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Origin of two maxima in specific heat in enthalpy relaxation under thermal history
composed of cooling, annealing, and heating
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The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-
transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using
differential scanning calorimetry, and the calculation was done using the phenomenological model equation under
a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher
maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of
annealing time ta, while the lower one is observed above an annealing temperature Ta and shifts toward the higher
one, increasing its magnitude with ta. The analysis by the phenomenological model equation proposed in order
to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in
specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above Ta is
caused by an increase in the amount of relaxation during annealing with ta. The annealing temperature and the
amount of relaxation during annealing play a major role in the determination of the number of maxima in the
specific heat.
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I. INTRODUCTION

When glass-forming liquid is heated from the glassy state,
the overshoot of specific heat against temperature is observed
in the glass-transition region, and this phenomenon is called
enthalpy relaxation. The magnitude and the temperature of
the specific-heat peak decrease or increase depending on the
thermal history. Conventionally, the memory effect in enthalpy
relaxation has been analyzed using the phenomenological
model, including the fictive temperature [1], which depends
not only on temperature but also on instantaneous structures
such as the Tool-Narayanaswamy-Moynihan (TNM) model
[1–3] and the Kovacs-Aklonis-Hutchinson-Ramos (KAHR)
model [4]. These models introduced the nonlinear param-
eter that partitions the actual temperature and the fictive
temperature, and they described the memory effect. The
models are widely used, and quantitative agreements with the
experimental results have been reported. Gómez and Monleón
have proposed that the state reached after sufficiently long-time
annealing is not equal to the state extrapolated from the
equilibrium liquid state at a high temperature [5]. Recently,
some studies have discussed the existence of an aging plateau
[6–9] by focusing on the total enthalpy decay after long-time
aging. The aging plateau is the state reached at very long-time
aging, and in this state the system has higher enthalpy than
the extrapolated enthalpy from the equilibrium liquid state.
Two-step relaxation after the aging plateau has also been
reported in the enthalpy relaxation in polystyrene (PS) [8] and
chalcogenide glass [7]. Multiple relaxations are observed in
the Brillouin frequency shift of glycerol [10]. Contrary to these
studies, Koh and Simon have reported that the aging plateau
does not exist in PS with a broad distribution of molecular
weights [11]. The existence of the aging plateau may depend
on the distribution of molecular weights. These studies focus
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on the total enthalpy decay, and they do not take into account
the memory effect in the enthalpy relaxation.

We have studied the annealing effects on the enthalpy
relaxation in PS [12] on the basis of a comparison between
the experimental results and the calculated ones by using
the phenomenological model equation proposed in order to
examine the memory effect on viscoelasticity in the glassy state
[13]. The analysis by our model is based on the calculation
with parameters experimentally obtained or with physically
clear ones. Our model is an extension of the linear-response
theory to nonlinear phenomena, and it allows us to examine the
history of which point in time in the past affects the physical
properties at the present time.

Polystyrene is a typical glassy polymer, and it is said to
show only one maximum in specific heat under a typical
thermal history of the annealing experiment, as shown in
Fig. 1: cooling from the equilibrium liquid state to an annealing
temperature at a constant rate, isothermal annealing, further
cooling at the same rate to the glassy state, and reheating to
the liquid state. Under such a typical thermal history, some
glassy polymers, such as polymethyl methacrylate (PMMA)
and polyvinyl chloride (PVC), show two maxima in specific
heat in the heating process [14–18].

The β relaxation is observed as well as the α relaxation
in the dielectric or the mechanical measurement in PMMA
and PVC [19–23], but not in the calorimetry [24]. We have
studied the effects of annealing on the enthalpy relaxation in
PMMA, and we reported part of the results and the analyses
[18]. It turned out that two relaxations are not always necessary
for two maxima in specific heat since the parameter fitting or
the calculation by the model with only one relaxation has
reproduced two maxima in the specific heat [14,18].

The purpose of the present study is to clarify the origin
of two maxima in specific heat under the thermal history of
a typical annealing experiment. In addition to PMMA, PVC
is also used as a sample. We first explain the model used in
this paper in Sec. II. Next we outline the measurements of
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FIG. 1. Schematic diagram of the thermal history in the annealing
experiments.

basic relaxation parameters and the annealing experiments
in Sec. III, and we show the results of these experiments
in Secs. IV A and IV B. In Sec. IV C, three methods of
calculations (1, 2, and 3) are explained. In calculation 1, which
is important for the purpose of this paper, the relaxation time
is assumed to be the equilibrium one obtained by extrapolation
from the equilibrium liquid state over the entire temperature
range, including the glassy state below Tg. Section IV D is
the main part of this paper, and we discuss qualitatively the
origin of two maxima in specific heat based on calculation
1. In Sec. IV E we perform calculations 2 and 3 in order to
examine a quantitative agreement, and finally we comment on
the possibility of two maxima in PS.

II. PHENOMENOLOGICAL MODEL

The model used in this paper is the same one that was used
in previous studies. The details are given in previous papers
[12,18]. The evolution of entropy under a given thermal history
is calculated by the phenomenological model equation,

S(t) = Seq[T (t)] −
∫ t

−∞
�χ[T (t),T (t ′)][T (t) − T (t ′)]

× ∂φ[t̃(t,t ′)]
∂t ′

dt ′, (1)

�χ[T (t),T (t ′)] = 1

T (t) − T (t ′)

∫ T (t)

T (t ′)

�Cp(T ′′)
T ′′ dT ′′, (2)

t̃(t,t ′) ≡
∫ t

t ′

du

τ (u)
, (3)

where Seq(T ) is the entropy in the equilibrium liquid state,
�χ [T (t),T (t ′)] is the susceptibility for entropy, �Cp(T ) is
the difference between the liquid and the glassy specific heat
[C0

p (T ) and C∞
p (T ), respectively], and φ(t) is the normalized

relaxation function. The intrinsic time lapse, or the reduced
time t̃(t,t ′), gives the time lapse between t ′ and t measured
with the instantaneous relaxation time, τ (u).
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FIG. 2. Schematic graph of entropy against temperature. The
solid, dotted, dashed, and dashed-dotted lines represent the instanta-
neous entropy S(t), the liquid entropy Seq(T ), the hypothetical glassy
entropy Sg(T ) defined by Eq. (6), and the modified glassy entropy
Sg′(T ) defined by Eq. (7), respectively. At a temperature T2, Sg is
equal to Seq.

For the relaxation time τ in t̃(t,t ′) in Eq. (3), we assume that
the relaxation time obeys the Adam-Gibbs theory [25] in the
out-of-equilibrium glassy state as well as in the equilibrium
liquid state [26,27], and it is determined by

τ = τ∞ exp

[
A

T Sc

]
, (4)

Sc = S − Sg(T ), (5)

Sg(T ) = Seq(T2) +
∫ T

T2

C∞
p (T ′)

T ′ dT ′, (6)

where τ∞ and A are constants, Sc is the configurational
entropy, and Seq(T ) and Sg(T ) are the liquid entropy and
the hypothetical glassy entropy, respectively, schematically
shown in Fig. 2. At a temperature T2, Sg is equal to Seq.
The calculated results are compared with the results of the
annealing experiments, and we discuss the origin of two
maxima in specific heat in the enthalpy relaxation.

III. EXPERIMENT

A. Material and differential scanning calorimetry

The materials used in this study were PMMA with
a molecular weight Mw = 75 000 and PVC with Mw =
275 000 purchased from Scientific Polymer Products. No trace
of crystallinity in PVC has been observed by wide-angle
x-ray diffraction before and after the experiments. The glass-
transition temperature Tg of PMMA and PVC defined by the
equal area method [3] is 105.0 and 85.0 ◦C at the cooling
rate of 9.7 K/min, respectively. The DSC measurement was
carried out by DSC-60 (Shimadzu Corp.). In the glassy
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state, two sources of entropy exist: one originates from the
heat exchanged and the other from the irreversibility of the
processes taking place in the nonequilibrium system [28], and
in the case of mild variation of Tf , the entropy irreversibly
produced is negligible [29]. The apparent specific heat, Cp,
is defined in this paper by Cp = Q̇/wṪ , where Q̇ is the heat
flux observed in the DSC measurement, w is the weight of the
sample, and Ṫ is the time derivative of temperature T . The
entropy in this paper is determined from thus defined apparent
Cp. In all the experiments, the memories of the samples were
erased by annealing at a temperature in the equilibrium liquid
state T lq = 200 ◦C for PMMA and 170 ◦C for PVC for 1 min.

B. Complex specific-heat measurements

The sample of about 4.4 mg and 0.2 mm in thickness for
PMMA and the powdery sample of about 4.3 mg for PVC were
cooled to a temperature T0 in the range from 40 to 160 ◦C
for PMMA and from 30 to 150 ◦C for PVC at 9.7 K/min
and kept for 3 min. Then the sample underwent the sinusoidal
temperature variation centered at T0 with an amplitude of 0.5 K
and a period P in the range from 20 to 200 s.

C. Annealing experiments

In the measurements of the dependence of enthalpy relax-
ation on the annealing conditions, the samples from 4 to 16 mg
were employed. The results of the sample of 7 mg in weight
for PMMA and of 11 mg for PVC are shown as the annealing
experimental results; no systematic variation in the heat flow
with the sample weight was observed.

Figure 1 shows the thermal history of the annealing experi-
ment. In the annealing experiments, the sample was cooled
from a high temperature T lq to an annealing temperature
Ta in the range from 60 to 115 ◦C for PMMA and from 50
to 85 ◦C for PVC, annealed for ta in the range from 1 to
3 × 103 min, further cooled to a temperature T gl well below
Tg and then heated to T lq followed by the second run; T gl

was 30 ◦C for PMMA and 20 ◦C for PVC. The second run
comprised the cooling from T lq to T gl and heating to 180 ◦C
for PMMA or 160 ◦C for PVC. The results of the second run
were used for the baseline correction and the examination of
the sample degradation. The heating and the cooling rates were
all 9.7 K/min. All the thermal treatments were carried out in
the calorimeter.

IV. RESULTS AND DISCUSSION

A. Relaxation parameters

The results of the complex specific-heat measurements
for PVC are shown in Figs. 3, 4, and 5. We obtained the
temperature dependence of the liquid and the glassy specific
heat, C0

p (T ) and C∞
p (T ), from the real part of the specific heat at

high and low temperatures, respectively. We assume that C0
p (T )

and C∞
p (T ) are linear in T in the temperature range of the mea-

surement, i.e., C0
p (T ) = a	T + b	 and C∞

p (T ) = agT + bg,
and we obtained coefficients of C0

p and C∞
p . The relaxation

time τ (T ) was obtained from the peak temperatures of the
imaginary part of specific heat, Tα in Fig. 3, by τ (Tα) = P/2π

and shown in Fig. 4, where P is the period of the temperature

60 80 100 120

1

1.5

2

0

0.1

0.2

(J
g 

  K
   

 )

(  C)

Cp
0 (   )T

Cp (   )T

(Jg    K
    )

−1
−1

−1
−1C

’ p

C
’’p

T

FIG. 3. Temperature dependence of the real (upper data) and the
imaginary parts (lower data) of specific heat for PVC. The symbols
represent the experimental data. ©: P = 20 s, �: 30 s, �: 50 s, ♦:
100 s, +: 200 s. The solid lines represent C0

p (upper) and C∞
p (lower),

respectively. The dotted, dashed, and dashed-dotted curves represent
C ′′

p calculated for P = 30, 50, and 100 s, respectively.

modulation. The temperature dependence of relaxation time is
assumed to be described by the Adam-Gibbs equation, and
the least-squares fitting by Eq. (4) with Sc(T ) = Seq(T ) −
Sg(T ) gives the parameters τ∞ = (8.4 ± 3.9) × 10−12 s,
A = 284.32 ± 0.04 J g−1, and T2 = 325.8 ± 0.6 K. The
complex specific heat normalized by C∞

p (T ) and �Cp(T ),
CN *

p (ωτ ), is shown in Fig. 5, where �Cp(T ) is the difference
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FIG. 4. Temperature dependence of the relaxation time for PVC.
Open circles represent the experimental results. The relaxation time
obtained from C ′′

p for P = 200 s for PVC is not shown in the figure.
The solid curve represents Eq. (4) with Sc(T ) = Seq(T ) − Sg(T ),
τ∞ = 8.40 × 10−12 s, A = 284 J g−1, and T2 = 326 K, and the dotted
curve represents Eq. (4) with Sc(T ) = Seq(T ) − Sg′(T ), τ (3)

∞ = 4.08 ×
10−12 s, A(3) = 343 J g−1, and T

(3)
2 = 324 K.
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FIG. 5. (a) Real and (b) imaginary parts of normalized specific
heat for PVC. ©: P = 20 s, �: 30 s, �: 50 s, ♦: 100 s, and +: 200 s.
The solid curves represent the calculated ones by Fourier transform
of 1 − φ(t/τKWW).

between C0
p (T ) and C∞

p (T ). The relaxation function was ap-
proximated by the KWW function [30] with a relaxation time,
τKWW, proportional to the experimental τ , and an exponent
β. The complex specific heat was calculated by the Fourier
transform of 1 − φ(t/τKWW) and compared with the data in
Fig. 5. The best-fit values of β and τKWW thus obtained were
β = 0.40 ± 0.08 and τKWW = (0.69 ± 0.26)τ . The value of β

for PVC obtained by our thermal measurement is larger than
that by the dielectric measurement (β = 0.23 ± 0.03 [31]).
The parameters obtained by the measurements in Sec. IV A
for PMMA and PVC are summarized together with the results
for PS for comparison in Table I.

B. Dependence of specific heat on annealing conditions

Since the purpose of this paper is to discuss the origin of
two maxima in specific heat, we examine the experimental
conditions under which two maxima in specific heat are
observed, and we mainly show the experimental results in the
case of two maxima. The results of annealing measurements
are shown in Figs. 6, 7(a), 7(b), and 8. Figure 6 shows the
temperature dependence of specific heat in the heating process
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FIG. 6. Specific heat against temperature in the heating process
after annealing for 103 min at Ta in the range from 49.8 to 85.1 ◦C for
PVC. The symbols represent the experimental data; •: unannealed
data, ©: Ta = 49.8 ◦C, �: 55.0 ◦C, �: 59.7 ◦C, ♦: 65.2 ◦C, �:
70.2 ◦C, �: 75.3 ◦C, �: 80.5 ◦C, and +: 85.1 ◦C. The down and the
up arrows represent the lower and the higher maxima in specific
heat, respectively. The numbers in the figure represent the annealing
temperature in ◦C.

at 9.7 K/min after annealing at Ta in the range from 49.8 to
85.1 ◦C for 103 min for PVC. At Ta = 49.8, 55.0, and 59.7 ◦C,
two maxima in specific heat are observed. When two maxima
in specific heat are observed, we call, for convenience, the
maximum in specific heat observed at a lower temperature
the lower maximum in specific heat, and that observed at
a higher temperature the higher maximum in specific heat.
In the case of PVC, the naming of the higher “maximum”
may not be proper, and this should be described as a “kink”
rather than a maximum. However, for convenience we call this
kink a “maximum” in order to be in contrast with the lower
maximum because in the preliminary measurements of the
ramping rate dependence, the kink in specific heat grows into
a conspicuous maximum with decreasing cooling rate and/or
increasing heating rate.

The magnitude and the temperature of the lower maximum
in specific heat, CL

p max(Ta,ta) and T L
max(Ta,ta), respectively,

increase with annealing temperature Ta, while those of the

TABLE I. Parameters obtained by the temperature-modulated measurements for
PS, PMMA, and PVC.

Sample a	 (J g−1 K−2) b	(J g−1 K−1) ag (J g−1 K−2) bg (J g−1 K−1)

PS [12] 3.7 × 10−3 6.1 × 10−1 4.1 × 10−3 9.0 × 10−2

PMMA [18] 5.2 × 10−3 1.6 × 10−1 6.0 × 10−3 −4.6 × 10−2

PVC 4.3 × 10−3 3.5 × 10−1 4.7 × 10−3 −6.3 × 10−2

Sample τ∞ (s) A (J g−1) T2 (K) β

PS [12] 1.28 × 10−8 333 336 0.62 ± 0.09
PMMA [18] 1.88 × 10−4 99.1 359 0.34 ± 0.06
PVC 8.40 × 10−12 284 326 0.40 ± 0.08
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FIG. 7. Specific heat in the heating process after annealing at Ta = 55.0 ◦C for ta in the range from 1 to 3 × 103 min. (a) The experimental
Cp for unannealed results and for ta = 103 and 3 × 103 min for PVC. The excess specific heat is shown in the inset in (a). (b) δCp for the
experimental results and the results by the calculations 2 (thin) and 3 (thick) for ta in the range from 1 to 3 × 103 min. (c) The results by
the calculations 2 (thin) and 3 (thick). The plots of δCp and Cp by the calculation 2 for ta = 103 and 3 × 103 min are shown in the insets in
(b) and (c), respectively. The shapes of the symbols represent ta, •: ta = 1 min, ©: ta = 10 min, �: ta = 102 min, �: ta = 103 min, and ♦:
ta = 3 × 103 min, and the crossed symbol represents the unannealed data. The dashed-two dotted, dashed-dotted, dotted, solid, dashed, and
short dashed curves in (b) and (c) are ta = 1, 10, 102, 103, and 3 × 103 min, and unannealed data, respectively. The solid, dotted, and dashed
down-arrows represent the lower maxima in specific heat of the experimental results of the calculations 2 and 3, respectively. The numbers in
the figure represent the annealing time in minutes.

higher maximum, CH
p max(Ta,ta) and T H

max(Ta,ta), respectively,
remain unchanged with Ta. T L

max is determined by the maxi-
mum temperature of δCp defined by the difference between
the annealed Cp and the unannealed one, and CL

p max is Cp(T =
T L

max). T H
max is determined by the maximum temperature of

the excess specific heat defined by Cp − C0
p , and CH

p max is
Cp(T = T H

max). At Ta � 65.2 ◦C, only one maximum in specific
heat is observed. When only one maximum is observed, we
call the one simply the maximum in specific heat, and the
magnitude and the temperature of the maximum in specific
heat, C(1)

p max and T (1)
max, respectively, are determined in the

same way as the higher maximum. C(1)
p max increases with Ta

for Ta � 80.5 ◦C and decreases for Ta > 80.5 ◦C, and T (1)
max

increases with Ta.
Figure 7(a) shows the annealing time dependence of

the enthalpy relaxation for PVC. The specific heat against
temperature in the heating process is shown for Ta = 55.0 ◦C
and ta of 103 and 3 × 103 min in the figure as examples of
the case in which two maxima in specific heat are observed.
The black crossed symbols represent the unannealed data. The
excess specific heat is shown in the inset of Fig. 7(a).

The symbols in Fig. 7(b) show δCp for ta = (1–3) ×
103 min. Figure 7(b) shows that a discernible maximum is not
observed at ta � 102 min while the maxima in δCp are clearly
observed at ta � 103 min. The magnitude and the temperature
at a maximum in δCp, corresponding to CL

p max and T L
max,

respectively, increase with ta, while CH
p max and T H

max remain
unchanged with ta. The similar results have been obtained for
PMMA at an annealing temperature, e.g., Ta = 80.1 ◦C [18].

The symbols in Figs. 8(a) and 8(b) show the annealing
temperature dependence of CH

p max, CL
p max, and C(1)

p max, and
of T H

max, T L
max, and T (1)

max, respectively, for ta = 102, 103, and
3 × 103 min for PMMA (left) and for ta = 102 and 103 min
for PVC (right). Figure 8 shows that for a given ta, two
maxima in specific heat are observed within an annealing
temperature range. At high annealing temperatures, only one
maximum in specific heat is observed. At very low annealing
temperatures, the lower maximum in specific heat cannot
be determined within the experimental accuracy and hence
only one maximum is observed. Similarly for a very short
annealing time, the lower maximum cannot be determined. At
high annealing temperatures, C(1)

p max increases at first and then
decreases with Ta, and T (1)

max increases with Ta. The upper limit
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FIG. 8. Annealing temperature dependence of (a) CL
p max, CH

p max, and C(1)
p max; and (b) T L

max, T H
max, and T (1)

max, respectively, for PMMA (left)
and PVC (right). The symbols represent the results of annealing experiments and the curves the results by calculation 3. The filled symbols
represent the magnitude and the temperature of lower maximum in specific heat, CL

p max and T L
max. The open and crossed symbols represent

those of higher maximum, CH
p max and T H

max, and those of the maximum in the case of only one maximum, C(1)
p max and T (1)

max, respectively. The
shapes of symbols represent the annealing time are as follow: ©: ta = 102, �: 103, and ♦: 3 × 103 min. The line types represent the type of
maximum in specific heat; dashed: CL

p max and T L
max, solid: CH

p max and T H
max, and dotted: C(1)

p max and T (1)
max. The linewidth represents the annealing

time; thin: ta = 102, medium: ta = 103, and thick: ta = 3 × 103 min, respectively.

of the annealing temperature where two maxima in specific
heat are observed, T

up
a , decreases with annealing time.

The experimental results for the enthalpy relaxation in
PMMA and PVC in the case of two maxima are summarized
as follows. For a given ta, for Ta < T

up
a , two maxima in specific

heat are observed and CL
p max and T L

max increase with Ta while
CH

p max and T H
max are almost unchanged independent of Ta. For

an annealing temperature where two maxima in specific heat
are observed, CL

p max and T L
max increase while CH

p max and T H
max

are almost unchanged with increasing ta

C. Calculation by the phenomenological model equation

The specific heat under a given thermal history is calculated
with the relaxation parameters experimentally obtained in the
following three methods according to the definition of the
configurational entropy Sc. The details of the calculations are
given in previous papers [12,18].

Calculation 1. The configurational entropy is assumed to be
given by Sc(T ) = Seq(T ) − Sg(T ). Hence the relaxation time
is an equilibrium one at a temperature lower than Tg, as shown

in Fig. 4 and determined by the instantaneous temperature, i.e.,
τ [T (t)] = τ eq[T (t)].

Calculation 2. The configurational entropy at time t is
assumed to be given by Sc(t) = S(t) − Sg[T (t)] in terms of
the instantaneous entropy S(t). The relaxation time varies with
cooling below Tg and with annealing time through S(t).

In calculation 1, the relaxation time does not vary during
annealing, that is, the entropy relaxes with a constant relaxation
time determined by Ta toward equilibrium during isothermal
annealing. In contrast, in calculation 2, the relaxation time
varies during annealing through the decrease in S(t), that is,
the rate of relaxation to equilibrium varies with time even
during isothermal annealing. These calculations are identical
to the model used in Ref. [15] in that the relaxation time
below Tg is described by extending the Adam and Gibbs
equation to the glassy state. In these two calculations in the
present paper the parameters only experimentally obtained are
employed.

Calculation 3. A better agreement with the experimental
results is examined by taking account of the additional
contribution of the specific heat, �C(T ), to the glassy entropy,
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Sg(T ), on the basis of the free-energy landscape (FEL) theory
[32–34]. These studies suggest that the configurational entropy
is not always given by Eq. (5), but Sg(T ) includes an additional
component originating from the temperature dependence of
FEL and changes stepwise presumably in the glass-transition
region. The glassy entropy taking into account �C(T ), Sg′(T ),
is given by

Sg′(T ) = Seq(T (3)
2

) +
∫ T

T
(3)

2

C∞
p (T ′) + �C(T ′)

T ′ dT ′, (7)

�C(T ) =
√

2

π
�χFT exp

[
− (T − TF)2

2σ 2
F

]
, (8)

where the simplest functional form of �C(T ) is assumed so
that Sg′ shows the stepwise change in the glass-transition re-
gion as shown in Fig. 2 by the dash-dotted curve, and �χF, σF,
and TF are the constant parameters independent of temperature
and the experimental condition. The configurational entropy
is given by Sc(t) = S(t) − Sg′[T (t)], and the relaxation time
is given by Eq. (4) with this configurational entropy.

D. Results and discussion based on calculation 1

Two maxima in specific heat are reproduced qualitatively
by all the methods of the calculations, even by calculation 1,
the simplest method in which the variation in the relaxation
time during annealing is not considered.

We focus on the case of the two maxima in specific heat
in this paper. We first show the results by calculation 1 in the
case of two maxima in specific heat, and then we discuss the
origin of two maxima in specific heat based on calculation 1.

In calculation 1, the range of annealing temperature where
two maxima in specific heat are observed does not agree with
the experimental results. Therefore, we show in Fig. 9 the
calculated results for Ta = 100.1 and 78.0 ◦C for PMMA and
PVC, respectively, as the examples that show the feature of
the dependence of two maxima on the annealing time most
remarkably.

Figure 9 shows that CL
p max and T L

max increase with ta

while CH
p max and T H

max remain unchanged in agreement with
the experimental results. Calculation 1 reproduces the depen-
dence of two maxima in specific heat on the annealing time in
the enthalpy relaxation. This result indicates that the variation
in the relaxation time during annealing is not always necessary
for the appearance of two maxima in specific heat.

We discuss the condition under which two maxima in
specific heat are observed, and the factor that determines the
number of maxima in specific heat under a history of a typical
annealing experiment. We will hereafter show the calculated
results only for PMMA for discussion.

Figure 9 indicates that the higher maximum nearly agrees
with the maximum in the unannealed specific heat, and that
the lower maximum is observed only in the case in which the
sample undergoes the annealing history. We expect that the
lower maximum in specific heat originates from the annealing
history, and the higher one originates from the rest of the
history, i.e., the cooling and the heating in Fig. 1.

To examine the contribution of the history as shown in
Fig. 1 to the maximum in specific heat, the integral in Eq. (1)

at a time t > tHT during the heating process is decomposed
into two components δSanneal(t) and δS ′(t). These are the
contributions to δS(t) during annealing and the rest of the
history, respectively:

δS(t) ≡ S(t) − Seq[T (t)] = δSanneal(t) + δS ′(t) (9)

= −
∫ t

0
�χ [T (t),T (t ′)][T (t) − T (t ′)]

∂φ[t̃(t,t ′)]
∂t ′

dt ′.

(10)

Since T (t ′) = Ta = const for tAN � t ′ � tCL2, δSanneal(t) is
written by

δSanneal(t)

= −
∫ tCL2

tAN

�χ [T (t),T (t ′)][T (t) − T (t ′)]
∂φ[t̃(t,t ′)]

∂t ′
dt ′

= −�χ [T (t),Ta][T (t) − Ta]{φ[t̃(t,tCL2)] − φ[t̃(t,tAN)]},
(11)

and δS ′(t) is

δS ′(t) = −
∫ tAN

0
�χ [T (t),T (t ′)][T (t) − T (t ′)]

∂φ[t̃(t,t ′)]
∂t ′

dt ′

−
∫ t

tCL2

�χ[T (t),T (t ′)][T (t) − T (t ′)]
∂φ[t̃(t,t ′)]

∂t ′
dt ′.

(12)

The thick and thin curves in Fig. 10(a) show δSanneal(t) and
δS ′(t) against temperature in the heating process, respectively.
At short ta of 1 � ta � 102 min, δS ′(t) hardly depends on
ta. Therefore, the main contribution to the annealing time
dependence of δS(t) arises from δSanneal. In Eq. (11), δSanneal(t)
consists of two factors: a factor −�χ [T (t),Ta][T (t) − Ta],
which is the entropy difference arising from the temperature
difference between a temperature at the present time, T (t),
and Ta, and another factor φ[t̃(t,tCL2)] − φ[t̃(t,tAN)], which
represents the amount of relaxation during annealing. The first
factor, −�χ [T (t),Ta][T (t) − Ta], decreases monotonically
with T (t) passing through zero at T (t) = Ta and is independent
of ta, as shown by the black thick curve in Fig. 10(b). The
second factor, φ[t̃(t,tCL2)] − φ[t̃(t,tAN)], is constant at low
T (t) in the glassy state since t̃(t,tCL) and t̃(t,tAN) do not
vary due to very large τ (t). It begins to decrease in the
glass-transition region and approaches zero at high T (t) in the
equilibrium liquid state. The factor φ[t̃(t,tCL2)] − φ[t̃(t,tAN)]
increases with ta if Ta is fixed as shown by the thin curves in
Fig. 10(b). As a result, δSanneal(t), expressed by the product
of these factors, decreases at low T (t) in the glassy state,
passes through zero at T (t) = Ta, and approaches zero again at
high T (t). The minimum and the inflection point in δSanneal(t)
are between T (t) = Ta and high temperatures. The slope of
δSanneal(t) at low T (t) increases with ta. The position of the
minimum and the inflection point in δSanneal(t) shift toward
high temperatures with ta as shown by the thick curves in
Fig. 10(a), when the logarithm of the relaxation function,
log φ(t), is downward convex, that is, the relaxation time
has the distribution and a monotonically decreasing function.
Therefore, from the above discussion, δS ′(t) has an inflection
point unchanged independent of ta, while the inflection point
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FIG. 9. Specific heat calculated by calculation 1 in the heating process after annealing at (a) Ta = 100.1 ◦C for PMMA and (b) Ta = 78.0 ◦C
for PVC, for ta in the range from 1 to 3 × 103 min. The line types are the same as Fig. 7(b). The down-arrows represent the lower maxima
in specific heat. and the bold up-arrow represents the higher maximum. The black thin dashed curve in (a) shows the unannealed result for
PMMA. The black thin dotted line represents the specific heat in the liquid state C0

p . The inset is a closeup of specific heat in the glass-transition
region, where only unannealed results and the results for ta = 1, 10, and 102 min are shown. The unannealed results and the results for ta = 1
and 10 min are almost identical to each other in the inset. The numbers in the figure represent the annealing time in minutes.

of δSanneal(t) shifts toward high temperatures and the slope at
the inflection point increases with ta. Note that when the aging
effects are small, for example when Ta is low or ta is short,
δS ′(t) is almost independent of ta. So it is effective to discuss
two maxima by the decomposition of thermal history shown
in Fig. 1 into the annealing and the rest of history only when
the aging effects are small.

The sum of δS ′(t) and δSanneal(t) in Fig. 10(a), δS(t), is
shown for ta = 1, 10, and 102 min in Fig. 10(c). The dashed
and solid circles in Fig. 10(c) show the inflection points of
δS ′(t) and δSanneal(t), respectively, which correspond to the
higher and the lower maxima in δS(t). The higher maximum
in specific heat, originating from δS ′(t), are observed above
Tg. The lower maximum, originating from δSanneal(t), depends
on the annealing condition, and it is observed just above Ta for
ta → 0 and approaches the higher maximum with increasing
ta. We can observe two maxima in specific heat within
the experimental accuracy when two maxima originating
from two different thermal histories are separated and have
measurable magnitude within the experimental accuracy. From
the viewpoint of the inflection point in δS(t), when the
inflection point in δSanneal(t) is located at a temperature low
enough not to overlap the inflection point in δS ′(t), and the
slope at the inflection point in δSanneal(t) has the magnitude
comparable to that in δS ′(t), two maxima in specific heat are
observed.

For a long annealing time, the minimum in δSanneal(t) be-
comes small and the position of the minimum shifts to a high
temperature due to an increase in φ[t̃(t,tCL2)] − φ[t̃(t,tAN)].
As a consequence, the minimum, or the inflection point in
δSanneal(t) , overlaps with that in δS ′(t), and δS(t) has only one
inflection point. For high annealing temperature, δS(t) has only
one inflection point due to the overlap of δSanneal(t) with δS ′(t).

For a low annealing temperature, the magnitude of the
minimum in δSanneal(t) becomes small comparable to that
in δS ′(t) due to small φ[t̃(t,tCL2)] − φ[t̃(t,tAN)]. So δS(t)
apparently has only one inflection point originating from
δS ′(t). For a short annealing time for the same reason, δS(t)
has only one inflection point from δS ′(t). In these cases, the
minimum in δSanneal(t) actually exists between Ta and the
higher maximum, but its magnitude is just too small to measure
within the experimental accuracy.

From the discussion above, two factors determine the
number of maxima in specific heat. One is an annealing
temperature, which determines the position of the lower
maximum for ta → 0. An annealing temperature sufficiently
lower than Tg allows the separation between δSanneal(t) and
δS ′(t) and prevents δSanneal(t) from overlapping with δS ′(t).
The other is the amount of relaxation during annealing,
φ[t̃(t,tCL2)] − φ[t̃(t,tAN)], which determines the position and
the magnitude of the lower maximum for a finite ta. When
φ[t̃(t,tCL2)] − φ[t̃(t,tAN)] is not too large, that is, the aging
effect is not too large, the lower maximum is located between
Ta and the higher one without overlapping with the higher one,
and if the aging effect is too small, the lower one cannot be
observed within the experimental accuracy. A gradual change
in φ[t̃(t,tCL2)] − φ[t̃(t,tAN)] with ta dependent on the decay
of the relaxation function leads to a broad range of ta over
which φ[t̃(t,tCL2)] − φ[t̃(t,tAN)] does not become too large.
In the case of the KWW function, used as an approximation
of the relaxation function in this study, the exponent β, i.e.,
the width of the distribution of the relaxation time, determines
how gradually the relaxation function decays if Ta is fixed. The
broad distribution of the relaxation time, that is, small β, leads
to the gradual decay of the relaxation function, which allows
us to observe two maxima under typical annealing conditions.
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FIG. 10. Temperature dependence of (a) δSanneal(t) (bold) and
δS ′(t) (thin), (b) −�χ[T (t),Ta][T (t) − Ta] (black bold) and
φ[t̃(t,tCL2)] − φ[t̃(t,tAN)] (colored thin curves), and (c) δS(t), the sum
of δS ′(t) and δSanneal(t) in (a), for Ta = 100.1 ◦C in the heating process
by calculation 1. The dotted, dashed-dotted, dashed-two dotted, solid,
and dashed curves represent ta = 1, 10, and 102, 103, and 3 × 103 min,
respectively. The numbers in the figure represent ta in minutes. For
the comparison, unannealed δS(t) is also shown by the black two
dashed-dotted curves in (c). The higher inflection point in δS(t) and
the ones in δSanneal against temperature are shown by the solid and
the dashed circles in (c), respectively.

E. Results by calculations 2 and 3

So far we have discussed the appearance of two maxima in
specific heat qualitatively based on calculation 1. Calculation 1
can reproduce two maxima in specific heat qualitatively.
However, the results by calculation 1 do not show a quantitative
agreement with the experimental results. In this subsection, we
introduce calculations 2 and 3, and we discuss the quantitative
agreement with the experimental results.

The results obtained by calculation 2 are shown by thin
curves in Figs. 7(b) and 7(c). Figures 7(b) and 7(c) show
that calculation 2 reproduces two maxima in specific heat
and their annealing condition dependence qualitatively, but
the quantitative agreement with the experimental results is not
sufficient. So we introduce calculation 3 for a quantitative
agreement with the experimental results by reestimating
the configurational entropy that determines the relaxation
time.

In calculation 3, the parameters �χF, σF, and TF are deter-
mined by the trial and error method so that the upper limit of
annealing temperature where two maxima are observed agrees
with that of experimental results for ta = 102, 103, and 3 × 103

min for PMMA, and for ta = 102 and 103 min for PVC. We
have obtained �χF = −6.5 × 10−5 J g−1 K−2, σF = 35 K, and
TF = 346 K for PMMA, and �χF = −1.40 × 10−4 J g−1 K−2,
σF = 23 K, and TF = 353 K for PVC. The least-squares
fitting to the experimental relaxation time by Eq. (4) with
these sets of the parameters gives τ

(3)
∞ = 1.69 × 10−4 s,

A(3) = 104 J g−1 K−2, and T
(3)

2 = 359 K for PMMA, τ
(3)
∞ =

4.08 × 10−12 s, A(3) = 343 J g−1 K−2, and T
(3)

2 = 324 K for
PVC. The fitting curve thus obtained for PVC is shown in
Fig. 4 by the dotted curve and hardly differs from τ (T ) in the
temperature range shown in Fig. 4.

The results obtained by calculation 3 are shown in
Figs. 7(b), 7(c), and 8. The quantitative agreement with the
experimental results is improved from calculation 2. Figure 7
shows that in calculation 3, the lower maximum in specific
heat is observed for ta = 103 and 3 × 103 min in agreement
with the experimental results. Figure 8 shows that for the short
annealing time and the high annealing temperature, the results
obtained by calculation 3 agree with the experimental ones
quantitatively.

Finally we comment on the possibility of two maxima in
specific heat in PS. In the enthalpy relaxation in PS, only
one maximum is usually observed. We have shown above that
the observation of two maxima needs the separation of two
contributions from the two thermal histories, that is, annealing
and the rest of the history, δSanneal(t) and δS ′(t). In polystyrene,
these two contributions overlap with each other under typical
annealing conditions such as the annealing just below Tg,
so that only one maximum is observed. We expect that if
the annealing temperature is low enough to separate these
two contributions sufficiently, and the annealing time is long
enough for the contribution of the annealing, δSanneal(t) to
be observed within the experimental accuracy, two maxima
in specific heat will be observed in PS. This experiment
is in progress and the results will be reported in the near
future.
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V. CONCLUSIONS

The dependence of enthalpy relaxation in PMMA and PVC
on annealing conditions has been studied by DSC and using
the calculation by the phenomenological model equation, with
the parameters obtained experimentally. Two specific-heat
maxima have been observed at higher and lower temperatures
in the glass-transition region. The higher maximum is observed
above Tg; the lower maximum is observed above Ta and shifts
toward the higher maximum with increasing ta. The calculation
in which only one relaxation is taken into account, and the
relaxation time is that in equilibrium and does not vary during
annealing, has reproduced two maxima in specific heat. This
result indicates that the appearance of two maxima in specific
heat is not always necessary for two relaxations and for an
increase in the relaxation time during annealing. The analysis

based on the calculation has clarified the origin of two maxima
in the enthalpy relaxation; the higher maximum originates
from the history except for the annealing, that is, cooling
and heating, and the lower one originates from the annealing
history. The position and the magnitude of the lower maximum
are determined by Ta and the intensity of the aging, that is, how
the relaxation toward the equilibrium state proceeds; as the
annealing temperature becomes higher, or the aging becomes
heavier, the lower maximum shifts toward higher temperatures
and consequently merges the higher maximum. The number
of maxima in specific heat, either one or two, is determined
by an annealing temperature and how the relaxation function
decays. In the present analysis, the width of the relaxation
time distribution, i.e., the value of β, plays a major role in the
determination of the number of maxima in the specific heat.
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