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Solitonlike attractor for blood vessel tip density in angiogenesis
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Recently, numerical simulations of a stochastic model have shown that the density of vessel tips in tumor-
induced angiogenesis adopts a solitonlike profile [Sci. Rep. 6, 31296 (2016)]. In this work, we derive and solve
the equations for the soliton collective coordinates that indicate how the soliton adapts its shape and velocity to
varying chemotaxis and diffusion. The vessel tip density can be reconstructed from the soliton formulas. While
the stochastic model exhibits large fluctuations, we show that the location of the maximum vessel tip density
for different replicas follows closely the soliton peak position calculated either by ensemble averages or by
solving an alternative deterministic description of the density. The simple soliton collective coordinate equations
may also be used to ascertain the response of the vessel network to changes in the parameters and thus to
control it.
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I. INTRODUCTION

The growth of blood vessels is a complex multiscale process
called angiogenesis that is the basis of organ growth and
repair in healthy conditions and of pathological developments
such as cancerous tumors [1–4]. Cells in an incipient tumor
located in tissue experience lack of oxygen and nutrients and
stimulate production of vessel endothelial growth factor that,
in turn, induces growth of blood vessels (angiogenesis) from
a nearby primary vessel in the tumor direction [1,2]. Blood
brings oxygen and nutrients that foster tumor growth. In an-
giogenesis, events happening in cellular and subcellular scales
unchain endothelial cell motion and proliferation and build
millimeter scale blood sprouts and networks thereof [3,5–7].
Angiogenesis imbalance contributes to numerous malignant,
inflammatory, ischaemic, infectious, and immune disorders
[2]. For these reasons, immense human and material resources
are devoted to understanding and controlling angiogenesis.
Theoretical efforts based on angiogenesis models go hand
in hand with experiments [8–31]. Models range from very
simple to extraordinarily complex and often try to illuminate
some particular mechanism; see the review [31]. Realistic
microscopic models involve postulating mechanisms and a
large number of parameters that cannot be directly estimated
from experiments, but they often yield qualitative predictions
that can be tested. An important challenge is to extract
mesoscopic and macroscopic descriptions of angiogenesis
from the diverse microscopic models.

Early angiogenesis macroscopic models consisted of
reaction-diffusion equations for densities of cell and chemicals
(growth factors, fibronectin, etc.) [8,10,11]. These models do
not allow us to treat the growth and evolution of individual
blood vessels. Later models focused on the evolution of the
cells at the tip of a vessel sprout. The 10 or so cells at
a vessel tip are highly motile and do not proliferate. They
follow chemotactic and haptotactic clues as they advance
toward hypoxic regions that experience lack of oxygen. These
cells are followed by proliferating stalk cells that build a
capillary in their wake. Thus tip cell models are based
on the motion of single particles representing the tip cells
and their trajectories constitute the advancing blood vessels
[9,12,15,16,21,30–32]. More realistic and necessarily more

complex models illuminate tip and stalk cell dynamics, the
motion of tip and stalk cells on the extracellular matrix outside
blood vessels, blood circulation in newly formed vessels, and
so on [20,22,29,31].

In recent work [30,32], we have been trying to bridge the
gap between microscopic descriptions of early stage tumor-
induced angiogenesis that require large numerical simulations
and macroscopic descriptions that are amenable to a more
thorough theoretical study. We consider a simple tip cell model
in which tip stochastic extension is driven by the gradient of
growth factors (chemotaxis), there is a random branching of
tips and tips join with existing blood vessels (anastomosis).
We have derived a deterministic description for the density
of vessel tips consisting of an integrodifferential equation for
the tip density coupled to a reaction-diffusion equation for
the tumor angiogenic factor (TAF, which comprises vessel
endothelial and other growth factors) [30,32]. The stochastic
model can be made more realistic by adding equations
characterizing haptotaxis, the influence of other chemicals or
drugs, etc. While cell densities can be extracted from numerical
simulations of microscopic models, our equation for the tip
density [30] incorporates tip branching and anastomosis as
derived from a stochastic model [32], not postulated ad hoc.
It turns out that the tip density soon forms a moving lump that
advances towards the tumor. The longitudinal section of the
stable lump (that we may term angiton) is approximately given
by a moving solitonlike wave [33]. This wave is an exact one-
dimensional solution of a reduced equation for the marginal
tip density on the whole real line that has constant chemotactic
force and no diffusion. It appears by differentiating a domain-
wall solution (topological soliton) connecting two spatially
homogeneous states. Numerical evidence shows that it is
asymptotically stable [33]. Technically speaking, it is not
known whether two solitonlike waves in the angiogenesis
model equations emerge unchanged from collisions except
for a phase shift. Therefore we do not claim that angiogenesis
solitonlike lump profiles are true solitons. However, stable
solitonlike waves are central to the arguments of the present
paper, and, by an abuse of language, we will call them solitons.
In this, we follow extended usage in the physical literature in
which other stable waves such as “topological solitons” [34]
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or “diffusive solitons” [35] are called simply solitons despite
not emerging unscathed from collisions [34,35]. The soliton
shape and velocity depend on two collective coordinates. The
vessel tip density approaches the soliton solution after an initial
formation stage. After its formation and until the vessels are
close to the tumor, the tip density is described by the soliton
and the solution of its two collective coordinate equations.

In this paper, we deduce the equations for the angiogen-
esis soliton and its collective coordinates, solve the latter
numerically, and reconstruct the marginal tip density from
the soliton formula. Then we show that it agrees with both the
solution of the deterministic description and with the ensemble
average of the tip density as extracted from the stochastic
process. Although the fluctuations are large, we give numerical
evidence that the position of the soliton peak is very close to
that of the maximum of the marginal tip density for different
replicas or realizations of the stochastic process. This implies
that the simple description based on the soliton may give
useful information about single replicas of the angiogenesis
process. While our simple model needs to be completed to
discuss control of angiogenesis, we show how changing a
single parameter results in seemingly arresting the process.

The rest of the paper is as follows. We review the stochastic
model of Ref. [30] and its deterministic description [32] in
Sec. II. By a Chapman-Enskog method, we derive a reduced
equation for the marginal tip density in Sec. III. By neglecting
diffusion and considering constant coefficients in the resulting
equation, we find in Sec. IV an analytical expression for the
soliton of the marginal tip density [33]. Section V contains a
derivation of the differential equations for the two collective
coordinates of the soliton. The coefficients appearing in these
equations contain spatial averages of the TAF density. In
Sec. VI, we explain how to calculate the coefficients in
the collective coordinate equations, solve them numerically,
reconstruct the soliton and, through it, the marginal vessel
tip density. We compare it with direct solutions of the deter-
ministic description and ensemble averages of the stochastic
process. Although realizations of the stochastic angiogenic
process provide very different looking vessel networks, we
also show that the maximum of the marginal density for
each realization follows closely the soliton peak. Section VII
contains our conclusions, and the appendices are devoted to
technical matters.

II. MODEL

Early stages of angiogenesis are described by a simple
stochastic model in Refs. [30,32]. It consists of a system
of Langevin equations for the extension of vessel tips, a tip
branching process, and tip annihilation (anastomosis) when
they merge with existing vessels. A tip i is born at a random
time T i from a moving tip (we ignore branching from mature
vessels) and disappears at a later random time �i , either
by reaching the tumor or by anastomosis. At time T i , the
velocity of the newly created tip i is selected out of a normal
distribution,

δσv
(v − v0) = e−|v−v0|2/σ 2

v

πσ 2
v

, (1)

with mean v0 and a narrow variance σ 2
v . In addition, the

probability that a tip branches from one of the existing
ones during an infinitesimal time interval (t,t + dt] is taken
proportional to

∑N(t)
i=1 α(C(t,Xi(t))) dt , where C(t,x) is the

TAF concentration and

α(C) = α1
C

CR + C
, CR > 0, α1 > 0, (2)

in which CR is a reference concentration. The change per unit
time of the number of tips in boxes dx and dv about x and v is

N(t)∑
i=1

α[C(t,Xi(t))] δσv
(vi(t) − v0)

=
∫

dx

∫
dv

α[C(t,x)]δσv
(v − v0)

N(t)∑
i=1

δ[x − Xi(t)]

×δ[v − vi(t)] dx dv. (3)

The Langevin equations for tip extensions are

dXi(t) = vi(t) dt,

dvi(t) = {−k vi(t) + F[C(t,Xi(t))]}dt + σ dWi(t), (4)

where Xi(t) and vi(t) are the tip position and velocity of tip i

at time t , Wi(t) are independent identically distributed (i.i.d.)
standard Brownian motions, and k (friction coefficient) and σ

are positive parameters. At each time t there are N (t) active
tips. The chemotactic force is

F(C) = d1

(1 + γ1C)q
∇xC, (5)

where d1, γ1, and q are positive parameters. The TAF
concentration solves

∂

∂t
C(t,x) = d2	xC(t,x) − ηC(t,x)

∣∣∣∣∣
N(t)∑
i=1

vi(t)δσx
[x − Xi(t)]

∣∣∣∣∣.
(6)

Here d2 (diffusivity) and η are positive parameters, whereas
δσx

(x) is a regularized smooth delta function (e.g., a Gaussian
with variances l2

x and l2
y proportional to σ 2

x along the x and
y directions, respectively) that becomes δ(x) in the limit as
σx → 0.

There is a counterpart to the stochastic model for the
densities of vessel tips and the vessel tip flux, defined as
ensemble averages over a sufficient number N of replicas
(realizations) ω of the stochastic process:

pN (t,x,v) = 1

N

N∑
ω=1

N(t,ω)∑
i=1

δσx
[x − Xi(t,ω)]δσv

[v − vi(t,ω)],

(7)

p̃N (t,x) = 1

N

N∑
ω=1

N(t,ω)∑
i=1

δσx
[x − Xi(t,ω)], (8)

jN (t,x) = 1

N

N∑
ω=1

N(t,ω)∑
i=1

vi(t,ω)δσx
[x − Xi(t,ω)]. (9)
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TABLE I. Units for nondimensionalizing the model equations.

x v t C p p̃ j

L ṽ0
L

ṽ0
CR

1
ṽ2

0L2
1

L2
ṽ0
L2

mm μm/hr hr mol/m2 1021 s2

m4 105m−2 m−1s−1

2 40 50 10−16 2.025 2.5 0.0028

As N → ∞, these ensemble averages tend to the tip density
p(t,x,v), the marginal tip density p̃(t,x), and the tip flux j(t,x),
respectively. In Ref. [32] it is shown that the angiogenesis
model has a deterministic description based on the following
equation for the density of vessel tips, p(t,x,v):

∂

∂t
p(t,x,v) = α[C(t,x)] p(t,x,v)δv(v − v0)

− γ p(t,x,v)
∫ t

0
p̃(s,x) ds − v · ∇xp(t,x,v)

−∇v · {(F[C(t,x)] − kv)p(t,x,v)}

+ σ 2

2
	vp(t,x,v), (10)

p̃(t,x) =
∫

p(t,x,v′) dv′. (11)

The TAF equation (6) becomes

∂

∂t
C(t,x) = d2	xC(t,x) − η C(t,x)|j(t,x)|, (12)

where j(t,x) is the current density (flux) vector at any point x
and any time t � 0,

j(t,x) =
∫

v′p(t,x,v′) dv′. (13)

Alternatively, if N (t) becomes very large (which is precluded
by anastomosis), the same deterministic description can be
derived by using the law of large numbers [30].

The deterministic description consisting of Eqs. (10) and
(12) is well posed, as it has been proved to have unique smooth
solutions [36]. After nondimensionalization as in Table I
[30,32], (10) and (12) become

∂

∂t
p(t,x,v) = AC(t,x)

1 + C(t,x)
p(t,x,v)δv(v − v0) − �p(t,x,v)

×
∫ t

0

∫
p(s,x,v′) dv′ds − v · ∇xp(t,x,v)

−∇v ·
{[

δ ∇xC(t,x)

[1 + �1C(t,x)]q
− βv

]
p(t,x,v)

}

+ β

2
	vp(t,x,v), (14)

∂

∂t
C(t,x) = κ	xC(t,x) − χ C(t,x)|j(t,x)|, (15)

respectively. The dimensionless parameters are defined in
Table II and the boundary conditions to solve (14)–(15) are
listed in Appendix A.

TABLE II. Dimensionless parameters.

δ β A � �1 κ χ σv

d1CR

ṽ2
0

kL

ṽ0

α1L

ṽ3
0

γ

ṽ2
0

γ1CR
d2

ṽ0L

η

L
–

1.5 5.88 22.42 0.145 1 0.0045 0.002 0.08

III. REDUCED EQUATION FOR THE MARGINAL
TIP DENSITY

We can obtain a simpler equation for the marginal vessel
tip density (11) provided the overall tip density approaches
rapidly a local equilibrium which is a displaced Maxwellian:

p(0)(t,x,v) = 1

π
e−|v−v0|2 p̃(t,x). (16)

The source terms in (14) (two first terms on its right-hand
side) select velocities in a small neighborhood of v0, as
such velocities are the only ones for which the birth term
proportional to α(C)δv(v − v0) [cf. Eq. (1)] can compensate
the anastomosis death term. To derive the simpler equation for
p̃, we use the Chapman-Enskog method [37]. We first rewrite
(14) as

Lp ≡ β ∇v ·
[

1

2
∇vp + (v − v0)p

]

= ε

[
∂p

∂t
+ β (F − v0) · ∇vp + v∇xp

−αp δv(v − v0) + �p

∫ t

0
p̃(s,x) ds

]
, (17)

α = AC

1 + C
, (18)

F = δ

β

∇xC(t,x)

[1 + �1C(t,x)]q
. (19)

We have included a scaling parameter ε in the right-hand side
of (17), as we will consider that it is small compared to the
left-hand side. After the computations that follow, we will
restore ε = 1. Note that (16) satisfies

Lp(0) = 0, (20)

i.e., (17) with ε = 0. We now assume that the terms on the
right-hand side of (17) are small compared to those on its
left-hand side (formally, ε � 1) and that we can expand p in
the asymptotic series

p = p(0) + εp(1) + ε2p(2) + · · · . (21)

Inserting this into (11), we find∫
p(j )dv = 0, j = 1,2, · · · . (22)

We assume now that

∂p̃

∂t
= F (0) + εF (1) + · · · , (23)

where the F (j ) should be determined by solvability conditions
to be derived below. Inserting (21) and (23) in (17) and equating
like powers of ε in the result, we obtain the hierarchy of
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Eqs. (20) and

Lp(1) = e−V 2

π

[
F (0) + v · ∇xp̃ − 2βV · (F − v0)p̃

−αp̃δv(V) + �p̃

∫ t

0
p̃(s,x) ds

]
, (24)

Lp(2) = e−V 2

π
F (1) + v · ∇xp

(1)

− 2βV · (F − v0)p(1) − αp(1)δv(V)

+�p(1)
∫ t

0
p̃(s,x) ds, (25)

etc. Here V = v − v0 and V = |V|. For these equations to have
bounded solutions, we need to impose the conditions∫

Lp(j )dv = 0, j = 1,2, . . . , (26)

as the adjoint problem L†v = 0 has constant solutions. For
(24), this condition yields

F (0) = α

π
p̃ − v0 · ∇xp̃ − �p̃

∫ t

0
p̃(s,x) ds, (27)

which, inserted back in (24), produces the equation

Lp(1) = e−V 2

π

{
α

[
1

π
− δv(V)

]
p̃

+ V · [∇xp̃ − 2β(F − v0)p̃]

}
. (28)

The solution of (28) that satisfies (22) is

p(1) = −e−V 2

π
V · [∇xp̃ − 2β(F − v0)p̃]

+ αp̃

2π2
e−V 2

[∫ ∞

0
e−t ln t dt − ln V 2

]
. (29)

Insertion of (29) into the solvability condition (26) for j = 2
produces

F (1) = 1

2β
	xp̃ + ∇x · [(v0 − F)p̃]

+ α2p̃

2π2β
(
1 + σ 2

v

) ln

(
1 + 1

σ 2
v

)
. (30)

We now substitute (27) and (30) in (23) and recall ε = 1,
thereby finding the Smoluchowski-type equation

∂p̃

∂t
+ ∇x · (Fp̃) − 1

2β
	xp̃ = μ p̃ − �p̃

∫ t

0
p̃(s,x) ds,

(31)

μ = α

π

[
1 + α

2πβ
(
1 + σ 2

v

) ln

(
1 + 1

σ 2
v

)]
. (32)

Note that the convective terms in (31) correspond to having
ignored inertia in the Langevin equation (4), which then be-
comes dXi(t) = (F/k) dt + (σ/k) dWi(t). Our perturbation
procedure just renormalizes the birth term α(C) in (14) or
(17).

The flux (13) in the reaction-diffusion equation (15) is
j(t,x) ≈ v0p̃(t,x), so that (15) becomes

∂

∂t
C(t,x) = κ	xC(t,x) − χ C(t,x) p̃(t,x), (33)

because |v0| = 1 in our nondimensional units.
The boundary conditions for (31) are (1) p̃(t,x) known

at x = 1 and equal to its instantaneous value there and (2)
known flux j0 at x = 0 [30]. The boundary condition (1) is
a free boundary condition that avoids modeling explicitly the
tumor instead of the more appropriate absorbing boundary
condition p̃ = 0 at the tumor. In condition (2), the flux can be
approximated as∫

(v0 + V)p(t,x,v) dV = v0p̃ +
∫

Vp(1)dVFp̃ − 1

2β
∇xp̃.

At x = 0, the x component of F is zero, and therefore the
boundary condition for p̃ becomes − 1

2β

∂p̃

∂x
= j0,

− 1

2β

∂p̃

∂x

∣∣∣∣
x=0

= v0μ p̃ θ (τ − t), (34)

in which θ (t) = 1 if t > 0 and θ (t) = 0 otherwise is the unit
step function. In (34), we have renormalized the birth rate
coefficient α to μ in harmony with the change in birth rate when
going from the equation for the vessel tip density (14) to (31)
for the marginal vessel tip density; see (A6) in Appendix A. In
Refs. [30,32] and in the numerical calculations of this paper,
τ = ∞.

IV. SOLITON

We now find an approximate soliton solution of (31)
following Ref. [33]. First, let define

ρ(t,x) =
∫ t

0
p̃(s,x) ds, (35)

and ignore diffusion in (31), which then becomes

∂2ρ

∂t2
+ ∇x ·

(
F

∂ρ

∂t

)
= μ

∂ρ

∂t
− �ρ

∂ρ

∂t
. (36)

The coefficients κ and χ in (33) are very small [30], and
therefore the TAF concentration varies very slowly compared
with the marginal tip density. We will also assume that the
initial TAF concentration varies on a larger spatial scale than
the soliton size and that the TAF gradient is directed on the
x axis, which constitutes a good approximation [30]. Then F
and μ are almost constant, and we will seek a solution of the
form

ρ(t,x) = ρ(ξ ), ξ = x − ct, (37)

for (36). The resulting ordinary differential equation is

(c − Fx)
∂2ρ

∂ξ 2
+ (μ − �ρ)

∂ρ

∂ξ
= 0, (38)
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in which Fx is the x component of the chemotactic force F.
Integrating (38) once, we obtain

(c − Fx)
∂ρ

∂ξ
+

(
μ − �

2
ρ

)
ρ = −K, (39)

where K is a constant. From this, we get

(c − Fx)
2

�

∂ρ

∂ξ
= ρ2 − 2

μ

�
ρ − 2K

�
. (40)

Setting ρ = μ

�
+ ν tanh(λξ ), we find ν2 = μ2+2K�

�2 and
2νλ(c − Fx)/� = −ν2, thereby obtaining

ρ = μ

�
−

√
2K� + μ2

�
tanh

[√
2K� + μ2

2(c − Fx)
(ξ − ξ0)

]
.

(41)

Here ξ0 is a constant of integration. Thus p̃ = ∂ρ

∂t
= −c

∂ρ

∂ξ

yields

p̃ = (2K� + μ2)c

2�(c − Fx)
sech2

[√
2K� + μ2

2(c − Fx)
(x − ct − ξ0)

]
.

(42)

This is similar to the usual soliton solution of the Korteweg-de
Vries equation except that we now have three parameters,
c, K , and ξ0. Note that the soliton appears as consequence
of a dominant balance of time derivative, convection, and
source terms in (31). The existence of the soliton solution
is consequence of the quadratic anastomosis term in (14) first
derived in Ref. [30]. While simulations of the deterministic
[30] and stochastic descriptions [32] clearly exhibit a soliton
like solution, the derivation presented here first appeared in
Ref. [33].

V. COLLECTIVE COORDINATES

In this section, we shall discuss the effect of small diffusion
and a slowly varying TAF concentration on the soliton. Let the
soliton solution (42) be written as

p̃s = (2K� + μ2)c

2�(c − Fx)
sech2s, (43)

s =
√

2K� + μ2

2(c − Fx)
ξ, ξ = x − X(t), (44)

Ẋ = dX

dt
= c. (45)

Here X(t), c(t), and K(t) are time-dependent collective
coordinates characterizing the soliton. They are supposed to
vary slowly so that the marginal tip density is described by
a soliton that moves and changes shape slowly according to
the changes of its collective coordinates. To find equations
for them, we adapt the perturbation method explained in
Ref. [38,39]. Note that p̃s is a function of ξ and also of x
and t through C(t,x):

p̃s = p̃s

(
ξ ; K,c,μ(C),Fx

(
C,

∂C

∂x

))
. (46)

We assume that the time and space variations of C, which
appear when p̃s is differentiated with respect to t or x, produce

terms that are small compared to ∂p̃s/∂ξ . As indicated in
Appendix B, we shall consider that μ(C) is approximately con-
stant, ignore ∂C/∂t because the TAF concentration is varying
slowly (the dimensionless coefficients κ and χ appearing in the
TAF equation (33) are very small according to Table II), and
ignore ∂2p̃s/∂i∂j , where i,j = K,Fx . Appendix C explains
what happens if we relax these assumptions. We now insert
(43) and (44) into (31), thereby obtaining

(Fx − Ẋ)
∂p̃s

∂ξ
+ ∂p̃s

∂K
K̇ + ∂p̃s

∂c
ċ + p̃s∇x · F

+ ∂p̃s

∂Fx

(
∂Fx

∂t
+ F · ∇xFx

)
− 1

2β

(
∂2p̃s

∂ξ 2
+ 2

∂2p̃s

∂ξ∂Fx

∂Fx

∂x

+ ∂p̃s

∂Fx

	xFx

)
= μp̃s − �p̃s

∫ t

0
p̃s dt. (47)

Equation (31) with 1/β = 0 and constant F has the soliton
solution (43)–(44). Using this fact and (45), (47) becomes

∂p̃s

∂K
K̇ + ∂p̃s

∂c
ċ = A, (48)

A = 1

2β

∂2p̃s

∂ξ 2
− p̃s∇x · F − ∂p̃s

∂Fx

[
F · ∇xFx − 1

2β
	xFx

]

+ 1

β

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
. (49)

See Appendix B for the precise meaning of these equations.
We now find collective coordinate equations (CCEs) for

K and c. As the lumplike angiton moves on the x axis, we
set y = 0 to capture the location of its maximum. On the
x axis, the profile of the angiton is the soliton (43)–(44).
We first multiply (48) by ∂p̃s/∂K and integrate over x. We
consider a fully formed soliton far from primary vessel and
tumor. As it decays exponentially for |ξ | 	 1, the soliton is
considered to be localized on some finite interval (−L/2,L/2).
The coefficients in the soliton formulas (43)–(44) and the
coefficients in (48) depend on the TAF concentration at y = 0;
therefore they are functions of x and time and get integrated
over x. The TAF varies slowly on the support of the soliton,
and therefore we can approximate the integrals over x by

∫
I
F (p̃s(ξ ; x,t),x) dx

≈ 1

L

∫
I

{∫ L/2

−L/2
F [p̃s(ξ ; x,t),x] dξ

}
dx. (50)

See Appendix B. The intervalI over which we integrate should
be large enough to contain most of the soliton, of extension L.
Thus the CCEs hold only after the initial soliton formation
stage. Near the tumor, the boundary condition affects the
soliton, and we should exclude an interval near x = 1 from I.
We shall specify the integration interval I in the next section.
Acting similarly, we multiply (48) by ∂p̃s/∂c and integrate
over x. From the two resulting formulas, we then find K̇ and ċ

as fractions. The factors 1/L cancel out from their numerators
and denominators. As the soliton tails decay exponentially to
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zero, we can set L → ∞ and obtain the following CCEs [33]:

K̇ =
∫ ∞
−∞

∂p̃s

∂K
A dξ

∫ ∞
−∞

(
∂p̃s

∂c

)2
dξ − ∫ ∞

−∞
∂p̃s

∂c
A dξ

∫ ∞
−∞

∂p̃s

∂K

∂p̃s

∂c
dξ∫ ∞

−∞
(

∂p̃s

∂K

)2
dξ

∫ ∞
−∞

(
∂p̃s

∂c

)2
dξ − ( ∫ ∞

−∞
∂p̃s

∂c

∂p̃s

∂K
dξ

)2 , (51)

ċ =
∫ ∞
−∞

∂p̃s

∂c
A dξ

∫ ∞
−∞

(
∂p̃s

∂K

)2
dξ − ∫ ∞

−∞
∂p̃s

∂K
A dξ

∫ ∞
−∞

∂p̃s

∂K

∂p̃s

∂c
dξ∫ ∞

−∞
(

∂p̃s

∂K

)2
dξ

∫ ∞
−∞

(
∂p̃s

∂c

)2
dξ − ( ∫ ∞

−∞
∂p̃s

∂c

∂p̃s

∂K
dξ

)2 . (52)

In these equations, all terms varying slowly in space have been
averaged over the interval I. The last term in (49) is odd in
ξ and does not contribute to the integrals in (51) and (52),
whereas all other terms in (49) are even in ξ and do contribute.
The integrals appearing in (51) and (52) are calculated in
Appendix D. The resulting CCEs are

K̇ = (2K� + μ2)2

4�β(c − Fx)2

4π2

75 + 1
5 + ( 2Fx

5c
− 2π2

75 − 9
10

)
Fx

c(
1 − 4π2

15

)(
1 − Fx

2c

)2

− 2K� + μ2

2�c
(
1 − Fx

2c

)(
c∇x · F + F · ∇xFx − 	xFx

2β

)
, (53)

ċ = −7(2K� + μ2)

20β(c − Fx)

1 − 4π2

105(
1 − 4π2

15

)(
1 − Fx

2c

)

+
F · ∇xFx − (c − Fx)∇x · F − 	xFx

2β

2 − Fx

c

, (54)

in which the functions of C(t,x,y) have been averaged over the
interval I and we have set y = 0. We expect the CCEs (53)–
(54) to describe the mean behavior of the soliton whenever it is
far from primary vessel and tumor. We back this point of view
by the numerical simulations reported in the next section.

VI. NUMERICAL RESULTS

Based on numerical simulations [33], we expect that the
vessel tip density approaches the soliton after some time.
Initially there are few tips and the density is small so that
the nonlinear anastomosis terms in (14) or in (31) are small.
Tips proliferate and the anastomosis terms kick in. The soliton
formation should be described as the solution of a semi-infinite
initial-boundary value problem. Ideally, we would match the
solution of the soliton formation stage with a stage of a
soliton moving far from boundaries, which is the crucial stage
described by Eqs. (53)–(54) for the collective coordinates.
We expect the soliton solution to be an asymptotically stable
solution of the vessel tip density equation (14) on the whole
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(a)K(t) from deterministic model

K(t) from stochastic model
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FIG. 1. Evolution of the collective coordinates: (a) K(t), (b) c(t), and (c) X(t).
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(b)
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soliton peak position

FIG. 2. Deterministic description: Comparison between the maximum value of p̃(t,x,0) and its value as predicted by soliton collective
coordinates. (a) Evolution of the maximum value of the marginal tip density (relative error smaller than 4.5%). (b) Evolution of the position of
the maximum marginal tip density on [0,1] (at t = 20 and 22 h, the absolute error is the space step in the numerical method, 	x = 0.02; at
t = 24 h, the error is 4	x).

one-dimensional real line and also for the two-dimensional
slab geometry considered in this paper (provided the primary
vessel is at x = −∞ and the tumor is at x = +∞). For a slowly
varying TAF density, the stable soliton will instantaneously
adapt its shape and velocity according to the solution of the
CCEs (53)–(54).

In this paper, we will solve numerically the full equations
(14) (with q = 1) and (15) for the vessel tip density and the
TAF density (deterministic description), which we will also
obtain by ensemble averages from stochastic simulations as
explained in Ref. [32]. From these simulations, we will obtain
the evolution of the soliton collective coordinates thereby
reconstructing the marginal tip density at y = 0 from (43).
The soliton provides a simple description of tumor-induced
angiogenesis that agrees with numerical simulations of the
stochastic process and with numerical simulations of the
deterministic description.

Both deterministic or stochastic simulations show that the
soliton is formed after some time t0 = 0.2 (10 h) following an-
giogenesis initiation. To find the soliton evolution afterwards,

we need to solve the CCEs (53)–(54) whose coefficients are
spatial averages over a certain interval x ∈ I that depend on
the TAF concentration C(t,x,y) and its derivatives calculated
at y = 0. The interval I should exclude regions affected by
boundaries. We calculate the spatially averaged coefficients
in (53)–(54) by (1) approximating all differentials by second
order finite differences, (2) setting y = 0, and (3) averaging the
coefficients from x = 0 to 0.6 by taking the arithmetic mean
of their values at all grid points in the interval I = (0,0.6].
For x > 0.6, the boundary condition at x = 1 influences the
outcome and therefore we leave values for x > 0.6 out of the
averaging.

The initial conditions for the CCEs (45), (53), and (54)
are set as follows. X(t0) = X0 is the location of the marginal
tip density maximum, p̃(t0,x = X0,0). We find X0 = 0.22
from the deterministic description and X0 = 0.2 from the
stochastic description. We set c(t0) = c0 = X0/t0. K(t0) = K0

is determined so that the maximum marginal tip density at
t = t0 coincides with the soliton peak. This yields K0 = 173
(deterministic description) and 39 (stochastic description).

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36200
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FIG. 3. Same as in Fig. 2 for the stochastic description. The zoom in Fig. 3(a) corresponds to Fig. 2(a), but we have drawn the same figure
with a larger time span to show more clearly the time interval over which the soliton approximates the maximum marginal tip density. The
relative error is smaller than 6.7% for the maximum marginal tip density (calculated by ensemble average over 400 realizations [32]), whereas
the error in the predicted position of the maximum marginal tip density is 	x = 0.02 at 22 h and 2	x at 24 h.
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FIG. 4. Comparison of the marginal tip density profile to that of
the moving soliton for (a) and (b) deterministic description; (c, d)
stochastic description averaged over 400 replicas.

Solving the CCEs (45), (53), and (54) with these initial
conditions, we obtain the curves depicted in Fig. 1.

Using the soliton collective coordinates depicted in Fig. 1
and (43)–(44), we reconstruct the marginal vessel tip density
and find its maximum value and the location thereof for all
times t > t0. Figure 2 shows that the soliton as predicted
from the CCEs (45), (53), and (54) compares very well with
the tip density obtained by direct numerical simulation of
the deterministic equations. An alternative way to find the
coefficients of the CCEs and their proper initial conditions is
to use ensemble averages of the stochastic process. Figure 3
shows that such reconstruction of the soliton agrees very well
with the vessel tip density provided by ensemble averages

10 12 14 16 18 20 22 240.1
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position of p̃(t, x, 0) peak (replica 10)
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position of p̃(t, x, 0) peak (replica 350)
soliton peak position

FIG. 5. Position of the soliton peak density compared to that of the
maximum marginal tip density for different replicas of the stochastic
process.

of the stochastic process during the 14 h interval when
soliton motion is not affected by boundaries. There is a large
discrepancy between the maximum marginal tip density as
predicted by the soliton and by the stochastic process during
the first 10 h of angiogenesis, which clearly marks the duration
of the initial stage of soliton formation. After this stage, we
note that the location of the maximum of the marginal tip
density is very closely predicted by the location of the soliton
peak as a function of time, both by using ensemble averages
of the stochastic process as in Fig. 3 or by solving numerically
the deterministic description as in Fig. 2. This is also clearly
shown in the reconstruction of the soliton marginal tip density
depicted in Fig. 4.

So far, our reconstructions have been based on ensemble
averages or, what is quite similar, the marginal tip density

0 0.2 0.4 0.6 0.8 10
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200

300

400

500

x/L

β = 5.88, t = 24 hr
β = 5.88, t = 36 hr
β = 29.4, t = 24 hr
β = 29.4, t = 36 hr

FIG. 6. Marginal vessel tip density profiles at 24 (dashed lines)
and 36 hours (solid lines) for β = 5.88 (blue lines) and β = 29.4 (red
lines).
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FIG. 7. Comparison between the vessel networks of two replicas
after 36 h for (a) β = 5.88, and (b) β = 29.4. The TAF level curves
have also been depicted.

as given by the deterministic description. In past work [32],
we have shown that fluctuations about the mean are large
and therefore the stochastic process is not self-averaging
for a single realization: anastomosis precludes the formation
of a large number of active tips that may enforce mean-
field behavior. However, a deterministic description is still
possible for averages over a sufficiently large number of
realizations of the stochastic process (400 realizations suffice),
as explained extensively in Ref. [32]. This raises an important
question: How well do these ensemble averages and the
soliton construction represent single replicas of the stochastic
process? Figure 5 gives a positive answer for the location of
the soliton peak: The position of the soliton peak is a good
approximation to the location of the maximum marginal tip
density for different replicas of the stochastic process. While
vessel networks may differ widely from replica to replica, the
position of the maximum marginal tip density is about the
same for different replicas. As the maximum of the marginal
tip density is a good measure of the advancing vessel network,
the soliton peak location also characterizes it. The existence of
other seemingly self-averaging quantities related to the soliton
is an open question.

We can use the soliton construction as a simple means to
evaluate the influence of new mechanisms on angiogenesis. For
instance, suppose that some drug causes the friction coefficient
β to increase fivefold. Then the marginal tip density gets
delayed as shown by Fig. 6. This can be evaluated easily
and cheaply by solving the CCEs. What does this mean for
replicas of the angiogenesis process? Figure 7 displays the
vessel networks formed after 36 h for β = 5.88 and 29.4 in
two different replicas of the stochastic process. For β = 5.88,
the vessel network of one replica of the angiogenesis process
has reached the tumor at x = 1 after 36 h, for β = 29.4 the
vessel network is only half way through its road to the tumor
after that time. Had the increase in β been the result of some
therapy, we could have ascertained its merits by solving the
CCEs and inferring the arrest of the vessel network from the
result.

VII. CONCLUSIONS

Previous work has shown that a simple stochastic model of
tumor-induced angiogenesis could be described deterministi-

cally by an integrodifferential equation of Fokker-Planck type
with a linear birth term and a nonlinear death (anastomosis)
term [30,32]. Anastomosis keeps the number of vessel tips
rather small (about 100), and therefore the vessel tip density
has to be reconstructed from ensemble averages of the stochas-
tic process, which is not self-averaging. Numerical simulations
of stochastic and deterministic equations show that the vessel
tip density advances from the primary vessel towards the tumor
as a stable moving lump or angiton whose profile along the
x axis is solitonlike [30,32,33]. An analytic formula for the
longitudinal profile of the angiton (called the “soliton” in this
paper) can be deduced by ignoring spatiotemporal variation of
the tumor angiogenic factor and diffusion [33]. This formula
involves two collective coordinates that characterize the shape
and velocity of the soliton [33].

In the present work, we have derived the reduced equation
for the marginal tip density by means of a Chapman-Enskog
method. We have deduced the differential equations for the
collective coordinates whose terms involve spatial averages
over the fully grown soliton far from the tumor. We can
deduce these equations both from the deterministic description
and from ensemble averages of the full stochastic model.
In both cases, the soliton provides a good reconstruction of
the deterministic marginal tip density or its version based
on ensemble averages, provided the soliton is not too close
to the tumor. As said before, fluctuations are large because
anastomosis keeps a small number of active vessel tips at all
time. Nevertheless, we have shown that the position of the
maximum marginal tip density as given by the soliton is quite
close to that given by any replica of the stochastic angiogenesis
process. This indicates that the simple soliton construction
yields good predictions of the evolution of the blood vessel
network.

There are mechanisms not included in our stochastic con-
ceptual model of angiogenesis. However, many mechanisms
such as haptotaxis can be included by adding terms to the
force F in the Langevin equation for the vessel tips that
depend on additional continuum fields (fibronectin, matrix
degrading enzymes, etc.; see, e.g., Ref. [21]). The effects of
antiangiogenic factors could be treated by including additional
reaction-diffusion equations and their effects on the vessel tips
[14]. Such terms can be straightforwardly incorporated into the
equations for the soliton collective coordinates using the same
methodology as explained in the present paper. There are other
models that postulate reinforced random walks [12,15,16] or
cellular Potts models with Monte Carlo dynamics [20,25,31]
instead of Langevin equations to describe the extension of
vessel tips. Insofar as Fokker-Planck equations can be derived
from master equations in appropriate limits [40] and branching
and anastomosis are similar to those of our conceptual model,
we could use the same methodology as in the present paper
to study such models. Let us recall that the soliton solution
comes through a balance of birth and death terms, convection,
and time derivative terms in the equation for the marginal
tip density. These terms would also appear in special limits
of the random walk or cellular Potts models. We consider
the work presented in this paper a blueprint for using the
soliton methodology to analyze more complex angiogenesis
models and a first step to control angiogenesis through soliton
dynamics.
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APPENDIX A: BOUNDARY CONDITIONS FOR
THE DETERMINISTIC EQUATIONS

The nondimensional boundary conditions for the TAF are
[30]

∂C

∂x
(t,0,y) = 0,

∂C

∂x
(t,1,y) = aL

d2CR

e−y2L2/b2
(A1)

(b is half the tumor width) and limy→±∞ C = 0. We do not
intend to follow the process of angiogenesis beyond the time
that vessels tip have arrived at the tumor and therefore we do
not give the latter a finite length. We use a Gaussian as the
initial condition for the TAF

C(0,x,y) = 1.1 e−[(x−1)2L2/c2+y2L2/b2] (A2)

for appropriate b and c. The boundary conditions for the tip
density are [30]

p+(t,0,y,v,w)

= e−|v−v0|2∫ ∞
0

∫ ∞
−∞ v′e−|v′−v0|2dv′ dw′

×
[
j0(t,y) −

∫ 0

−∞

∫ ∞

−∞
v′p−(t,0,y,v′,w′)dv′dw′

]
,

(A3)

p−(t,1,y,v,w)

= e−|v−v0|2∫ 0
−∞

∫ ∞
−∞ e−|v′−v0|2dv′ dw′

×
[
p̃(t,1,y) −

∫ ∞

0

∫ ∞

−∞
p+(t,1,y,v′,w′)dv′dw′

]
,

(A4)

p(t,x,v) → 0 as |v| → ∞, (A5)

where p+ = p for v > 0 and p− = p for v < 0, v = (v,w).
An absorbing boundary condition p = 0 on the tumor surface
would be more realistic than (A4). However, this would be
computationally more costly as we would need to include a
slab that extends beyond x = 1. However, the difference with
the present results would be appreciable at the last stage when
the vessel tips arrive at the tumor, something we do not study
specifically in the present paper. In (A3), the tip flux density
at x = 0 is [30]

j0(t,y) = v0α[C(t,0,y)] p(t,0,y,v0,w0) θ (τ − t) (A6)

for the vector velocity v0 = (v0,w0), with |v0| = 1. Different
from Ref. [30], we have included the step function θ (τ − t)
in (A6). With τ = ∞ as in Refs. [30,32], the primary vessel
keeps injecting tip density for all time. However, this may be
artificial, as the primary vessel does not inject any more vessels

after t = 0+ in many experiments on early stage angiogenesis.
Then τ in (A6) may be a small time of the order of the
time step used in a numerical code. The original boundary
condition in [30] did not include the unit step function, and, as
a consequence, the deterministic description given by the tip
density equation and its boundary conditions had an artificial
injection of tip density at x = 0 for all t > 0. The deterministic
description including boundary conditions can be proved to
have a solution [41].

APPENDIX B: DERIVATION OF EQUATION (50)
AND MEANING OF THE CCES

Let I = (a,b) and let us assume that ξ + X = x/ε, with
ε � 1, for a fixed time. Let us consider the initial value
problem

d�

dx
= F (p̃(ξ ; x),x), �(a) = 0, (B1)

and solve it by using multiple scales x and ξ , and the
assumption � = �(0)(ξ,x) + ε�(1)(x,ξ ) + O(ε2). We find the
hierarchy of equations

∂�(0)

∂ξ
= 0, (B2)

∂�(1)

∂ξ
= F (p̃(ξ ; x),x) − ∂�(0)

∂x
, (B3)

and so on. Equation (B2) means that �(0) depends only on x.
Assuming boundary conditions p̃(±L/2; x) = 0, (B3) has a
solution bounded in ξ for large ξ provided the integral of its
right hand side over ξ is zero, which yields

∂�(0)

∂x
= 1

L

∫ L/2

−L/2
F (p̃(ξ ; x),x) dξ. (B4)

Then �(0)(b) gives the formula (50), which is typical in
homogenization theory.

Consider now Eq. (46) with μ(C) =∫ b

a
μ(C(t,x,0)) dx/(b − a) ≡ μ and a similar definition

for Fx . According to the assumptions specified below (46),
we may write

p̃s = p̃s

(
ξ ; K,c,μ,Fx

(
C,

∂C

∂x

))

= p̃s(ξ ; K,c,μ,Fx) + ∂p̃s

∂Fx

(ξ ; K,c,μ,Fx)(Fx − Fx)+ · · · .

(B5)

Then

∇xp̃s = ex

∂p̃s

∂ξ
(ξ ; K,c,μ,Fx)

+ ∂p̃s

∂Fx

(ξ ; K,c,μ,Fx)∇xFx + · · · , (B6)
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and similarly for 	xp̃s . Here ex = (1,0). Using these formulas,
we find A in (49) with the following meaning:

A = 1

2β

∂2p̃s

∂ξ 2
(ξ ; K,c,μ,Fx) − p̃s(ξ ; K,c,μ,Fx)∇x · F

− ∂p̃s

∂Fx

(ξ ; K,c,μ,Fx)

[
F · ∇xFx − 1

2β
	xFx

]

+ 1

β

∂2p̃s

∂ξ∂Fx

(ξ ; K,c,μ,Fx)
∂Fx

∂x
. (B7)

Then the CCEs become

K̇ = (2K� + μ2)2

4�β(c − Fx)2

4π2

75 + 1
5 + ( 2Fx

5c
− 2π2

75 − 9
10

)
Fx

c(
1 − 4π2

15

)(
1 − Fx

2c

)2

− 2K� + μ2

2�
(
c − Fx

2

)
(

c∇x · F + F · ∇xFx − 	xFx

2β

)
,

(B8)

ċ = −7(2K� + μ2)

20β(c − Fx)

1 − 4π2

105(
1 − 4π2

15

)(
1 − Fx

2c

)
+

F · ∇xFx − (c − Fx)∇x · F − 	xFx

2β

2 − Fx

c

, (B9)

as indicated in Sec. V.

APPENDIX C: EXTENDED COLLECTIVE COORDINATE
EQUATIONS FOR A SOLITON FAR FROM PRIMARY

VESSEL AND TUMOR

In this Appendix, we will find the CCEs without the
assumptions that μ is constant and that the time variation
of the TAF concentration is negligible. To obtain the CCEs,
we need to substitute the soliton (43) into (31). According to
(43), the soliton is a function

p̃s = p̃s

(
ξ ; K,c,μ(C),Fx

(
C,

∂C

∂x

))
, (C1)

so that we have the expressions

∇xp̃s = ex

∂p̃s

∂ξ
+ ∂p̃s

∂μ
μC∇xC + ∂p̃s

∂Fx

∇xFx = ex

∂p̃s

∂ξ
+ ∂p̃s

∂K

μμC

�
∇xC + ∂p̃s

∂Fx

∇xFx, (C2)

	xp̃s = ∂2p̃s

∂ξ 2
+ ∂p̃s

∂K

μμC	xC + (
μ2

C + μμCC

)|∇xC|2
�

+ ∂p̃s

∂Fx

	xFx + ∂2p̃s

∂K2

μ2μ2
C

�2
|∇xC|2

+ ∂2p̃s

∂F 2
x

|∇xFx |2 + 2
μμC

�

(
∂2p̃s

∂K∂Fx

∇xC · ∇xFx + ∂2p̃s

∂ξ∂K

∂C

∂x

)
+ 2

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
, (C3)

∂p̃s

∂t
= ∂p̃s

∂K
K̇ + ∂p̃s

∂c
ċ − c

∂p̃s

∂ξ
+ μμC

�

∂p̃s

∂K

∂C

∂t
+ ∂p̃s

∂Fx

∂Fx

∂t
, (C4)

∂Fx

∂t
= δ

β

∂

∂t

∂C
∂x

(1 + �1C)q
= δ

β(1 + �1C)q

(
∂2C

∂t∂x
− ∂C

∂x

∂C

∂t

q�1

1 + �1C

)
= δ

β

∂

∂x

∂C
∂t

(1 + �1C)q
, (C5)

in which ex is the unit vector along the x axis and we have used

∂p̃s

∂μ
= ∂p̃s

∂K

μ

�
. (C6)

Inserting (C2)–(C5) in (31), we obtain

(Fx − Ẋ)
∂p̃s

∂ξ
+ ∂p̃s

∂K
K̇ + ∂p̃s

∂c
ċ + p̃s∇x · F + ∂p̃s

∂μ
μC

(
∂C

∂t
+ F · ∇xC

)
+ ∂p̃s

∂Fx

(
∂Fx

∂t
+ F · ∇xFx

)

− 1

2β

(
∂2p̃s

∂ξ 2
+ 2

∂2p̃s

∂ξ∂μ
μC

∂C

∂x
+ 2

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
+ ∂p̃s

∂Fx

	xFx + ∂2p̃s

∂F 2
x

|∇xFx |2 + ∂p̃s

∂K

μμC	xC + (
μμCC + μ2

C

)|∇xC|2
�

+∂2p̃s

∂K2

μ2μ2
C

�2
|∇xC|2 + 2

∂2p̃s

∂K∂Fx

μμC

�
∇xC · ∇xFx

)
= μp̃s − �p̃s

∫ t

0
p̃s dt. (C7)

Substituting (33) (with p̃ = p̃s) in (C5), we obtain

∂Fx

∂t
= κδ

β

∂

∂x

	xC

(1 + �1C)q
− χδ

β
p̃s

∂

∂x

C

(1 + �1C)q
− χδC

β(1 + �1C)q

(
∂p̃s

∂ξ
+ μμC

�

∂p̃s

∂K

∂C

∂x
+ ∂p̃s

∂Fx

∂Fx

∂x

)
. (C8)

Inserting these equations into (C7) and using (43) and (44), we obtain (33) with the following A:

A = 1

2β

∂2p̃s

∂ξ 2
− p̃s∇x · F − ∂p̃s

∂K

[
μμC

�

(
F · ∇xC + κ	xC − χCp̃s − 1

2β
	xC

)
− μ2

C + μμCC

2β�
|∇xC|2

]
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− ∂p̃s

∂Fx

[
F · ∇xFx + κδ

β

∂

∂x

(
	xC

(1 + �1C)q

)
− 1

2β
	xFx

]
+ μ2μ2

C

2β�2

∂2p̃s

∂K2
|∇xC|2 + μμC

β�

∂2p̃s

∂K∂Fx

∇xC · ∇xFx

+ δχ

β

∂

∂x

(
C

(1 + �1C)q

)
∂p̃s

∂Fx

p̃s + 1

2β

∂2p̃s

∂F 2
x

|∇xFx |2 + δχC

β(1 + �1C)q
∂Fx

∂x

(
∂p̃s

∂Fx

)2

+ δχμμCC

β�(1 + �1C)q
∂C

∂x

∂p̃s

∂K

∂p̃s

∂Fx

+ μμC

�β

∂2p̃s

∂ξ∂K

∂C

∂x
+ 1

β

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
+ δχC

β(1 + �1C)q
∂p̃s

∂Fx

∂p̃s

∂ξ
, (C9)

instead of (49).
After we calculate the integrals that appear in (51)–(52) as indicated in Appendix D, these equations become

K̇ = (2K� + μ2)2

4�β(c − Fx)2

4π2

75 + 1
5 + Fx

c

( 2Fx

5c
− 2π2

75 − 9
10

)
(
1 − 4π2

15

)(
1 − Fx

2c

)2 − 2K� + μ2

2�c
(
1 − Fx

2c

)[
c∇x · F + F · ∇xFx − 1

2β
	xFx + κδ

β

∂

∂x

(
	xC

(1 + �1C)q

)]

− μμC

�

[
F · ∇xC +

(
κ − 1

2β

)
	xC − χcC(2K� + μ2)

[
1 − 34π2

105

(
1 − 6Fx

17c

)]
3�(c − Fx)

(
1 − 4π2

15

)(
1 − Fx

2c

) ]
+ χδc(2K� + μ2)2

5β�2(c − Fx)2
(
1 − 4π2

15

)(
1 − Fx

2c

)
×

{
C

6(1 + �1C)q

[
5μμC

∂C
∂x

[
1 − 2π2

105

(
17 + 4π2

5

) + 8π2Fx

35c

]
2K� + μ2

− ∂Fx

∂x

1 − 2π2

105 + 8π4

105 − 4Fx

c

c − Fx

]

+ ∂

∂x

(
C

(1 + �1C)q

)[
1 − 86π2

315
− 2Fx

3c

(
1 − 2π2

7

)]}
+ |∇xC|2

2β�

[
μ2

C + μμCC − μ2μ2
C

(
π2

15 + Fx

c

)
2(2K� + μ2)

(
1 − Fx

2c

)]

+ 1 − π2

30 − 3Fx

2c

(
1 − π2

90

) + F 2
x

2c2

β�(c − Fx)
(
1 − Fx

2c

)2 (2K� + μ2)

[
μμC∇xC · ∇xFx

2K� + μ2
+ |∇xFx |2

2(c − Fx)

]
, (C10)

ċ = − 7(2K� + μ2)
(
1 − 4π2

105

)
20β(c − Fx)

(
1 − 4π2

15

)(
1 − Fx

2c

) +
F · ∇xFx + κδ

β
∂
∂x

(
	xC

(1+�1C)q
) − 	xFx

2β
− (c − Fx)∇x · F

2 − Fx

c

−
[
μμC∇xC · ∇xFx

2K� + μ2
+ |∇xFx |2

2(c − Fx)

]
1 + π2

30

β
(
1 − Fx

2c

) + χδc(2K� + μ2)

3β�
(
1 − 4π2

15

)(
1 − Fx

2c

){
μμCC

2K� + μ2

×
[

1 + 2π2

15

(
1 − 4π2

35

)
2(c − Fx)(1 + �1C)q

∂C

∂x
+ β

δ

(
1 − 2π2

21

)]
+ 7C

[
1 + 2π2(1−4π2)

735

]
10(1 + �1C)q(c − Fx)2

∂Fx

∂x

− 1 − 34π2

105

5(c − Fx)

∂

∂x

(
C

(1 + �1C)q

)}
− μ2μ2

C(c − Fx)

2β(2K� + μ2)2
(
1 − Fx

2c

)(
1 + π2

30

)
|∇xC|2. (C11)

In Table II, the dimensionless coefficients κ and χ appearing in the TAF equation (33) are very small. Then we may ignore
terms having these coefficients in the CCEs (C10)–(C11), thereby obtaining

K̇ = (2K� + μ2)2

4�β(c − Fx)2

4π2

75 + 1
5 + Fx

c

( 2Fx

5c
− 2π2

75 − 9
10

)
(
1 − 4π2

15

)(
1 − Fx

2c

)2 − 2K� + μ2

2�
(
c − Fx

2

)(
c∇x · F + F · ∇xFx − 1

2β
	xFx

)

−μμC

�

(
F · ∇xC − 	xC

2β

)
+

[
μ2

C + μμCC

�
− μ2μ2

C

(
π2

15 + Fx

c

)
2�(2K� + μ2)

(
1 − Fx

2c

)
]

|∇xC|2
2β

+1 − π2

30 − 3Fx

2c

(
1 − π2

90

) + F 2
x

2c2

β�(c − Fx)
(
1 − Fx

2c

)2 (2K� + μ2)

[
μμC∇xC · ∇xFx

2K� + μ2
+ |∇xFx |2

2(c − Fx)

]
, (C12)

ċ = −7(2K� + μ2)

20β(c − Fx)

1 − 4π2

105(
1 − 4π2

15

)(
1 − Fx

2c

) +
F · ∇xFx − 	xFx

2β
− (c − Fx)∇x · F

2 − Fx

c

−
[
μ2μ2

C(c − Fx)|∇xC|2
2(2K� + μ2)2

+ μμC∇xC · ∇xFx

2K� + μ2
+ |∇xFx |2

2(c − Fx)

]
1 + π2

30

β
(
1 − Fx

2c

) . (C13)

Further simplification leads to (53)–(54).
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FIG. 8. Same as Fig. 2: Comparison between the maximum value
of p̃(t,x,0) as given by the deterministic description and its value as
predicted by soliton collective coordinates that solve (C10)–(C11).

We can reconstruct the soliton using the extended CCEs
(C10)–(C11) instead of the simplified CCEs (53)–(54). Some-

what surprisingly, the reconstruction compares poorly with
the direct solution of the deterministic description. Figure 8
depicts the evolution of the soliton peak when evaluated from
(C10)–(C11) and the peak of the reduced density p̃(t,x,0) as
given by the deterministic description. We observe that the
soliton peak decreases far away from p̃(t,x,0). The reason
is that K(t) monotonically decreases with t . Instead, K(t)
given by (53)–(54) reaches a minimum, and it increases as
shown in Fig. 1(a). Then the soliton peak calculated from
the CCEs (53)–(54) and depicted in Fig. 2(a) increases after
reaching a local minimum, and it becomes closer to p̃(t,x,0).
The discrepancies between the solutions of the different CCEs
are caused by the terms proportional to μμC in (C10). In
particular, the negative term −μμC

�
(F · ∇xC − 	xC

2β
) in (C10)

or in (C12) is too large to be compensated by any positive
term in the equation for K̇ . In turn, the large value of A in
Table II amplifies the importance of the spatial variation of C,
F · ∇xC, reflected in that coefficient. In principle, the CCEs are
based on the idea that the spatial variations of C, which appear
when p̃s of (43) and (46) is differentiated with respect to x,
produce terms that are small compared to ∂p̃s/∂ξ . The large
value of A contradicts this idea, and thus the CCEs (53)–(54)
based on setting μC = 0 give better results than (C10)–(C11)
or (C12)–(C13).

APPENDIX D: DERIVATION OF THE COLLECTIVE COORDINATE EQUATIONS

The derivatives of p̃s , given by (43)–(45), which appear in (C9) are

∂2p̃s

∂ξ 2
= c(2K� + μ2)2

4�(c − Fx)3
sech4s (2 sinh2 s − 1), (D1)

∂p̃s

∂K
= c

c − Fx

sech2s (1 − s tanh s), (D2)

∂p̃s

∂c
= c(2K� + μ2)

�(c − Fx)2
sech2s

(
s tanh s − Fx

2c

)
, (D3)

∂p̃s

∂μ
= μ

�

∂p̃s

∂K
, (D4)

∂p̃s

∂Fx

= c(2K� + μ2)

�(c − Fx)2
sech2s

(
1

2
− s tanh s

)
, (D5)

∂2p̃s

∂K2
= c� s ∂

∂s
[sech2s (1 − s tanh s)]

(c − Fx)(2K� + μ2)
, (D6)

∂2p̃s

∂K∂Fx

= c s

(c − Fx)2

∂

∂s
[sech2s (1 − s tanh s)] + 1

c − Fx

∂p̃s

∂K
, (D7)

∂2p̃s

∂F 2
x

= 2

c − Fx

∂p̃s

∂Fx

+ c(2K� + μ2)

�(c − Fx)3
s

∂

∂s

[
sech2s

(
1

2
− s tanh s

)]
, (D8)

and

μC ≡ ∂μ

∂C
= d

π (1 + C)2

[
1 +

α ln
(
1 + 1

σ 2
v

)
πβ(1 + σ 2

v )

]
. (D9)

To find the CCEs of the soliton, we need the following integrals calculated from (D1)–(D9):

∫ ∞

−∞

(
∂p̃s

∂K

)2

dξ = 4c2(2K� + μ2)−
1
2

3(c − Fx)

(
1 + π2

30

)
, (D10)∫ ∞

−∞

∂p̃s

∂K

∂p̃s

∂c
dξ = 2c2(2K� + μ2)1/2

3�(c − Fx)2

(
1 − 3Fx

2c
− π2

15

)
, (D11)
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∫ ∞

−∞

(
∂p̃s

∂c

)2

dξ = 2c2(2K� + μ2)
3
2

3�2(c − Fx)3

(
π2

15
− Fx(c − Fx)

c2

)
, (D12)∫ ∞

−∞

∂p̃s

∂K

∂2p̃s

∂ξ 2
dξ = −c2(2K� + μ2)3/2

3�(c − Fx)3
, (D13)∫ ∞

−∞

∂p̃s

∂c

∂2p̃s

∂ξ 2
dξ = c2(2K� + μ2)5/2

15�2(c − Fx)4

(
1 + 2

c
Fx

)
, (D14)∫ ∞

−∞

∂p̃s

∂K
p̃s dξ = c2(2K� + μ2)1/2

�(c − Fx)
, (D15)∫ ∞

−∞

∂p̃s

∂c
p̃s dξ = c2(2K� + μ2)3/2

3�2(c − Fx)2

(
1 − 2Fx

c

)
, (D16)

∫ ∞

−∞
p̃s

(
∂p̃s

∂K

)2

dξ = 2c3(2K� + μ2)1/2

3�(c − Fx)2

(
1 + 2π2

105

)
, (D17)∫ ∞

−∞
p̃s

∂p̃s

∂c

∂p̃s

∂K
dξ = 2c3(2K� + μ2)3/2

9�2(c − Fx)3

(
1 − 2π2

35
− 2Fx

c

)
, (D18)∫ ∞

−∞

∂p̃s

∂K

∂p̃s

∂Fx

dξ = c2(2K� + μ2)1/2

3�(c − Fx)2

(
1 + 2π2

15

)
, (D19)∫ ∞

−∞

∂p̃s

∂c

∂p̃s

∂Fx

dξ = c2(2K� + μ2)3/2

3�2(c − Fx)3

(
1 − 2π2

15
− Fx

c

)
, (D20)∫ ∞

−∞
p̃s

∂p̃s

∂K

∂p̃s

∂Fx

dξ = 2c3(2K� + μ2)3/2

9�2(c − Fx)3

(
1 + 2π2

35

)
, (D21)∫ ∞

−∞
p̃s

∂p̃s

∂c

∂p̃s

∂Fx

dξ = 2c3(2K� + μ2)5/2

15�3(c − Fx)4

(
1 − 4Fx

3c
− 2π2

21

)
, (D22)

∫ ∞

−∞

(
∂p̃s

∂K

)2
∂p̃s

∂Fx

dξ = c3(2K� + μ2)1/2

3�(c − Fx)3

(
1 + 2π2

21

)
, (D23)

∫ ∞

−∞

∂p̃s

∂K

(
∂p̃s

∂Fx

)2

dξ = c3(2K� + μ2)3/2

9�2(c − Fx)4

(
1 + 6π2

35

)
, (D24)

∫ ∞

−∞

∂p̃s

∂c

(
∂p̃s

∂Fx

)2

dξ = c3(2K� + μ2)5/2

45�3(c − Fx)5

[
2π2

7
− 1 − 2Fx

c

(
1 + 2π2

7

)]
, (D25)∫ ∞

−∞

∂p̃s

∂K

∂p̃s

∂c

∂p̃s

∂Fx

dξ = c3(2K� + μ2)3/2

9�2(c − Fx)4

[
1 − 2π2

35
− 2Fx

c

(
1 + 2π2

35

)]
, (D26)∫ ∞

−∞

∂p̃s

∂K

∂2p̃s

∂K2
dξ = − 2c2�

3(c − Fx)(2K� + μ2)3/2

(
1 + π2

30

)
, (D27)∫ ∞

−∞

∂p̃s

∂c

∂2p̃s

∂K2
dξ = c2(2K� + μ2)−1/2

3(c − Fx)2

[
− π2

5
+ Fx

c

(
1 + 2π2

15

)]
, (D28)∫ ∞

−∞

∂p̃s

∂K

∂2p̃s

∂K∂Fx

dξ = 2c2(2K� + μ2)−1/2

3(c − Fx)2

(
1 + π2

30

)
, (D29)∫ ∞

−∞

∂p̃s

∂c

∂2p̃s

∂K∂Fx

dξ = 2c2(2K� + μ2)1/2

3�(c − Fx)3

[
1 − π2

6
− Fx

c

(
1 − π2

15

)]
, (D30)∫ ∞

−∞

∂p̃s

∂K

∂2p̃s

∂F 2
x

dξ = 2c2(2K� + μ2)1/2

3�(c − Fx)3

(
1 + π2

30

)
, (D31)∫ ∞

−∞

∂p̃s

∂c

∂2p̃s

∂F 2
x

dξ = 2c2(2K� + μ2)3/2

3�2(c − Fx)4

[
1 − π2

6
− Fx

c

(
1 − π2

15

)]
. (D32)

Using these integrals, we obtain the CCEs (C10) and (C11).
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