1

L

∑NL

i=1 ri − Rbot of
the top layer relative to the center of mass of the bottom layer
(Rbot) in flow (x) direction follows as

�Ṙx = μ

NL

NL∑
i=1

⎛
⎝ N∑

j �=i

F inter
x (rij ) + F wall

x + μ−1Ẇi,x

⎞
⎠

+ γ̇ �Rz, (10)

where NL is the number of particles of the top layer. Again,
for NL → ∞, the mean of the random forces acting on the
layer vanishes, i.e., N−1

L

∑NL

i=1 μ−1Ẇi,x ≈ 0. The force exerted
from the confinement [see Eq. (4)] has no x component, thus
F wall

x = 0. Comparing the remaining terms with Eq. (8), we
identify the shear force as the driving force, i.e.,

Fd (�Rz) = μ−1γ̇ �Rz. (11)

Further, the sum of particle interaction forces acting on the
layer can be identified as the substrate force, i.e.,

Fsub({r}) = 1

NL

NL∑
i=1

N∑
j �=i

F inter
x (rij ), (12)

where Finter = −∇ri
Uinter is the particle interaction force [see

Eq. (3)] and {r} = r1, . . . ,rN is the set of particle positions.
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FIG. 3. (a) Mean layer distance of the one-component bilayer
system in dependence of the shear rate. (b) Time dependence of the
layer distance for γ̇ τ = 280 in the hexagonal steady state.

Here we are interested in the depinning starting from the
quadratic (equilibrium) state. The particle positions (in the
absence of noise) are therefore given by r(t) = rnm + R(t),
with the corresponding lattice position rnm and the center of
mass of the layer, R. In this framework, the position on the
lattice is given by the primitive vectors and is constant. Using
this ansatz, we can rewrite the substrate force Eq. (12) for
particles of the top layer,

Fsub(�R) = F inter,bot
x (�R)

= 1

NL

NL∑
i=1

Nbot∑
j=1

F inter
x (rij ), (13)

where Finter,bot is the sum of interaction forces between
particles of the top layer and particles of the bottom layer
and Nbot is the number of particles in the bottom layer. The
corresponding sum within the top layer is zero due to the
crystal symmetry.

Inserting Eq. (11) and Eq. (13) into Eq. (10) and neglecting
the noise we obtain

μ−1�Ṙx = Fsub(�R) + Fd (�Rz). (14)

The structure of Eq. (14) is already close to the corresponding
monolayer equation Eq. (8), yielding the strategy to calculate
the critical shear rate via Eq. (9). However, in Eq. (14), both
the driving force Eq. (11) and the substrate force Eq. (13)
still depend on the layer distance �R. To proceed, we make
the following ansatz for �R as function of the (relative)
displacement of the center of mass,

�R(X) = Xex + �Req
y ey + �Rz(X)ez. (15)

According to Eq. (15) we set the x component of �R, �Rx ,
equal to the variable X, which represents the center-of-mass
coordinate in the 1D driven monolayer [see Eq. (8)]. Further,
the y component is set to its equilibrium value, which is
constant (�R

eq
y ). Indeed, from the symmetry of the system, it

follows that �Ṙy = F inter,bot
y (�R

eq
y ) = 0. However, this does

not hold for the displacement in z direction �Rz.
In fact, �Rz depends markedly on the shear rate; see

Fig. 3. In particular, one observes a pronounced increase of
�Rz when the system transforms from the quadratic into the
hexagonal phase. Moreover, within the hexagonal state, �Rz

actually oscillates in time, mimicking the zigzag motion of the
particles [16].

0 100 200 300 400 500
0

100

200

300

γ̇c

γ̇τ

v R
τ
/d

BD
theory

FIG. 4. Average velocity of the top layer relative to the bottom
layer in the bilayer system from BD simulations (red) and from
Eq. (17) (blue dashed), revealing the critical shear rate γ̇c.

In view of the strong dependence of �Rz on the shear rate,
it is not surprising that setting �Rz to its constant equilibrium
value (γ̇ τ = 0) and using this value for the calculation of Fd

and Fsub yields a wrong result (specifically an overestimation)
for the critical shear rate. Indeed, this simple calculation
yields γ̇cτ ≈ 330, which has to be compared to the true value
(obtained from BD simulation) of γ̇ BD

c τ ≈ 214. A somewhat
better result is obtained if one sets �Rz = �Rz(γ̇ ). However,
this requires us to compute the nonequilibrium properties of
the considered system beforehand. A more desirable strategy
would be to define all ingredients for the calculation of the
critical shear rate based on the equilibrium configuration. To
this end we model the motion of the particles by an optimal
path defined for the equilibrium configuration (see Eq. (A1)
in Appendix A). This allows us to obtain analytic expressions
for Fsub and Fd .

Inserting Eq. (A2) and (A3) from Appendix A into Eq. (14),
we obtain an equation for the relative motion of the layers in
x direction,

Ẋ = μFmax sin

(
2π

a
X

)
+ γ̇ ZA cos

(
2π

a
X

)
+ γ̇ Z0. (16)

This equation can be solved analytically, the resulting trajec-
tories X(t) are given in Eq. (B4) in Appendix B. The average
velocity of the layers then follows as

〈vR〉 =
√

γ̇ 2
(
Z2

0 − Z2
A

) − μ2F 2
max, (17)

yielding the critical shear rate,

γ̇c = μFmax√
Z2

0 − Z2
A

. (18)

From the trajectories X(t), particularly their long-time solution
X̃(t) given in Eq. (B7) in Appendix B, we can further calculate
the mean shear stress. The latter is determined (neglecting
kinetic contributions [18]) via the x-z component of the stress
tensor,

σxz =
〈

1

V

∑
i

∑
j>i

F inter
x (rij )zij

〉
, (19)

where V is the volume of the simulation box and zij is the
particle distance in z direction. Within our simple model, the
shear stress for particles of the same layer vanishes (zij = 0).
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FIG. 5. Shear stress of the bilayer system from BD simulations
(red) and from Eq. (20) (blue dashed).

Therefore, the relevant particle interaction forces are given by
the substrate force Fsub [see Eq. (A2) in Appendix A] and the
particle distance is defined by the layer distance �Rz(X) [see
Eq. (A3)]. The mean shear stress of the system then reads

σxz = N

4V ta

∫ ta

0
Fsub(X̃(t))�Rz(X̃(t))dt , (20)

where N is the number of particles and ta = a/〈vR〉 is the time
period for the top layer to move over one lattice position.

C. Numerical results for the bilayer system

To judge the performance of the effective theory, outlined
in Sec. IV B, we compare in Fig. 4 the average velocity
numerically obtained from Eq. (17) with corresponding BD
simulation data. Focusing first on the critical shear rate γ̇c, we
find that the effective model is in good quantitative agreement
(γ̇cτ ≈ 200) with the BD results (γ̇ BD

c τ ≈ 214). However,
by construction, the model predicts a continuous transition
from the pinned to the free sliding state. This is clearly in
contrast to the BD results, which indicate a discontinuous
transition (accompanied by jumps in the velocity) from the
quadratic to the melted state, as well as from the melted to the
hexagonal state. As analyzed in Ref. [38], these discontinuous
transitions are related to the shear-induced restructuring of the
in-plane order [see also Fig. 2(a)]. Obviously, these complex
processes are beyond the scope of the proposed model. Still,
the good estimate for γ̇c suggests that the impact of structural
changes occurring at larger γ̇ , as well as of thermal noise
can be neglected if we just focus on the depinning itself. A
further interesting aspect arising from the effective model is
that the critical shear rate [see Eq. (18)] strongly depends on the
distance of the layers in z direction. In particular, an increase
of the layer distance leads to the reduction of the critical shear
rate (due to the increase of Fd as well as the decrease of Fmax).
This is a physically plausible result.

We now turn to the shear stress, σxz, in the long-time
limit. In Fig. 5 we compare the shear rate dependence of σxz

obtained from Eq. (20) with corresponding BD results [18].
Starting from the equilibrium configuration, the simulated
system displays a quasilinear increase of σxz, corresponding
to an elastic deformation of the quadratic structure in the
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v R
τ
/d
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FIG. 6. Average velocity of the top layer relative to the two
bottom layers of the symmetric trilayer system from BD simulations
(red) and the simple model Eq. (17) (blue) with critical shear rate γ̇c.

crystalline layers. Once the system melts, the system becomes
mechanically unstable, as reflected by the negative slope
in σxz. Finally, after the recrystallization into a hexagonal
lattice σxz increases again with γ̇ [18]. Similar to these BD
results, the effective model predicts an approximately linear
increase of σxz for subcritical shear rates γ̇ � γ̇c as well as a
sharp, nonlinear increase close to the critical shear rate. For
supercritical shear rates γ̇ > γ̇c, the shear stress then decreases
essentially exponentially (as seen from a logarithmic plot) to
zero, which corresponds to the shear stress of a freely sliding
layer.

Overall, the effective model thus provides a reasonable
description of the shear stress within the quadratic and melted
state, similar to the estimated average velocity discussed be-
fore. However, for γ̇ � γ̇c, the shear stress deviates markedly
from that of the true system, where the structure becomes again
crystalline and the particles perform a characteristic a zigzag
motion in y direction [16].

V. DEPINNING IN THE SYMMETRIC TRILAYER SYSTEM

As discussed in Sec. III, the one-component trilayer system
also displays a depinning transition similar to the bilayer
system (see also Ref. [18]). Applying the mapping strategy
presented in the previous section to the trilayer system, we can
calculate the mean relative velocity of the top layer relative
to the two bottom layers [40], which is plotted in Fig. 6.
Contrary to the case of the bilayer, we find that the model
here overestimates the critical shear rate. This is due to the
additional laned state [41], in which the middle layer becomes
unstable and splits into two sublayers. Still, closer inspection
shows that the model does predict the onset of the melted state
(which occurs at γ̇ τ ≈ 34 according to the BD simulation)
in good quantitative agreement with BD data. This suggests
that the melting of the crystal layers is indeed induced by
the depinning of the outer layers. For even larger shear rates,
the average velocity of the simple model is, in fact, in nearly
perfect agreement with the corresponding BD result, despite
the fact that the true system has undergone an additional
structural transition from a melted into a hexagonal state [see
Fig. 2(c)].
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FIG. 7. (a) Side view and (b) top view on the binary system in
equilibrium (γ̇ τ = 0), displaying two quadratic bottom layers (red)
and one top layer containing small particles (blue).

VI. ASYMMETRIC TRILAYER: DENSITY EXCITATIONS

In this section we turn to a binary system of large and small
colloids, where the different sizes induce a mismatch of the
structural length scales of the corresponding pure systems.
Applying a constant sedimentation force Fsed = −∇rUsed(zi)
[see Eq. (5)], we can stabilize asymmetric configurations al-
ready at γ̇ τ = 0. These consist of two bottom layers containing
only large colloids and one layer of small colloids on top,
as shown in Fig. 7(a). The large colloids form crystalline
layers with quadratic in-plane structure. This structure, in turn,
induces a semicrystalline structure (characterized by order
parameter values 	4 = 0.7 and 	6 = 0.36 at γ̇ τ = 0) of the
particles in the top layer [see Fig. 7(b)]. We note that the
density of small particles is chosen such that, in principle, all
“potential valleys” created by the bottom layers are filled with
exactly one small particle. For this density, the equilibrium
structure of the small particles alone is liquidlike.

For the following investigations under shear, we will
consider only shear rates, which are subcritical with respect to
the depinning of the two bottom layers, as well as insufficient
to introduce a mixing of the two colloidal species. The critical
shear rate of the bottom layers follows from Eq. (18) as
γ̇cτ ≈ 98. We note that the range of relevant shear rates
depends on the sedimentation potential strength εsed, since
the latter influences the layer distance. In contrast, we find that
the dynamical behavior (in particular, the relation between the
average- and the kink velocity to be discussed in Sec. VI C) is
rather independent of the particular choice of εsed.

A. Structural properties of the top layer

To analyze the local structure of the top layer we calculate
the corresponding 2D Voronoi tessellation [43], which divides
the total area of the layer into “eigencells.” Each eigencell
contains exactly one particle. The boundaries of each eigencell
follow from analyzing the connecting vectors rij of the
central particle with all of its neighbors; each boundary then
corresponds to the perpendicular bisector of rij , i.e., a line
perpendicular to rij and cutting rij at its half. The resulting
area of the Voronoi cell, AVC, allows us to define a local density
proportional to the inverse AVC. The Voronoi tessellation of
the top layer in equilibrium (γ̇ τ = 0) is shown in Fig. 8.
In this figure, the particles are colored according to their
normalized Voronoi cell area ρLAVC, where ρL = NL/L2 is
the average 2D number density of the layer (L is the length
of the simulation box and NL is the number of particles in
the top layer). In a perfect lattice, one would have ρLAVC = 1
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FIG. 8. Top view on the equilibrium configuration (γ̇ τ = 0) and
corresponding Voronoi tessellation (black) of particles of the top
layer. The particles are colored with respect to their normalized
Voronoi cell areas ρLAVC. The position of antikinks ρLAVC > 1.2
(violet) and kinks ρLAVC < 0.8 (gray) are determined via a cluster
identification algorithm.

throughout the system. Inspecting Fig. 8, we find that the
true structure in the top layer is characterized by a substantial
amount of defects. Specifically, one observes both cells with
enhanced area relative to the ideal case (corresponding to a
smaller-than-average local density) and cells with reduced area
(corresponding to a locally increased density). In analogy to the
1D FK model we call these defects “antikinks” (ρLAVC > 1.2)
and “kink” (ρLAVC < 0.8) [22,42], respectively. In the original
FK model, an ideal kink consists of a single additional particle
on a fully occupied lattice [22]. This additional particle can
push another particle to the next occupied lattice position,
leading to a hopping wave. Similarly, an ideal antikink
corresponds to a missing particle, allowing the neighboring
particles to pull a particle to the unoccupied lattice side. In
other words, the kinks (antikinks) imply that there is more
than (less than) one particle per lattice side. Contrary to that,
we find that in our system most of the defects are formed
by multiple additional or missing particles. Furthermore, the
defects extend over several lattice sides.

To quantify the number of particles contributing to defect
structures we have calculated the time averaged distribution
of Voronoi cell areas, which is plotted in Fig. 9. Included
is the result for the bottom layers (dashed line). These form
a nearly perfect quadratic structure as reflected by the sharp
peak at ρLAVC = 1. Inspecting now the top layer distribution
we observe, at γ̇ τ = 0, that P (AVC) still has a maximum at
ρLAVC = 1. However, there are also pronounced, asymmetric
flanks, corresponding to particles in kinks (ρLAVC < 0.8) and
antikinks (ρLAVC > 1.2). We note that the left-hand flank is
bounded by the tightest possible packing of small colloids.
This explains the rapid decrease of the number of particles
with ρLAVC < 0.5. Such a limitation does not exist for the
number of antikinks, which explains the much broader shape
of P (AVC) at the right side.

Considering now the impact of shear, we observe, first,
a progressive decrease and finally, a disappearance, of the
maximum of P (AVC) at ρLAVC = 1. This reflects the decrease
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FIG. 9. Distribution of the Voronoi cell areas in the top layer
for different shear rates γ̇ τ = 0, 4, 8, 26 (black, red, blue, green,
respectively). The Voronoi cell area distribution of the quadratic
bottom layers (gray dashed) is plotted as a reference. The vertical
dashed lines indicate the threshold values for kinks (ρLAVC < 0.8)
and antikinks (ρLAVC > 1.2).

of the number of particles with local quadratic order. At
the same time, the number of particles involved in kinks
and antikinks increases. Specifically, we observe that the
area distribution for kinks increases mainly in height, but
not in width, consistent with the above-mentioned limitation.
Therefore, the number of kinks with similar values of the
local density increases with γ̇ . This is in contrast to the
antikinks, whose area distribution increases mainly in width,
corresponding to an increasing size of defect structures with
multiple missing particles. Finally, for shear rates beyond the
critical shear rate (γ̇cτ ≈ 21) of the idealized (crystalline) top
layer [given by Eq. (18)], the semiquadratic structure of the
real top layer is essentially lost and most particles contribute
to large defect structures.

B. Single particle and cluster dynamics

We now turn to the time-resolved dynamical behavior. To
start with, we plot in Fig. 10(a) the displacement of a single
particle in the top layer in x direction for different shear rates.
In all cases the particle spends a relatively long time at a lattice
position before jumping to the next one. In other words, the
waiting time tw (defined according to the “minimum-based”
definition in Ref. [44]) is larger than the Brownian time scale
τ characterizing the diffusion of the free small particle over
the distance d. On increasing γ̇ , the jumps become more
frequent, as expected due to the stronger drive, which helps
to overcome the “barriers” generated by the bottom layers.
This is also reflected by the distribution of the waiting times
[see Fig. 10(b)], whose maximum shifts to shorter times for
increasing shear rates. At this point we recall the increase of
the number of kinks with γ̇ discussed in Sec. VI A. Having this
in mind, the enhancement of the jump frequency (i.e., 1/tw)
may be taken as an indication that the jumping particle is part
of a kink. We also note that, in contrast to the FK model, the
particles in the present system can jump multiple lattice sides
at once. Clearly (see Fig. 10) this becomes more likely for
large shear rates (e.g., γ̇ τ = 8).

In addition to tracking single particles, we have also inves-
tigated the motion of defect structures (kinks and antikinks)
involving several particles. An example of this analysis is
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FIG. 10. (a) Displacement �xi(t) = xi(t) − xi(0) (x direction)
of a randomly chosen single particle in the top layer as function of
dimensionless time and (b) distribution of the waiting times tw for
various shear rates.

shown in Fig. 11, where a section of the top layer is plotted
at four different times. The series clearly reveals the motion
of a kink in x direction. This kink is tracked via a modified
Hoshen-Kopelman algorithm, which identifies clusters with
enhanced local density (i.e., ρLAVC < 0.8) on the underlying
triangular lattice given by the Delaunay triangulation. For
antikinks, the same approach is used to track clusters with
reduced local density (i.e., ρLAVC > 1.2).

The tracking of the positions of the kinks and antikinks
furthermore allows us to calculate their average velocity
relative to the bottom layers in x direction. The resulting
velocities are shown in Fig. 12 as functions of the shear
rate. For comparison, we have included the average relative
velocity of the top layer. In equilibrium (i.e., γ̇ τ = 0), the
kinks display no net motion just like the top layer. This picture
changes at finite shear forces, where the kinks move faster
than the average (i.e., 〈vkink〉 > 〈vR〉). This holds for all shear
rates considered; however, the difference (more specifically,
the ratio 〈vkink〉/〈vR〉) is largest in the range 0 < γ̇ τ < 5. Here
the velocity of the kinks is nearly one order of magnitude
larger than the velocity of the top layer. This observation is in
accordance with a prediction from the FK model, where the
monolayer is displaced exactly one lattice side when a single
kink travels through the layer [22], i.e.,

〈vR〉 = NK

NL

〈vkink〉, (21)

with NK the number of kinks and NL the number of particles
in the monolayer. Therefore, if there is only a small number of
kinks, the velocity of the layer is expected to be much slower
than the velocity of the kinks. We will come back to this point
in Sec. VI C. Increasing the shear rate leads to a corresponding
increase of the number of kinks (see Fig. 9). As a consequence
the difference between the velocities decreases.

In contrast to the kinks, the antikinks seem to be “locked”
within the top layer as revealed both by the direct visualization
in Fig. 11 and by the fact that their average velocity (see
Fig. 12) is nearly identical to that of the top layer. This
“locking” behavior of the antikinks is in contrast to the
(original) FK model, where the antikinks move with a velocity
which is the same in magnitude, but opposite in direction to
that of the kinks. The reason for the antikink motion in the FK
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FIG. 11. Example of the motion of density excitations in the top
layer. Panels (a)–(d) show a section of the top layer (color-coded
Voronoi tessellation) at four different time steps. The circle (purple)
indicates the time-dependent position of a kink (ρLAVC < 0.8).

model is the attractive harmonic interaction potential linking
the particles [22]. In driven monolayers with purely repulsive
interactions, the magnitude of the velocity of the antikinks is
expected to be smaller than that of the kinks [1,2] but still
different from the average motion of the layer.

In our system, the antikinks apparently move along the
direction of the driving force, which cannot be explained by the
absence of attractive interactions alone. Instead, we interpret
this phenomena as a result of the the fact that, in our system,
the “substrate” acts not as an external potential, but as a part
of the layered system which responds to the behavior of the
top layer. Indeed, we find that the large particles of the bottom
layer shift to higher z positions in the vicinity of the antikinks.
In other words, the reduced local density in the top layer leads
to a bump formed by the bottom particles. These deformations
of the bottom layers (which correspond to higher potential
barriers) then prevent particles of the top layer to jump into
the empty lattice positions. Instead, the antikinks are pushed
in the direction of the driving force.

C. Average versus kink velocity

The results discussed in Sec. VI B suggest that kinks
represent the only mechanism leading to the mean particle
transport of the top layer. Motivated by the corresponding
formula in the FK model [see Eq. (21)], we thus propose to
describe the average velocity in our system as

〈vR〉 = α(γ̇ )
NK

NL

〈vkink〉, (22)

where α is a (shear-rate dependent) factor of proportionality
and NL is the number of particles in the top layer. Of course,
this relation is expected to hold only for shear rates, where the
shear forces are not yet sufficient to introduce free sliding
of the top layer and kinks are indeed the main transport
mechanism. In order to estimate this range of validity of
Eq. (22), we calculated the critical shear rate γ̇cτ ≈ 21 for
the depinning transition of the top layer (assuming that the
latter is perfectly crystalline for γ̇ < γ̇c) by using the model
presented in Sec. IV B.
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FIG. 12. Velocity of the kinklike and antikinklike defects relative
to the bottom layers as functions of the shear rate. The relative velocity
of the top layer (gray, dashed) is plotted as a reference.

Numerical results of this analysis are shown in Fig. 13.
Fitting 〈vR〉 according to Eq. (22) we find that α(γ̇ ) ≈
1.17 + 0.08γ̇ τ . The agreement between Eq. (22) and the
true kink velocity is particularly good in the range γ̇ < γ̇c.
Only for “supercritical” shear rates (i.e., γ̇ > γ̇c), we observe
significant deviations. Here, the top layer is completely melted
and the system displays collective motion of the particles
in large density waves. This is obviously strongly different
from the transport mechanism of kinks. Finally, in comparison
to the FK model, we find that the factor of proportionality
[α(γ̇ )] is weakly shear-rate dependent, corresponding to a
small thermal drift of the top layer. However, especially for
small shear rates, this drift can be neglected, reflecting that
kinks are indeed the dominant transport mechanism. Very
similar results are obtained for somewhat larger sedimentation
strengths [45].

VII. CONCLUSION

Using BD simulations and an analytical approach we have
studied the dynamical behavior of three types of colloidal
films under planar shear flow. Focusing on high densities and
strong confinement, where the colloids arrange in two or three
layers with (squarelike) crystalline order, the shear-induced
dynamical behavior is similar to that of colloidal monolayers
driven over a periodic substrate potential [1,2]. In particular,
the symmetric (one-component) bilayer system displays a de-
pinning transition, where the layers are “pinned” to each other
up to a critical shear rate [16]. A similar depinning transition
is also observed for the symmetric (one-component) trilayer
system. Interestingly, this does not hold for the asymmetric
(two-component) trilayer system, which is characterized by a
mismatch of the effective lattice constants in the top and the
two bottom layers. In this system, the top layer is never fully
pinned, rather we observe the formation of kinklike defects
reminiscent of the FK model [22].

From a conceptual point of view, one key result of our study
is that the dynamics of the symmetric systems can be mapped to
the motion of a single particle driven over an effective periodic
substrate potential. The resulting effective model can be solved
analytically and yields a prediction of the critical shear rate
for the depinning transition. For the bilayer system, both the
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FIG. 13. The relative velocity of the top layer (blue dashed) and
the approximation via the ansatz Eq. (22) (red). The velocity of the
ideal (crystalline) top layer Eq. (16) and its depinning transition are
included as a reference.

resulting average velocity of the layers and the shear stress are
in good qualitative agreement with the BD simulation results.
Further, the mapping procedure reveals the relation between
the critical shear rate and important system parameters such
as the strength of the pair interactions and the width of the
confinement. For the symmetric trilayer system, the critical
shear rate is overestimated in the sense that the effective model
cannot describe the laned state, which occurs in the real system
between the crystalline and the melted state. Still, the model
predicts nearly correctly the onset of melting.

Another main result of our study is the observation of local
transport via kinklike density excitations in the asymmetric
trilayer system. For small shear rates, the kinks provide the
main mechanism for particle transport in the top layer. The
average velocity of the layer is then proportional to their
average velocity times the number of kinks. The factor of
proportionality is weakly shear rate dependent, which we
interpret as a small thermal drift due to the noise. Interestingly,
the antikink-like defects do not contribute to the particle
transport, rather they are stationary relative to the top layer.
This is in contrast to the FK model and can be explained by
deformations of the bottom layers in response to the locally
reduced density in the top layer.

Similar to previous studies [16,18], we here employed a
set of system parameters pertaining to a realistic system of
charged silica particles [13,26,37]. Thus, our predictions can,
in principle, be tested by experiments. In this context we note
that the presence of a solvent can induce hydrodynamic in-
teractions between the colloidal particles, which are neglected
in our model. Considering experimental studies confirming
the solidlike response of strongly confined fluids [46] and
local transport via kinklike defect structures [1], we expect
these interactions to affect the time scales, but not the overall
behavior of the system.

In addition to a direct comparison to experiments, it would
be very interesting to investigate the shear-induced dynamics
of confined films for wall distances corresponding to a hexag-
onal or disordered equilibrium configuration as well as the
dynamics of thicker binary crystalline films [47,48]. Further
interesting aspects are the impact of oscillatory shear flow
and of structured walls (which can influence the crystalline
structure [34,49]) on the dynamics of the system. We also

z

x

Fd = μ−1γ̇ΔRz (X)
Rz,opt(X)

ΔRz (X)

a

FIG. 14. Sketch of the optimal path of the center of mass of the
top layer (blue particle) during its motion over the bottom layer (red
particles).

note that there is increasing interest concerning the interplay
of shear flow and strong confinement in glasslike colloidal
systems (see Ref. [7] for a corresponding molecular dynamics
study with a much wider slit-pore width).

Especially for the latter systems, the local particle transport
in defect structures might be key. To this end, it seems vital to
better understand the relation between the structural properties
of kinks (as well as of antikinks) and their dynamics. A first
step in this direction would be to investigate the dependence
of the defect velocity on the size of the defects, as well
as corresponding relaxational time scales. Work in these
directions is in progress.
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APPENDIX A: OPTIMAL PATH

To describe the motion of the top layer in the driven system
we define an “optimal” path Rz,opt(X). The latter describes the
motion of the center of mass of the top layer assuming that the
bottom layer is in its equilibrium configuration (see Fig. 14).
Specifically, we define Rz,opt(X) via the condition

F inter,bot
z (Rz,opt) + F wall

z (Rz,opt) = 0. (A1)

According to Eq. (A1), the z position of the top layer is adjusted
such that the force from the bottom layer and the confinement
in z direction is balanced for all displacements in x direction.
This ansatz is reasonable when we assume that the relaxational
time scale of the top layer in z direction, τz 	 a/〈vR〉, where
a is the lattice constant of the bottom layer, is very small as
compared to the typical time scale of the sliding dynamics.

In order to get simple analytic expressions for Fd and
Fsub [see Eqs. (11) and (13)], we calculate numerically the
corresponding Fourier series and neglect all higher harmonics.
This yields

Fsub(X) ≈ Fmax sin

(
2π

a
X

)
, (A2)

Fd (X) = γ̇

μ
�Rz(X)

≈ γ̇

μ

[
ZA cos

(
2π

a
X

)
+ Z0

]
, (A3)

where Fmax is the amplitude of the substrate force, ZA is
the amplitude of �Rz(X), and Z0 = a−1

∫ a

0 �Rz(X)dX is the
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mean layer distance. Equations (A2) and (A3) imply that the
period of the spatial oscillations is the same in both quantities.

APPENDIX B: TRAJECTORIES WITHIN THE
EFFECTIVE MODEL

The equation of motion, Eq. (16), presented in Sec. IV A
can be simplified by using trigonometric identities, yielding

Ẋ = F̃max sin

(
2π

a
X + �

)
+ γ̇ Z0. (B1)

Here, the X-dependence of the driving force is accounted for
by the rescaled substrate force F̃max and the constant phase
shift �, which are given by

F̃max =
√

μ2F 2
max + γ̇ 2Z2

A, (B2)

� = tan−1

(
γ̇ ZA

μFmax

)
. (B3)

Substituting X̄ = 2πX/a + � we arrive at the standard Adler
equation [50] for X̄, which can be solved analytically. The
solution for X̄ reads

X̄(t) = 2 tan−1

{ 〈vR〉 tan
[

π〈vR〉
a

(t + t0)
] − F̃max

γ̇ Z0

}
, (B4)

where 〈vR〉 is the average velocity given in Eq. (17), and t0 is
a constant of integration.

We now focus on the long-time solutions (thus, neglecting
relaxational dynamics) defined by X̃(t) = limt→∞ X̄(t). At
long times, one has

lim
t→∞ (t + t0) = t , (B5)

that is, the initial time t0 	 t can be neglected. We consider the
two cases γ̇ � γ̇c and γ̇ > γ̇c separately. Using Eq. (B5) for the
case γ̇ � γ̇c and substituting 〈vR〉 = i〈v∗

R〉, with the complex
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FIG. 15. Illustration of the long-time trajectories given in
Eq. (B7) for different shear rates in one cycle (with period ta =
a/〈vR〉).

conjugated average velocity 〈v∗
R〉 ∈ R ∀ γ̇ � γ̇c, yields

lim
t→∞ tan

(
i
π〈v∗

R〉
a

t

)
= i lim

t→∞ tanh

(
π〈v∗

R〉
a

t

)

= i, (B6)

where i is the imaginary unit and we used the identity
tanh(x) = −i tan (ix). Inserting Eqs. (B5) and (B6) into
Eq. (B4) and doing the same analysis (yet with the real
velocity) for γ̇ > γ̇c, the long-time solutions read

X̃(t) =
{

2 tan−1[−(〈v∗
R〉 + F̃max)/γ̇ Z0], γ̇ � γ̇c

2 tan−1
[(〈vR〉 tan

(
π〈vR〉

a
t
) − F̃max

)
/γ̇ Z0

]
, γ̇ > γ̇c

.

(B7)

The two solutions (for representative parameters) are plotted
in Fig. 15. For γ̇ � γ̇c, the layer is locked, yielding a constant
displacement X̃. The nonzero value of X̃ for γ̇ �= 0, γ̇ � γ̇c

reflects the elastic displacement due to the shear. Increasing the
shear rate to supercritical values, γ̇ > γ̇c, we find an oscillatory
running state, which is characterized by fast motion from one
lattice position to the next and a slow “build-up phase” in
between. This motion transitions into an uniform free sliding
(i.e., quasilinear increase of X̃) for very large shear rates,
γ̇ � γ̇c.
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