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Dynamics of comb-of-comb-network polymers in random layered flows
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We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The
dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement
(ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-
of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this
flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by
varying the number of generations and branch lengths in these networks. In addition, we investigate the influence
of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα . Our
analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching
and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time
dynamics is governed by the temporal exponent ν of ASD, viz., ν = 2 − α/2. Compared to a linear polymer,
the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but
a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales
as t−α/2. We show that the network with greater total mass moves faster.
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I. INTRODUCTION

Chain topology and external flow fields are two important
factors that have a profound impact on the dynamics of a
single polymer in a solution. Significant theoretical advances
have been made focusing on these two areas separately, i.e.,
investigating the influence of molecular architecture [1–10]
and that of random flows [11–14] and random flows with
mean shear [15,16] on the dynamics of a dilute polymer
solution. Earlier studies on the absence of external flows
focused mainly on the topological aspect where the role of
the polymer structure is analyzed by varying the functionality
or the generations and the length of the branches or spacers for
various complex architectures, such as star polymers [1–4];
dendrimers [1–3,5,6,17]; dendrimers built from stars [7,18];
various kinds of fractal polymer networks, viz., the Sierpinski
gasket [19,20] and Vicsek fractals (regular hyperbranched
polymers) [8,9]; and random structures such as small-world
networks (SWN) [10,21]. In contrast, the other simplified
theoretical approach concerning the polymer dynamics in
hydrodynamic flow mainly focuses on the flow characteristics
using the elastic dumbbell model of a polymer [12–16] that
does not take into account the architecture constraints, which
limits its applicability to only linear chains. So there is a need
to account for these important issues in one place, i.e., the role
of hydrodynamic flow and chain architecture in the dynamics.

Understanding the dynamical properties of an isolated
polymer in external flow fields has remained an outstanding
problem owing to its wide range of biological applications,
such as gene mapping [22,23], DNA separation [24,25], and
the development and optimization of biological microfluidic
devices [26]. Many significant experimental contributions
have been achieved in understanding the flow-driven polymer
dynamics [27–32]. Starting with the pioneering studies of
Chu and collaborators for nonrandom elongational flow of a
single chain [27,28], further investigations were performed
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for shear [29,30,33] and mixed flows [34]. Due to the
difficulty to create a random flow in a microscopic-size
volume, there was relatively little experimental progress until
Groisman and Steinberg came up with the concept of elastic
turbulence [35,36]. The polymer dynamics and statistics in a
random flow with a shear component were studied experimen-
tally [37] and numerically [15,16]. Experimental validation
of the coil-stretch transition that is observed in the single
polymer in random flows (as first predicted by Lumley [11])
was done by Gerashchenko et al. [38], and other works show
aperiodic tumbling and stretching in the shear-preferred
direction [37].

The fact that the branching significantly influences the con-
formational and dynamical properties of a single polymer in a
solution [39–41] leaves exciting room to explore the dynamics
of a polymer with complex underlying topologies. A way to
do this is done using the generalized Gaussian structure (GGS)
approach [42,43], which is an extension of the renowned
Rouse model [44]. Based on this approach, different static
and dynamic quantities of various flexible polymeric networks
were studied [1–3,7–10,18–21,39]. Notable advances have
been attained in understanding the link between the arbitrary
topologies and their dynamical properties under the influence
of external forces [1–10,17–21]. Remarkably, the influence
of a step force on the stretching dynamics of the star and
dendrimer with [2] and without hydrodynamic interaction
(HI) [3] has been studied. The results suggest that at very
short and long times, the displacement of the bead pulled by
an external force has a constant velocity, while at intermediate
times the influence of the underlying topology of the polymer
on its dynamics is observed. Chen and Cai [6,17] determined
the relaxation times and the normal modes of trifunctional
dendrimers using the analytical method for the diagonalization
of the connectivity matrix, while Biswas et al. [1,3] and Kant
et al. [2] employed a numerical diagonalization procedure that
showed excellent agreement with that obtained analytically.
Another important class of polymeric structures is that of
deterministic fractals modeled through finite Sierpinski-type
networks. These fractal networks obey the scaling behavior
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of the mechanical and dielectric relaxation patterns in the
intermediate frequency range for a Rouse-type model (without
HI) [19], while no scaling was seen for a Zimm-type model
(with HI) [20]. Moreover, the dynamics of these types of
fractals was shown to exhibit dependence on the spectral
dimension [19,20]. In contrast to dendrimers and Sierpinski-
type lattices, scaling does hold for Vicsek fractals both in
the presence and the absence of HI [8,9]. While in the
above-mentioned works the dynamics of the branched polymer
was investigated in the presence of an electric field, there
have been very few attempts to understand their structural and
rheological properties under the hydrodynamic shear flow for
stars [40,45] and dendrimers [41,46].

In the present work, we study the dynamics of a comb-of-
comb network in the presence of random layered flows. Here
we use the formalism developed in our previous paper [47] for
arbitrary topology in external random flow. The comb resulting
from the second generation (g = 2) of the hierarchy of the
comb-of-comb network has extensively been synthesized, and
its rheological properties have been studied [48–50]. The
iterative comb-of-comb network is topologically constructed
as follows: at each new step each bead of the entire network
gets attached to the linear chain of the same length (for
details refer to Sec. III). Based on our recent work where
we developed the formalism for the dynamics of GGS under
the influence of random layered flow fields [47], we follow
here the particular case of the comb-of-comb network in
order to understand and compare its dynamics with that
of the linear chain and other important polymer networks
like dendrimers. Our initial results have shown the sail boat
behavior of polymers with the unexpected behavior of a
polymer with a greater total mass (or size) moving faster
than those with less mass (or size) in the random flow [47].
In the present work, we discuss the velocity autocorrelation
function (VACF) and the average squared displacement (ASD)
of the center of mass (c.m.) of a single comb-of-comb network
in random flow. We use here the Matheron–De Marsily
(MdM) model [51] for the random flow, which can mimic
various flow conditions depending upon its flow statistics.
Using this model, Oshanin and Blumen [52,53] investigated
the dynamics of a Rouse (linear) polymer and showed that
the ASD of the c.m. of the chain exhibits anomalous time
dependence. The exponent which characterizes the growth of
the ASD is dependent on the statistical properties of random
flow. In a recent paper [54] the dynamics of comb-of-comb
networks was studied by investigating properties like monomer
displacement under constant force and mechanical relaxation
moduli using Laplacian spectra. Another recent study was
done using fluorescence microscopy on surface tethered DNA-
comb under shear flow [55].

This paper is structured as follows: In Sec. II, we recall the
mathematical formalism of the GGS model taking into account
the statistical properties of the MdM flow pattern in order
to understand the dynamical behavior of branched polymers
under external random flow. We compute the generalized
analytical expressions for the VACF and the ASD of the c.m. of
branched polymers under external flow. Section III focuses on
the discussion of our results and analyzing how these quantities
depend on the underlying topologies of the comb-of-comb
network and the random flow parameters. Moreover, we show

the influence of the HIs on its dynamics. Finally, we summarize
our paper with the conclusions in Sec. IV.

II. MATHEMATICAL APPROACH

In this section, we review the mathematical formalism for
the dynamics of GGS in random layered flow reported in
Ref. [54]. A GGS is viewed as consisting of N spherical beads
connected t each other through harmonic springs; this is an
extension of the classical Rouse approach [56]. The configu-
ration of a GGS is denoted by the set of position vectors {Ri},
where Ri(t) ≡ (Rxi(t),Ryi(t),Rzi(t)) ≡ (Xi(t),Yi(t),Zi(t)) is
the position vector of the ith bead at time t . Neglecting the
HIs and excluding the volume effects, the dynamics of the ith
bead of a GGS subjected to the external random force Fi is
given by the linearized Langevin equation [56]:

ζ
∂Ri(t)

∂t
+ K

N∑
j=1

AijRj (t) = fi(t) + δαY Fi, (1)

where ζ is the friction coefficient of a single bead; K =
3kBT /b2 is the spring constant, with T being the temperature,
kB being the Boltzmann constant, and b being the mean
distance between the beads; and A = {Ai,j } is the connectivity
matrix of the GGS indicating beads that are directly connected
to each other. The diagonal elements of A, i.e., Amm equals
the number of bonds emanating from the mth bead, and its
off-diagonal elements Amn are −1 if m and n are connected
and 0 otherwise. In Eq. (1), fi(t) is the random force on the
ith bead. These random thermal forces arise as a result of
collisions due to the ceaseless and irregular motion of beads
in the surrounding solvent particles and are centered Gaussian
processes with mean

〈f (t)〉 = 0, (2)

and their correlation function follows the fluctuation-
dissipation theorem:

〈fiα(t)fjβ(t ′)〉 = 2kBT ζ δij δαβ δ(t − t ′). (3)

In Eq. (1) Fi defines the force induced by the external
random flow on the ith bead. To account for random flow we
use the MdM model as shown in Fig. 1 (also see Refs. [52,53]).
This type of model can be represented as a series of different
layers parallel to each other and perpendicular to any axis, say,
here the X axis. While the orientation of the force vector is
fixed within each layer, it varies randomly when going from
one layer to the other. In general the force or the velocity
vector (as V = F/ζ ) is parallel to the Y axis, and the X and
Z components of the velocity vector are equal to zero. The
Y component is taken to be the random function of the X

coordinate:

VY (X,Y,Z) = V [X]. (4)

The random function V [X] is assumed to be a Gaussian
random function with the mean

V [X] = 0 (5)

and covariance

V [X1]V [X2] = V 2
0 φ(|X1 − X2|). (6)
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FIG. 1. Schematic diagram of a comb-of-comb network in the
Matheron–De Marsily (MdM) flow pattern. The orientation of the
velocity vector is a random function of the X variable and is constant
within each layer.

The overline represents the average over the random flow
configurations, V0 is the rms velocity of the flow, and the
correlation function φ defines the correlation between various
layers of the random flow. The random flow is assumed to be a
stationary process; hence, it depends only on the separation
between the two layers. Another important transform of
quantity φ is the power spectrum Q(K), which is defined by
the Fourier integral,

φ(|X1 − X2|) =
∫ ∞

−∞
dKQ(K) exp[iK(X1 − X2)]. (7)

We can model different types of flow behaviors by choosing a
specific form of the power spectrum Q(K). The dimension of
Q(K) is length. The important case for a random layered flow
field is that of a power-law power spectrum,

Q(K) = lf

2π
|lf K|α−1

= Wα|Kα−1|
2π V 2

0

(0 < α � 1), (8)

where lf is defined as the persistence length of the flow. It is
a measure of the distance between two layers of flow. Here
α signifies the type of flow or the persistence of the random
flow. Its value lies between 0 and 1. α = 1 indicates the δ

correlated flow. As the value of α decreases, the long-range
correlation effects are enhanced; in other words, it shows
higher persistence of the flow. The prefactor Wα of the
power-law power spectrum is a composite quantity which can
be defined as

Wα = V 2
0 lαf . (9)

Therefore, the power-law power spectrum of random flow
can mimic different types of flows which are generated with
a change in α, V0, and lf . The correlation function for the

power-law spectrum in Eq. (8) can be obtained as

φ(|X1 − X2|) = 
(α) cos(απ/2)

π V 2
0

Wα

|X1 − X2|α , (10)

where 
(α) is the gamma function. Equation (10) has a long-
range algebraic distance-dependent correlation [53]. However,
the simplest example of the power spectrum is a constant value,
which is the white noise power spectrum, defined as

Q(K) = lf

2π
. (11)

When α → 1, Eq. (8) reduces to Eq. (11). This spectrum
corresponds to the original MdM model with a δ correlated
flow field,

φ(|X1 − X2|) = lf δ(X1 − X2), (12)

where δ is the Dirac delta function.
Usually, the strength of flow in a polymeric system is

characterized by the Weissenberg number (Wi), which is the
measure of the relative intensity of elastic relaxation and
stretching and is defined as the product of the longest relaxation
time τP of the polymer and the characteristic velocity gradient
V0/lf :

Wi = V0

lf
τP . (13)

To observe the influence of the polymeric structure on random
flow, lf must be much greater than the Kuhn segment length
and can be of the order of the radius of gyration Rg of
the polymeric structure. Since τP depends on the branching
structure of the polymer, Wi will depend on the structure of a
polymer of a given molecular weight.

The convenient and general way to find the solution of
Eq. (1) is to write a matrix representation for different
components of Ri , viz., Xi,Yi,Zi . At this stage it is important
to emphasize that the simplicity of this problem arises due
to the decoupling of the components of Ri . Let us remark
here that in Eq. (1), the Kronecker delta function δαY is used
with external convective force Fi , which vanishes in the X

and Z directions, where the bead undergoes only conventional
diffusive motion, while it takes a value of 1 in the Y direction,
where it experiences the external convective force superposed
on the diffusive motion. Therefore, we will be interested in
studying the dynamics on only the Y axis. Now, the matrix
representation of Eq. (1) for the Y th component of the position
vector is given by

∂Y(t)

∂t
+ σAY(t) = 1

ζ
[f(t) + F(t)], (14)

with σ = K/ζ , R ≡ (R1,R2, . . . ,RN )T , f ≡ (f1,f2, . . . ,

fN )T , and F ≡ (F1,F2, . . . ,FN )T , where T denotes the
transposed vector. The solution of Eq. (14) represents the
bead motion due to both the external flow and the thermal
fluctuation:

Y(t) = 1

ζ

∫ t

−∞
dt ′ exp[−σ (t − t ′)A][f(t ′) + F(t ′)]. (15)

Now the expression for the ASD of the c.m. of a branched
polymer 〈Y 2

c.m.(t)〉, where the angular brackets represent
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averaging over the thermal forces fi and the overline represents
the averaging over various configurations of random flow
Fi [the expression for the displacement of the c.m. and the
complete steps are explicitly reported in Ref. [54]], is

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + V 2

0

N2

∫ t

0
dt ′

∫ t

0
dt ′′

∑
m,n

∫ ∞

−∞
dKQ(K)

×〈eiK [Xm(t ′)−Xn(t ′′)]〉. (16)

We can define the quantity called the dynamic structure factor
g(K,t ′,t ′′) as

g(K,t ′,t ′′) = 1

N

∑
m,n

〈eiK [Xm(t ′)−Xn(t ′′)]〉. (17)

For a Gaussian process with t ′ = 0, Eq. (17) is simplified
using cumulant expansion [56], where we have used the fact
that 〈Xi(t ′)〉 = 0 for all i:

g(K,0,t ′′) = 1

N

∑
m,n

e−K2〈[Xm(0)−Xn(t ′′)]2〉/2. (18)

Now, since the random process Xm(t ′) − Xn(t ′′) is station-
ary in time, it holds that

Xm(t ′) − Xn(t ′′) = Xm(0) − Xn(|t ′ − t ′′|). (19)

Moreover, due to the symmetry of the dynamic structure factor
with respect to the time variables, the ASD of the center of
mass can be written as

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t

+ 2 V 2
0

N

∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ ∞

−∞
dKQ(K) g(K,t ′′).

(20)

The first term in Eq. (20) indicates the diffusion of the N -bead
polymeric system due to the thermal fluctuations, and it does
not possess any structural information, while the second term
depends upon the structure of the polymer through the dynamic
structure function. The additional contribution to the ASD
arises due to the weighted average from the power spectrum
and dynamic structure function.

Let us remark here that the function

E(t ′′) = 1

N

∫ ∞

−∞
dKQ(K) g(K,t ′′) (21)

is the VACF. Now substituting Q(K) from Eq. (8) and the
dynamic structure factor g(K,t ′′) using Eq. (18) into Eq. (21)
and performing the integral, the formal expression for the
VACF for long-range correlated random flows is obtained as

E(t ′′) = 2
α
2 −1 Wα 
(α/2)

π V 2
0 N2

∑
m,n

[Xm(0) − Xn(t ′′)]2〉−α/2, (22)

where Wα = V 2
0 lαf and has dimensions of (length)2+α/(time)2.

For the white noise spectrum (α = 1), the expression simplifies
as

E(t ′′) = Wα

V 2
0 N2

∑
m,n

{2π〈[Xm(0) − Xn(t ′′)]2〉}−1/2. (23)

Now in order to find the explicit expression of VACF
E(t ′′), one needs to find the difference correlation function
〈[Xm(0) − Xn(t ′′)]2〉, calculated as

〈[Xm(t ′) − Xn(t ′′)]2〉 = 〈[Xm(t ′)]2〉 + 〈[Xn(t ′′)]2〉
− 2〈[Xm(t ′)Xn(t ′′)]〉. (24)

In general the time correlation function for the X component
is given by

〈X(t ′)XT (t ′′)〉

= 1

ζ 2

∫ t ′

−∞
dt1

∫ t ′′

−∞
dt2e

−σ (t ′−t1)A〈f (t1)f T (t2)〉e−σ (t ′′−t2)A

= 2kBT

ζ

∫ t ′′

−∞
dt2e

−σ (t ′+t ′′−2t2)A. (25)

In writing Eq. (25) we have used the fact that f (A)T = f (A).
We now diagonalize A in the usual fashion by determining
first N linearly independent normalized eigenvectors Qi of A,
so that AQi = λiQi . We set Q ≡ (Q1,Q2, . . . ,QN ) and have
AQ = Q�, where � is the diagonal matrix whose elements
are λi . Then,

A = Q�Q−1 (26)

holds, with Q−1 being the inverse of Q. From Eq. (26) any
function of A can be written as

f (A) = Qf (�)Q−1. (27)

Especially, one has

exp (At) = Q exp (�t)Q−1. (28)

Thus, Eq. (25) can be written in terms of these eigenvalues and
eigenvectors as

〈X(t ′)XT (t ′′)〉 = 2kBT

ζ

∫ t ′′

−∞
dt2Q e−σ (t ′+t ′′−2t2)�Q−1. (29)

We use the operator um ≡ (0,0, . . . ,1, . . . ,0,0) to project out
the mth element in Eq. (29) to write the expression of Eq. (24)
as

〈[Xm(t ′) − Xn(t ′′)]2〉
= um〈X(t ′)XT (t ′)〉uT

m + un〈X(t ′′)XT (t ′′)〉uT
n

− 2um〈X(t ′)XT (t ′′)〉uT
n

= 2kBT

ζ

∑
i

[ ∫ t ′

−∞
dt2Qmie

−2σ (t ′−t2)λi Q−1
im

+
∫ t ′′

−∞
dt2 Qni e

−2σ (t ′′−t2)λi Q−1
in

− 2
∫ t ′′

−∞
dt2 Qmie

−σ (t ′+t ′′−2t2)λi Q−1
in

]
. (30)

Isolating the λ1 = 0 term in Eq. (30) and integrating it while
taking into account that Qm1 = Q−1

1m = 1/
√

N for all values
of m, we obtain

〈[Xm(t ′) − Xn(t ′′)]2〉
= 2kBT

Nζ
|t ′ − t ′′| + kBT

σζ

∑
i 
=1

[
QmiQ

−1
im /λi

+QniQ
−1
in /λi − 2 Qmie

−σ |t ′−t ′′|λi Q−1
in /λi

]
. (31)
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In order to obtain the ASD of the c.m. of GGS, E(t ′′)
has to be integrated with respect to the time variables while
taking into account the coefficient and the thermal fluctuation
term [see Eqs. (20)–(22)]. Since the difference correlation
function in Eq. (31) has a complicated form, the time integral
of E(t ′′) cannot be solved exactly. For that one needs to
expand the integrand for short- and long-time limits. For
the short-time limit, i.e., at times much less than the Rouse
relaxation time τR (t ′′ � τR), the expansion will dominantly
have information about individual segment or bead relaxation
as it shows ballistic motion of individual beads. Also, the
velocity vector stays more or less constant at short times, so it
takes a time much larger than τR in order to encounter various
layers along the X axis. Since, in this short-time regime, the
dynamics does not possess any structural information about
the polymer, we focus only on the long-time limit that gives
all the information about the topology of the polymer and its
interaction with the random flow.

For the long-time limit, i.e., |t ′ − t ′′| > τR , Eq. (31) can be
simplified by dropping the exponential term and substituting
t ′ = 0 as

〈[Xm(0) − Xn(t ′′)]2〉 ≈ 2kBT

Nζ
t ′′ + kBT

σζ

×
∑
i 
=1

[
QmiQ

−1
im /λi + QniQ

−1
in /λi

]
.

(32)

Substituting Eq. (32) into Eq. (22), we get the final expression
for the VACF for the long-time limit:

E(t ′′) = Wα 
(α/2)

2π V 2
0 N2(DR)α/2 (t ′′)α/2

×
∑
m,n

(
1 + π2 τR

2Nt ′′
∑
i 
=1

Cmn
i

)−α/2

. (33)

In Eq. (33), the Rouse relaxation time is defined as
τR = ζb2N2/3π2kBT . The diffusion coefficient is defined as
DR = kBT /Nζ , and Cmn

i = QmiQ
−1
im /λi + QniQ

−1
in λi . Now

performing time integrals of E(t ′′) in Eq. (33) and using
Eqs. (20) and (21), we get the final explicit expression for
the ASD of the c.m. of GGS for the long-time limit:

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + 4Wα 
(α/2)

π (4 − α)(2 − α)

(
ζN

kBT

)α/2

t2−α/2

×
{

1 − C1

(
π2τR

2t

)1−α/2

+ C2

(
π2τR

2t

)
− · · ·

}
,

(34)

where C1 and C2 are polymer-structure- and flow-type-
dependent coefficients. C2 is the coefficient of stretching, while
C1 is the coefficient of counterstretching induced by the random
flows, and they are defined as

C1 = 4 − α

2

(
1

N

)3−α/2 ∑
m,n

( ∑
i 
=1

Cmn
i

)1−α/2

,

C2 = 4 − α

2N3

∑
m,n

( ∑
i 
=1

Cmn
i

)
.

The first term in Eq. (34) signifies the drift due to the thermal
fluctuations, and the second term represents polymer dynamics
in the external random flows. Since in the long-time limit,
the contribution due to the thermal fluctuations is negligibly
small, the first term can be neglected. The anomalous drift and
stretching in the polymer dynamics are enacted through the
second term. This term has three components: (i) the stretch
induced by random flow, (ii) the dynamic contravening of
stretch due to random flow, and (iii) the drift motion of the
stretched polymer. Equating the first and second components,
we obtain a characteristic maximum stretching time ts , after
which the curtailment of polymer stretching occurs, and ts is
defined as

ts =
(C2

C1

)2/α (
π2τR

2

)
. (35)

For time less than ts , subdiffusive behavior is observed due to
the flow-induced internal dynamics of the polymer. Equating
the stretch and the drift components, we obtain another
characteristic time td of anomalous drift motion, which is
defined as

td = C2

(
π2τR

2

)
. (36)

The polymer follows superdiffusive behavior above the drift
crossover time td .

Substituting α = 1 in Eq. (34), we directly calculate the
ASD for the δ correlated flow:

〈
Y 2

c.m.

〉 = 2kBT

Nζ
t + 4Wα

3

(
ζN

πkBT

)1/2

t3/2

×
{

1 − C1

(
π2τR

2t

)1/2

+ C2

(
π2τR

2t

)
− · · ·

}
,

(37)

where

C1 = 3

2

(
1

N

)5/2 ∑
m,n

( ∑
i 
=1

Cmn
i

)1/2

,

C2 = 3

2N3

∑
m,n

(∑
i 
=1

Cmn
i

)
.

Therefore, in the long-time limit, Eqs. (34) and (37) give the
final results for the ASD of the center of mass of the GGS in
the case of flows with long-range correlation and δ correlation,
respectively.

III. DYNAMICS OF THE COMB-OF-COMB NETWORK

We introduce another class of macromolecules with treelike
structure built in an iterative way, referred to as the comb-of-
comb network Cg,r , obtained after the gth generation, with
each branch consisting of r beads, as shown in Fig. 2. Starting
with g = 0, it consists of a single bead. For generation g = 1,
C1,r is a linear chain with r beads; consecutively, for g = 2 it
refers to that of a comb structure with both a linear backbone
and side arms consisting of r beads each. Topologically
speaking, the network Cg,r begins with a single bead which
gets attached to a chain consisting of r − 1 beads. At each
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FIG. 2. Schematic diagram of the comb-of-comb network Cg,r

with r = 4 and g = 3.

new generation each bead of the entire network gets attached
to the chain of r − 1 beads. In general, Cg,r is obtained by
attaching a new chain with r − 1 beads to each of the beads
of the Cg−1,r network. So the total number of beads in Cg,r

is N = rg . Figure 2 shows schematically the comb-of-comb
network with g = 3 and r = 4. Compared to another class of
treelike macromolecules, the dendrimer, which is only densely
packed at the periphery, the comb-of-comb network is a dense
structure as a whole.

In this section we study the dynamics of the center of mass
of the comb-of-comb network by using the expressions for the
VACF [Eq. (33)] and the ASD [Eqs. (34) and (37)] obtained
in the previous section. In order to determine the VACF and
the ASD, both the eigenvalues λi and the eigenvectors Qi

of adjacency matrix A are required, which we obtained by
numerically diagonalizing the matrix A. We used Mathematica
software for the numerical calculations and for generating the
graphs. In this section we will discuss the influence of varying
topology and the random flow parameters in understanding the
dynamics of the comb-of-comb network.

To generate our graphs, we have assumed that each bead and
spring are made up of N0 Kuhn segments so that the effective
friction coefficient ζ = N0 ζ0, and the effective segment length
(made up of N0 segments) becomes b = √

N0 b0, where ζ0 is
the friction coefficient of each Kuhn segment and b0 is the
Kuhn segment length. Taking N0  100, the longest relaxation
time turns out to be of the order of 10 s, which is a typical
experimental time scale for large realistic polymers [35,36].
The other parameters that we have used are ζ0 = 0.35 ×
10−6 dyn s/cm, b0 = 6.7 × 10−8 cm, and kBT = 4.11 ×
10−14 ergs at 298 K. The ASD in all figures is scaled with re-
spect to the square of the radius of gyration of the linear chain,
〈R2

g〉 = Nb2/6.
In Fig. 3 we display the effect of topology of the Cg,r

network on its dynamics by varying its generations g, i.e.,
g = 2,3,4, and 5 with fixed r = 3. Using Eq. (34), the ASD
of the center of mass 〈Y 2

c.m.〉∗ is plotted against the time t∗,
where in both cases the asterisk indicates that the quantities are
given in dimensionless units, so that 〈Y 2

c.m.〉∗ = 〈Y 2
c.m.〉/〈R2

g〉
and t∗ = σ t . Here the scaling of the ASD is done with 〈R2

g〉

g
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FIG. 3. Dynamics of the center of mass of the comb-of-comb
network Cg,r under the influence of external random flow, plotted

in double logarithmic scales 〈Y 2
c.m.〉∗ = 〈Y 2

c.m.〉/〈R2
g〉 vs t∗ = σ t for

the networks Cg,r for varying generations g, i.e., g = 2,3,4, and
5 (from below) and fixed r = 3. We indicate the cases where α = 1
(delta correlated flow) by solid lines and where α = 0.65 (moderately
correlated) by dashed lines for Wα = 5 × 10−11 a.u.

of the linear chain with total beads N = 9. As we can see
from Fig. 3, it highlights two anomalous power-law regimes:
intermediate- and long-time regimes. The intermediate-time
regime corresponds to the internal motion of the chain where
〈Y 2

c.m.〉 ∝ tν , where ν < 1; that is, it shows subdiffusive
behavior. It is observed that the magnitude of the ASD
increases with generation g of the Cg,r network with constant
r . Physically, this is evident because with increasing g, the
total mass of Cg,r grows, and as a result, there is greater
stretching because now there are more bonds that undergo
stretching, which results in an increase in the ASD of the
center of mass. The maximum stretching of Cg,r with g = 5
is about four times that of the network with g = 2. Now, with
the influence of the external random flow the time dependence
of the ASD is enhanced in the long-time regime, where it
exhibits superdiffusive behavior with ν > 1, attributed to the
overall diffusion of the polymer. Again, in this time regime,
the magnitude of the ASD is greater for Cg,r with greater g;
that is, Cg,r with greater total mass moves faster than that
with lower total mass, a result that is in agreement with the
results of Refs. [52,53] for the Rouse chain and for stars
and dendrimers [47]. Another important observation is the
delay in the drift crossover time td , from the subdiffusive to
superdiffusive regime, with an increase in generation g. This
can be understood because with increasing g, the total mass
increases, and therefore, the internal dynamics last longer
for the longer time, hence delaying crossover to the overall
diffusive regime.

The other aspect that we understand from Fig. 3 is the
impact of the external random flow on the dynamics of the
comb-of-comb network. For this we study the same system,
i.e., the Cg,r network with varying g = 2,3,4, and 5 and fixed
r = 3, for different values of flow exponent α. We indicate
the cases with α = 1 (δ correlated flow) by solid lines and
with α = 0.65 (moderately correlated) by dashed lines for
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FIG. 4. Influence of varying flow strength depicted in two
anomalous time regimes, plotted in logarithmic scales 〈Y 2

c.m.〉∗ vs
t∗ for the comb-of-comb network with g = 4; r = 4 for α = 1 and
varying Wα , i.e., Wα = (0,1,4,11,30) × 10−18 a.u. (from bottom to
top).

Wα = 5 × 10−11 arbitrary units (a.u.). We observe that as we
go from δ correlated towards strongly correlated flow, there is
a decrease in the magnitude of the ASD, while the temporal
dependence of the ASD increases as there is an increase in the
slope in both time regimes which is also evident from Eq. (34).
The best power fits 〈Y 2

c.m.〉 ∝ tν for α = 1 give ν = 0.46 ±
0.01 in the intermediate-time regime and ν = 1.54 ± 0.01 in
the long-time regime, and for α = 0.65 it gives ν = 0.62 ±
0.01 in the intermediate-time regime and ν = 1.69 ± 0.01 in
the long-time regime.

Another significant flow parameter that has a great impact
on the dynamics of the flexible comb-of-comb network is
the flow strength Wα . Figure 4 presents the influence of
varying flow strength by plotting the scaled ASD vs scaled
time for increasing values of Wα , i.e., Wα = (0,1,4,11,30) ×
10−18 a.u. It is observed that increasing the strength of the
external random flow exhibits an increase in the anomalous
behavior in both the time regimes, i.e., an increase in the
subdiffusive and superdiffusive behaviors in the intermediate-
and long-time regimes, respectively. This is evident from the
slope of the curve ν, which decreases in the intermediate-
time regime and increases in the long-time regime with an
increase in Wα . Interestingly, under the limit of negligible
flow strength (W → 0), the ASD reduces to the conventional
diffusive motion, viz., Brownian diffusion (see black dashed
line in Fig. 4); that is, it becomes linearly dependent on
time. So it is worthwhile to mention that the presence of the
external flow results in the change of the conventional diffusive
behavior to subdiffusive in the intermediate-time regime and
superdiffusive in the long-time regime.

Along similar lines, the topology effects of the Cg,r network
on its dynamics by varying r , i.e., r = 3,4,5, and 6 with fixed
g = 3, are presented in Fig. 5. As expected, the magnitude of
ASD increases with r as total mass increases in both the time
regimes. Again, we observe the shift in td with the increase in
total molecular weight of the Cg,r network. The intermediate-
time regime clearly shows the influence of varying topology
of the Cg,r network in the presence of external random flow.
Another important and useful measure that displays the relative

r
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FIG. 5. Dynamics of the center of mass of the Cg,r network
under the influence of external random flow. The main figure
gives the double logarithmic plot of dimensionless ASD 〈Y 2

c.m.〉∗

vs dimensionless time t∗ for fixed generation g = 3 and varying
r , i.e., r = 3,4,5, and 6 (from bottom to top). Here the ASD is
scaled with Rg corresponding to the linear polymer with total beads
N = 27. The flow parameters are α = 1 and Wα = 5 × 10−11 a.u.
The inset displays the dynamical topological ratio of average squared
displacement r as a function of t∗ for the network with the same color
code.

difference in the dynamics of the Cg,r network compared to
that of the linear polymer is the dynamical topological ratio
r(t). It gives the ratio of the ASD of the c.m. of the Cg,r

network to that of a linear polymer with the same total number
of beads N :

r =
〈
Y 2

c.m.

〉
Cg,r〈

Y 2
c.m.

〉
Linear

. (38)

In the inset of Fig. 5 we have plotted in double logarithmic
scales r(t) as a function of t∗ for the Cg,r network with the
same color code as in the main plot. As the total mass of Cg,r

increases, the time at which the minimum and the maximum
of r(t) are observed is shifted to the right. Moreover, the values
of the minimum and maximum peaks get enhanced with the
total mass of the network.

Next, in Fig. 6, we display the long-time dependence of
the ASD of the c.m. of the Cg,r network of various r and g

with fixed total beads N = 256 under the influence of external
random flow. Here again scaled ASD (with 〈R2

g〉 of a linear
chain with 256 beads) is plotted against dimensionless time t∗
in double logarithmic scales using Eq. (37). As we can see from
Fig. 6, the influence of the underlying topology is unraveled
in the intermediate-time regime, where the magnitude of the
ASD of the Cg,r network is observed to be smaller than
the linear analog (r = 256,g = 1), while as N is fixed, the
long-time regime becomes completely independent of the
topology, resulting in the merging of all the curves together.
Moreover, compared to a linear polymer, the comb-of-comb
network shows the drift crossover time shifted towards the
left; that is, in the case of the Cg,r network the crossover
time to reach the superdiffusive regime arrives earlier than
in the linear polymer case. This can be understood as the
comb-of-comb network being more compact than the linear
analog with the same total mass, and the overall diffusive
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FIG. 6. Average squared displacement of the c.m. of the comb-of-
comb network Cg,r of various r and g under the influence of external
MdM flow and a comparison with Oshanin and Blumen’s [53]
continuum model result for a linear chain (shown by red triangles).
Plotted is 〈Y 2

c.m.〉∗ vs dimensionless time t∗ in double logarithmic
scales for α = 1. All networks have the same total number of beads,
N = 256.

motion of the comb-of-comb network becomes easier and
therefore arrives earlier. To validate our theoretical formalism
for a limiting case of a linear polymer, we have compared
our discrete model results with the Oshanin and Blumen [53]
continuum model results for the Rouse chain. In Fig. 6, the red
triangles refer to the continuum model results [refer to Eq. (59)
of Ref. [53]], and the black solid line indicates our result given
by Eq. (37). As shown, our discrete model excellently captures
the results of the continuum model for a linear chain.

Figure 7 shows the decay of the VACF for various comb-
of-comb networks Cg,r with a constant value of total beads
N = 64 and flow exponent α = 1. Plotted is 〈v(0)v(t)〉 vs
dimensionless time t∗ using Eq. (33) for various networks:
r = 2, g = 6 (dash-dotted magenta curve); r = 4, g = 3
(short-dashed cyan curve); r = 8, g = 2 (long-dashed blue
curve); and r = 64, g = 1 (solid black curve). Here the r = 64,
g = 1 network corresponds to the linear polymer. As we see
from Fig. 7, it shows the rapid decay of VACF at intermediate
time along with the long-time algebraic tail. The asymptotic
long-time behavior is of the form t−α/2 [see Eq. (33)]. Also we
observe that decreasing the compactness of the network results
in faster decay of the VACF curve in the intermediate-time
regime. Thus, the linear polymer being the least compact leads
to the fastest decay of the VACF curve. Moreover, we have
compared the VACF results of our discrete model [Eq. (33)]
shown by the black solid line in Fig. 6 with the Oshanin
and Blumen continuum model results [refer to Eq. (58) of
Ref. [53]] for a Rouse chain indicated by the red triangles.
Again, as observed, our results are shown to be in excellent
agreement with continuum model results for a linear chain.
The inset shows the same plot of 〈v(0)v(t)〉 vs t∗ in double
logarithmic scales, where the black dashed line corresponds
to the t−α/2 decay. With an increase in the compactness of the
network, the maximum value of the VACF increases in early
time. So compared to the comb-of-comb network, the linear
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FIG. 7. Influence of topology on VACF for various Cg,r networks
with fixed total beads N = 64 and flow exponent α = 1 and a
comparison with Oshanin and Blumen’s [53] continuum model result
for a linear chain (shown by red triangles). Plotted is 〈v(0)v(t)〉 vs
dimensionless time t∗ using Eq. (33) for various network topologies:
g = 6, r = 2 (dot-dashed magenta curve); g = 3, r = 4 (short-
dashed cyan curve); g = 2, r = 8 (long-dashed blue curve); and
g = 1, r = 64 (solid black curve). Here the g = 1, r = 64 network
corresponds to the linear polymer. The inset shows 〈v(0)v(t)〉 as a
function of t∗ in double logarithmic scales. Here the black dotted line
indicates the t−α/2 decay.

polymer exhibits a lower magnitude of the VACF with faster
decay of the curve in the intermediate-time regime.

Besides the effect of topology, the VACF is also influenced
by the hydrodynamic flow that is shown in Fig. 8 for the Cg,r

network with g = 3 and r = 4. Using Eq. (33), we have plotted
〈v(0)v(t)〉 vs dimensionless time t∗ for various values of flow
exponent α, i.e., α = 0.4, 0.5, and 0.6 (from top to bottom). In
general, the VACF curve decays with the long-time algebraic
tail that scales as t−α/2. Quantitatively, an increase in α results
in faster decay of the VACF curve, as observed in Fig. 8.
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FIG. 8. Influence of external flow on VACF of the Cg,r network
with g = 3 and r = 4. Plotted is 〈v(0)v(t)〉 vs dimensionless time t∗

using Eq. (33) for various values of flow exponent α, i.e., 0.4,0.5,0.6
(from top to bottom). The inset shows 〈v(0)v(t)〉 as a function of t∗

in double logarithmic scales for various α with the same color code
as in the main plot. Here the dashed lines indicate the t−α/2 decay for
corresponding α values.
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FIG. 9. Comparison of the dynamics of the comb-of-comb
network and those of a dendrimer and a linear polymer with almost
the same total number of beads in external random flow. The main
plot shows 〈Y 2

c.m.〉∗ vs t∗ in double logarithmic scales for C8,2 (solid
green curve), C1,256 corresponding to the linear polymer (dot-dashed
blue curve), and a dendrimer with spacer p = 12, generation G = 3
(dashed magenta curve). The inset depicts the VACF vs time for
topologies with same line and color code.

This can be understood as the higher value of α signifying
antipersistence behavior of the flow; that is, the random nature
of the flow is changing rapidly. The long-range correlation
effects are observed with an increase in the persistence flow
behavior, i.e., smaller α, therefore resulting in the slowing
down of the decay. The double logarithmic plot of the VACF
is shown in the inset in Fig. 8. Here the dashed lines indicate
the t−α/2 decay for the corresponding α values. Another flow
parameter is the flow strength Wα that occurs in Eq. (33) as the
multiplicative factor; therefore, it alters only the magnitude of
the VACF curve and does not change the decay time.

Finally, we compare the dynamics of the comb-of-comb
network with that of a dendrimer and a linear polymer
with almost same total number of beads (N = 256 for the
comb-of-comb network and linear polymer and N = 253 for
the dendrimer) under the external MdM flow with α = 1 and
Wα = 5 × 10−11 cm3/s2 (see Fig. 9). The main plot of Fig. 9
displays in double logarithmic scales 〈Y 2

c.m.〉∗ vs t∗ for the
comb-of-comb network with r = 2 and g = 8 (solid green
curve), the dendrimer with spacer p = 12 and generation g =
3 (dashed magenta curve), and the linear polymer (dot-dashed
blue curve). In this plot we observe that the influence of the
topology of the polymer is unraveled in the intermediate-time
regime, where the magnitude of the ASD follows the trend with
the linear polymer showing the maximum value, followed by
the dendrimer, and the comb-of-comb showing the minimum
value of the ASD. Since all three topologies considered have
almost the same total mass, all the curves merge at long times,
showing no dependence on topology at long times. Although
the magnitude of the ASD of the Cg,r network is the lowest
among the three topologies, td for Cg,r occurs faster than for
the dendrimer and linear polymer. This is because the overall
size of the Cg,r network is the minimum; in other words, it
is the most compact of the three topologies with the same
total mass. As a result, the overall diffusion becomes easier
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FIG. 10. Comparison of the dynamics of the comb-of-comb
polymer with HI (solid line) and without HI (dashed line) with r = 3
and g = 3. Plot of 〈Y 2

c.m.〉∗ (scaled 〈Y 2
c.m.〉 with 〈R2

g〉 of the linear
polymer with the same total number of beads N = 27) vs t∗ in double
logarithmic scales with α = 1 and Wα = 5 × 10−11 cm3/s2.

in the case of the comb-of-comb network, and therefore, td
arrives earlier. The inset in Fig. 9 depicts the VACF vs time
for topologies with same line and color code. As observed, the
VACF curve decays fastest for the linear polymer (dot-dashed
blue line), followed by the dendrimer (dashed magenta line),
while the slowest decay is observed for the comb-of-comb
network (solid green line).

Contribution of HIs

The results presented in the previous sections investigated
the dynamics of the comb-of-comb network in the absence
of HIs. So the purpose of introducing this section is to give
a brief idea of what the impact of the incorporation of HIs
is on the dynamics of the comb-of-comb network in the
external random flow. A detailed mathematical formalism and
description are beyond the scope of the present paper and will
be presented in a separate publication. Now as we are aware
of the fact that the dynamical behavior of a polymer in a dilute
solution is strongly affected by the nonlinear and long-range
hydrodynamic interactions, it is pertinent to include this effect
and quantify its relevance. Various analytical theories have
been developed that reveal the influence of hydrodynamic
interactions on the various conformational and dynamical
properties of polymers in a solution [56–58]. Zimm extended
the Rouse theory in order to take into account the HI effects
using the preaveraged approximation [56,58]. He obtained the
theory of the relaxation behavior of long polymer chains in the
absence of excluded volume effects. Later, the Zimm theory
was extended to study in detail the intrinsic viscosity and
the relaxation modes of branched polymers such as stars and
dendrimers [59].

We employ a similar methodology to obtain our results
with the inclusion of HIs using a preaveraged approximation.
Figure 10 depicts the influence of including HIs on the ASD
dynamics of the comb-of-comb network in double logarithmic
scales with r = 3 and g = 3. Here the Zimm case (with HIs)
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and the Rouse case (without HIs) are shown as solid and dashed
lines, respectively. The results reveal that while no qualitative
change is observed, there is only a quantitative change in the
dynamics of the comb-of-comb network with the inclusion of
HIs in the external random flow. There are some key points
of observation. First, taking HIs into account results in an
increase in the magnitude of the ASD that is supposed to
arise because there is an additional contribution of HIs that
results in the faster displacement of the polymer. A further
examination reveals that the inclusion of the HIs speeds up
the stretch dynamics, and thus, the overall drift occurs faster,
which is shown by the crossover time, which is shorter for the
Zimm case than the Rouse case. This can be understood by
the fact that the longest relaxation times given by the smallest
nonvanishing eigenvalues are shorter in the Zimm case than in
the Rouse case.

IV. CONCLUSIONS

In summary, our results show the influence of random
flow on the dynamics of a single comb-of-comb network
with varying topologies. The modeling of flexible branched
polymers is done within the framework of the GGS approach,
while the random flow is accounted for through the MdM
model. Here we have numerically analyzed the dynamics
through quantities like the ASD and VACF. On the basis of
our analysis, there appear to be distinct commonalities and
differences between the comb-of-comb network of varying
topologies and its linear analog in random flows. Both linear
and comb-of-comb networks show two anomalous power-law
behaviors in the intermediate- and long-time regimes of
the ASD. The dynamics in the intermediate-time regime is
observed due to the flow-induced stretching, counterstretching,
and drift of the polymer structure. The collective effect of these
processes causes subdiffusive behavior. The dynamics in the
long-time regime is due to the random-flow-induced drift of the
stretched polymer and follows superdiffusive behavior. These
dynamic behaviors have two characteristic times: maximum
stretching crossover time ts and anomalous drift crossover
time td .

The drift crossover time (from the subdiffusive to superdif-
fusive regime) arrives earlier in the case of the comb-of-comb

network than in the linear polymer with the same total mass.
The magnitude of ASD increases for topologies generated with
an increase in generation g of the comb-of-comb network.
The nature of intermediate-time subdiffusive and long-time
superdiffusive behaviors is preserved, while their crossover
times increase with an increase in g. In our analysis, we
showed that the comb-of-comb network with greater total
mass moves faster in a random layered flow. This conclusion
is similar to the one obtained for a linear Rouse chain in
Refs. [52,53] and stars and dendrimers in Ref. [47]. On the
other hand, this observation is in contrast to the case of
nonrandom flows where the smaller polymers move faster than
larger polymers [53]. The influence of topologies, with the
same total mass, is unraveled in the intermediate-time regime.
The temporal exponent ν of ASD that is indicative of the
degree of the anomaly is shown to be dependent on only the
flow parameters, i.e., α and Wα , while it is independent of
the mass and the topology of polymer. With an increase in
the value of α, the magnitude of the ASD increases, while
the temporal exponent of the ASD decreases in both time
regimes. With an increase in Wα , the temporal exponent
decreases in the intermediate-time regime (more subdiffusive)
and increases in the long-time regime (more superdiffusive).
Moreover, our theory predicts anomalous VACF in the random
layered flows with the long-time algebraic tail that scales as
t−α/2. Increasing α or the antipersistence behavior of flow
results in faster decay of the VACF curve. The intramolecular
hydrodynamic interactions move the onset of the topological
effects to earlier times; that is, the overall diffusive behavior
occurs more quickly in the presence of HIs with the enhanced
magnitude of the ASD. We hope that the analytical results
presented here will be helpful in experiments to understand the
dynamics of branched polymers under external flows and will
stimulate efforts with such systems in numerically simulated
random flows [60].
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