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Analytic framework for a stochastic binary biological switch
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We propose and solve analytically a stochastic model for the dynamics of a binary biological switch, defined
as a DNA unit with two mutually exclusive configurations, each one triggering the expression of a different
gene. Such a device has the potential to be used as a memory unit for biological computing systems designed to
operate in noisy environments. We discuss a recent implementation of this switch in living cells, the recombinase
addressable data (RAD) module. In order to understand the behavior of a RAD module we compute the exact
time-dependent joint distribution of the two expressed genes starting in one state and evolving to another
asymptotic state. We consider two operating regimes of the RAD module, a fast and a slow stochastic switching
regime. The fast regime is aggregative and produces unimodal distributions, whereas the slow regime is separative
and produces bimodal distributions. Both regimes can serve to prepare pure memory states when all cells are
expressing the same gene. The slow regime can also separate mixed states by producing two subpopulations, each
one expressing a different gene. Compared to the genetic toggle switch based on positive feedback, the RAD
module ensures more rapid memory operations for the same quality of the separation between binary states. Our
model provides a simplified phenomenological framework for studying RAD memory devices and our analytic
solution can be further used to clarify theoretical concepts in biocomputation and for optimal design in synthetic
biology.
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I. INTRODUCTION

Biological machines are a promising new paradigm in
computation [1]. By using synthetic biology it is now possible
to design memory units and logic gates operating in living
cells [2–4]. Contrarily to their silicon counterparts, biological
computing units (BCUs) can evolve their computation ca-
pacities by proliferation and auto-organization. Furthermore,
BCUs can be easily produced in large numbers and could be
used for parallel distributed computing in living environments
for medical applications such as implants for augmenting
capacities or for health monitoring [5].

However, there are prices to pay when replacing the
silicon substrate with biological cells. BCUs are submitted
to stochastic fluctuations that are ubiquitous in the realm
of molecular machines [6,7]. Within cell communities, the
result of a computation can vary from one cell to another and
therefore this result should be represented as a probability
distribution of different states of the system. In order to
optimize the design of BCUs, precise calculations of time-
dependent population distributions are extremely useful. Here
we present exact closed-form solutions for time-dependent
probability distributions for a memory device. These solutions
facilitate parameter analysis for optimal functioning of BCU
devices. Moreover, they reduce drastically the time needed to
fit models to data or to compare between various architectures
of such devices.

Synthetic biological memory devices have been engineered
based on different mechanisms. Some systems use a feedback
loop in order to achieve data storage via bistability. For

example, positive feedback systems inspired by the phage
lambda Cro-CI circuit and using two transcription factors
(TFs) mutually repressing each other have been implemented
in the bacterium Escherichia coli [8,9]. Positive-feedback-
based memory devices have also been engineered in the baker’s
yeast Sacharomyces cerevisiae [10]. The theory of genetic
toggle switches with positive feedback has been developed
elsewhere with emphasis on bimodality and on the stabilizing
role of the cooperative binding of TFs to the DNA sequence
and/or of the mutual exclusion of competing TFs [11–17].
It has been thus shown that bimodal distributions needed
for separating memory states can occur even in the absence
of cooperativity and bistability, although they still require
positive feedback [16,17]. Recently, genetic memory systems
using recombinases from the integrase family, enzymes that
catalyze strand exchange between specific DNA sequences [5],
have been implemented into living cells. DNA data storage
has the advantage that only two discrete states are possible
without the need for gene circuits and feedback. The state
of the system can be interrogated by direct DNA sequencing
but also by measuring the intensity of a fluorescent protein
(FP) whose expression is controlled by the invertible DNA
sequence (called the DNA register). Fluorescent reporters
of two colors, for instance green fluorescent protein (GFP)
and red fluorescent protein (RFP), can be used to reveal
binary DNA register states of single cells. Although the
majority of DNA data storage devices are single-write units,
a particular architecture called the recombinase addressable
data (RAD) module using two proteins, an integrase and a
recombination directionality factor (or excisionase) enables
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FIG. 1. Schematic architecture and operational principle of the
recombinase addressable data (RAD) module. (a) The DNA register
is composed of a DNA sequence containing a promoter (driving
transcription) flanked by the two recombination sites recognized by
the integrase (Int). (b) In state 0, the promoter drives expression of
GFP. Integrase catalyzes the SET reaction, inverting the DNA register
and enables transition towards state 1, in which the promoter has been
inverted and now drives transcription of RFP. Concomitant expression
of integrase and excisionase (Xis) catalyze the RESET reaction by
enabling transition from state 1 to state 0.

rewritable digital data storage in bacteria [18] (Fig. 1). This
mechanism generates bimodal probability distributions in a
simpler way than the toggle switch because it does not include
positive feedback. Here we introduce a stochastic model for a
RAD unit and compute the exact time-dependent distribution
probabilities for the two genes. Our model exhibits bimodality
without positive feedback which confirms a result from similar
models (Cook et al. [19], Hornos et al. [20], Innocentini and
Hornos [21], Radulescu et al. [22], Shahrezai and Swain [23],
Zeron and Santillan [24]). Although it has peculiarities and is
not entirely equivalent to positive feedback toggle switches,
this model has the advantage of simplicity and describes the
behavior of an existing device.

The design of synthetic biological devices relies on the
possibility to predict their performance for various parameter
values. For stochastic devices this is usually done by Monte
Carlo (Gillespie) simulations and scan of the parameter space,
which is utterly time consuming. Therefore, analytic solutions
of the time-dependent master equation are particularly useful
for this type of application. Such analytic solutions were
obtained in the past using the method of generating functions
for a number of switch models: promoter on-off with direct
protein expression [25], on-off promoter with direct protein
expression and negative feedback [20,26], on-off promoter
with two-stage expression (mRNA and protein) [21,23,27].
All these models describe the dynamics of a single protein,
eventually coupled to its corresponding mRNA. The joint
dynamics of two proteins expressed by an exclusive switch has
never been studied analytically (the stationary probability dis-
tributions are nevertheless available for some toggle switches,
as perturbative series [17] or as solutions of Fokker-Planck
approximations to the master equation [16]) and can not be
derived from the results of previous single-protein models.

II. DESCRIPTION OF THE MODEL

The RAD module synthesized by Bonnet et al. [18] is
composed of a DNA sequence, which can exist in two
configurations inverted one with respect to the other. The
transition between the configurations is reversible. Depending

on the configuration, single cells produce one of the two
reporters, a GFP or RFP (Fig. 1). Although the two internal
states of the memory defined by the DNA configurations
are mutually exclusive, the expression of the two reporter
genes depends on how fast the unit switches between the
two configurations. As we will show later in this paper, fast
switching between the two configurations allows that both
GFP and RFP are expressed by the same cell. In this work,
we are interested in the conditions enabling the generation
of cell populations residing in a pure state (when all the
cells express the same reporter gene) or separated mixed state
(when subpopulations express an unique reporter gene but not
necessarily the same). To this end, we introduce a mathematical
model to describe the stochastic dynamics of the system. Our
model is based on two coupled master equations governing
the evolution of the joint probability distributions carrying the
information about switch status and numbers of GFP (g) and
RFP (r) at a given instant of time:

dφ0
g,r (t)

dt
= kg

[
φ0

g−1,r (t) − φ0
g,r (t)

]

+ ρ
[
(g + 1)φ0

g+1,r (t) − gφ0
g,r (t)

]
,

+ ρ
[
(r + 1)φ0

g,r+1(t) − rφ0
g,r (t)

]
−hφ0

g,r (t) + f φ1
g,r (t) (1)

dφ1
g,r (t)

dt
= kr

[
φ1

g,r−1(t) − φ1
g,r (t)

]

+ ρ
[
(r + 1)φ1

g,r+1(t) − rφ1
g,r (t)

]
.

+ ρ
[
(g + 1)φ1

g+1,r (t) − gφ1
g,r (t)

]
+hφ0

g,r (t) − f φ1
g,r (t). (2)

The random variables are g and r . Production of GFP and
RFP is controlled by the rates kg and kr , respectively. The
degradation and dilution rate of both reporters is given by ρ

and the switching between the two states is encoded in the
rates h (SET) and f (RESET).

As discussed in the introduction, the RAD module switch-
ing properties are not based on feedback. More precisely, the
SET (h) and RESET (f ) rates do not depend on the random
variables g and r . In spite of the ostensible simplicity of the
model, no analytic solutions for the joint stochastic dynamics
of the proteins g and r are available to date. Such solutions are
derived in the next section.

III. ANALYTIC SOLUTIONS FOR THE JOINT GENE
EXPRESSION DYNAMICS

Introducing the generating functions, φ0(z,y,t) =∑∞
g,r=0 φ0

g,r (t)zgyr and φ1(z,y,t) = ∑∞
g,r=0 φ1

g,r (t)zgyr , we
transform the master equations in a set of partial differential
equations:

∂φ0

∂t
= (z − 1)

[
kgφ

0 − ρ
∂φ0

∂z

]

− (y − 1)ρ
∂φ0

∂y
− hφ0 + f φ1,
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∂φ1

∂t
= (y − 1)

[
krφ

1 − ρ
∂φ1

∂y

]

− (z − 1)ρ
∂φ1

∂z
+ hφ0 − f φ1. (3)

The desired joint probability distributions are obtained from
the generating functions by applying the formulas:

φ0
g,r (t) = 1

r!

1

g!

∂r

∂yr

∂g

∂zg
φ0(z,y,t)

∣∣∣∣
z=y=0

,

φ1
g,r (t) = 1

r!

1

g!

∂r

∂yr

∂g

∂zg
φ1(z,y,t)

∣∣∣∣
z=y=0

. (4)

In order to solve the system of PDEs in Eq. (3) we propose
a set of transformations, that will lead to an integrable system
of ODEs. To do so, we perform a first change of variables:

w = (z − 1)

(y − 1)
, x = (z − 1)(y − 1). (5)

In the new set of variables (w,x) the equations read:

∂φ0

∂t
+ 2xρ

∂φ0

∂x
= √

wxkgφ
0 − hφ0 + f φ1

∂φ1

∂t
+ 2xρ

∂φ1

∂x
=

√
x

w
krφ

1 + hφ0 − f φ1. (6)

Note that this transformation eliminates one of the partial
derivatives. To eliminate another partial derivative and obtain
a set of ordinary differential equation (ODE) with respect to
the remaining variable we propose a second transformation,

ν =
√

x

w
μ =

√
x

w
e−ρt , (7)

which leads to the set of ODEs in the variable ν:

νρ
∂φ0

∂ν
= νwkgφ

0 − hφ0 + f φ1

νρ
∂φ1

∂ν
= νkrφ

1 + hφ0 − f φ1. (8)

Now, solving the first equation of the system (8) for
φ1(ν,μ,w), gives

φ1(ν,μ,w) = 1

f

(
νρ

∂φ0

∂ν
− νwkgφ

0 + hφ0

)
, (9)

and by substituting the result in the second equation of the
system, we arrive to the second-order ODE with respect to the
variable ν for φ0(ν,μ,w):

νρ2 ∂2φ0

∂ν2
+ ρ[f + h + ρ − ν(kr + kgw)]

∂φ0

∂ν

− [wkg(ρ + f ) + krh − νwkgkr ]φ0 = 0. (10)

This equation has a regular singularity at ν = 0 and a irregular
one at infinity. This structure suggest solutions in terms of
confluent hypergeometric functions. To make it more clear, let
us use the ansatz φ0(ν,μ,w) = exp(νwkg/ρ)ψ(ν,μ,w), and a
last transformation of variables: ν = ηρ/(kr − wkg). Putting
this all together, we arrive to the equation in the new variable

η for ψ(η,μ,w):

η
∂2ψ

∂η2
+ (b − η)

∂ψ

∂η
− aψ = 0, (11)

where: a = h/ρ, b = (h + f + ρ)/ρ and η = ν(kr − wkg)/ρ.
Now, Eq. (11) is in the canonical form of the confluent hy-

pergeometric equation, or Kummer equation, and the general
solution is straightforward:

ψ(η,μ,w) = F (μ,w)M(a,b,η)

+G(μ,w)η1−bM(1 + a − b,2 − b,η). (12)

where M stands for Kummer function, F (μ,w) and G(μ,w)
are arbitrary functions that will be determined by the initial
conditions.

To obtain the expressions for the generating functions we
have to multiply the solution in Eq. (12) by the exponential
factor, exp(νwkg/ρ), to obtain φ0(η,μ,w) using this result and
Eq. (9) we can obtain the generating function for φ1(η,μ,w),
in the variables (η,μ,w):

φ0(η,μ,w) = e
(

kgwη

kr −kgw
)[F M(a,b,η)

+Gη1−b M(1 + a − b,2 − b,η)],

φ1(η,μ,w) = e
(

kgwη

kr −kgw
)
[
F

h

f
M(1 + a,b,η)

−Gη1−bM(2 + a − b,2 − b,η)

]
. (13)

The last task remaining is to find F (μ,w) and G(μ,w).
As said before, these functions are determined by the initial
conditions. To accomplish that, one can see that setting t = 0
in the second transformation Eq. (7) leads to ν = μ, which
in the variables (η,μ,w) implies in η = η̃ = μ(kr − wkg)/ρ.
Specifying the functions φ0(η = η̃,μ,w) and φ1(η = η̃,μ,w)
that will appear in the left-hand side of Eq. (13) one can
find the expressions for F (μ,w) and G(μ,w). To do so, let
us use vector and matrix notation to express the solutions in
Eq. (13) as: �φ = U �F , where, �φ = [φ0(η,μ,w),φ1(η,μ,w)]T,
�F = [F (μ,w),G(μ,w)]T and the entries of the matrix U are

given by:

U1,1 = exp

(
kgwη

kr − kgw

)
M(a,b,η),

U1,2 = exp

(
kgwη

kr − kgw

)
η1−bM(1 + a − b,2 − b,η),

U2,1 = exp

(
kgwη

kr − kgw

)
h

f
M(1 + a,b,η),

U2,2 = − exp

(
kgwη

kr − kgw

)
η1−bM(2 + a − b,2 − b,η). (14)

Inverting �φ = U �F we obtain the expression �F = U−1 �φ.
Setting η = η̃ brings us to the position of determining the vec-
tor �F = (F,G)T through the initial conditions C0 = φ0(η =
η̃,μ,w) and C1 = φ1(η = η̃,μ,w). One final observation,
before presenting F and G, concerns the determinant of the
matrix U [det(U ) = U1,1U2,2 − U1,2U2,1] necessary to com-
pute U−1. Inspection of (14) reveals that det(U ) is a product
of Kummer functions with an exponential envelope. Due to
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the well-known properties of the Kummer functions [28] this
determinant assumes a very simple formula:

det(U ) = (b − 1)e
η(kr −wkg )
(kr −wkg ) η1−b

1 + a − b
,

which is used to compute U−1. The explicitly expressions for
F and G are

F = exp

( −kr η̃

kr − wkg

)
f

h + f
[M(2 + a − b,2 − b,η̃)C0

+M(1 + a − b,2 − b,η̃)C1],

G = exp

( −kr η̃

kr − wkg

)
η̃b−1

[
h

h + f
M(a + 1,b,η̃)C0

− f

h + f
M(a,b,η̃)C1

]
. (15)

The initial conditions are encoded in C0 = φ0(η = η̃,μ,w)
and C1 = φ1(η = η̃,μ,w).

IV. ESSENTIAL BIOLOGICAL PARAMETERS AND TYPES
OF DYNAMICS OF THE RAD MODULE

At this point we are in position to exhibit the biological
features of our model encoded in the time-dependent joint
distributions of three variables: the two-valued DNA register
state and the numbers of GFP (g) and RFP (r). However,
before doing that, let us rephrase our parameter space in
adimensional biological terms. The two numbers Ng = kg/ρ

and Nr = kr/ρ are the protein production efficiencies. The
asymptotic occupancy probabilities are p0 = f/(f + h) and
p1 = h/(f + h). We call switching flexibility the important
parameter ε = (h + f )/ρ, representing the sum of the fre-
quencies of the SET and RESET transitions. The two situations
ε < 1 and ε > 1 correspond to slow and fast switching,
respectively.

Having the time-dependent solutions at hand we will first
illustrate the role of the biological parameters by analyzing
their influence on the shape of the asymptotic distributions
of the model. The generating function for the steady-state
distributions is obtained by performing the limit t → ∞ in

Eqs. (13), resulting in:

φ0(η,w) = p0 exp

(
− Ngwη

Ngw − Nr

)
M(a,b,η),

φ1(η,w) = p1 exp

(
− Ngwη

Ngw − Nr

)
M(1 + a,b,η), (16)

where we have: a = p1ε, b = ε + 1, and η = ν(Nr − wNg).
Applying formulas (4) we obtain the steady-state joint proba-
bility distributions as

φ0
g,r = f

f + h

	g+re−	

r!g!

g∑
s=0

(
g

s

)
(−1)s

(a)s
(b)s

(a + s)r
(b + s)r

,

φ1
g,r = h

f + h

	g+re−	

r!g!

g∑
s=0

(
g

s

)
(−1)s

(a + 1)s
(b)s

(a + 1 + s)r
(b + s)r

,

(17)

where we have used Ng = Nr = 	 and the symbol (•)s is the
Pochhammer’s symbol [28].

With Eqs. (17), we have computed the total joint probability
distribution in the asymptotic regime of the system for different
values of p0,p1 and ε keeping 	 constant. The steady-state
distributions are represented in Figs. 2(a)–2(c). In order to
expand the regions of small expression we made a change of
variables in the distributions from g,r variables to ln(g), ln(r)
variables. The analysis of the steady-state joint probability
distribution also allows to distinguish between mixed and pure
states of the DNA register. This concept is important for the
relation between hidden memory states and visible (readable)
phenotype. Mixed states are defined by 0 < p0 < 1 and 0 <

p1 < 1, whereas a pure state means that either p0 = 1 or p1 =
1. Also, we define three types of subpopulations regarding
the reporters readout: GFP only; RFP only and both GFP and
RFP. The corresponding state occupancies are pg , pr , prg ,
respectively. A well-separated population has low values of
prg . The state occupancies are not necessarily the same as the
occupancy probabilities p0 and p1 encoding the probability
to find the DNA register in state 0 or 1, respectively. A RAD
unit in a pure state has a pure phenotype (pg = 1 or pr =
1), in other words all the bacteria express GFP in state 0 or
RFP in state 1, as shown in Figs. 2(a) and 2(b). However, the

pr=1

pg=1

pr=0.5

pg=0.5
prg=1

ln(g)

pdf

(a) (b) (c) (d)

ln(g) ln(g) ln(g)

ln
(r
)

FIG. 2. Computed steady-state distributions of GFP and RFP for (a) pure p1 = 1 red state (all cells express RFP) and ε = 0.5 (slow
switching); (b) pure p0 = 1 green state (all cells express GFP) ε = 0.5 (slow switching); (c) mixed p0 = p1 = 0.5 unimodal state (all cells
express both GFP and RFP) and ε = 10 (fast switching); (d) mixed p0 = p1 = 0.5 bimodal state (half of the cells express only GFP and
half only RFP) and ε = 0.5 (slow switching). In logarithmic variables, the double integral of the probability distribution is normalized to
one. The remaining parameters are: 	 = 40 and ρ = 1. The probabilities pr , pg , prg indicate the fractions of cells with ln(g) < 2, ln(r) > 2;
ln(g) > 2, ln(r) < 2 and ln(g) > 2, ln(r) > 2, respectively, where the threshold 2 corresponds to the middle of the dynamical expression
interval.
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readout of a mixed state will depend on the switch flexibility.
A fast switch (ε > 1) will correspond to unimodal distribution
of expressed genes each bacteria expressing both genes in
different proportions [see Fig. 2(c)], whereas a slow switch
(ε < 1) corresponds to bimodal population where some cells
are green and others are red [see Fig. 2(d)].

In order to illustrate the dynamical behavior of the RAD
module we will first set the initial conditions (C0 and C1)
of the system. To do so, we use the steady-state solutions as
initial conditions but with different values for the occupancy
probabilities and switch flexibility (p̃0,p̃1,ε̃), leading to the
initial generating functions:

φ0(η̃,w) = p̃0 exp

(
− Ngwη̃

Ngw − Nr

)
M(ã,b̃,η̃),

φ1(η̃,w) = p̃1 exp

(
− Ngwη̃

Ngw − Nr

)
M(1 + ã,b̃,η̃), (18)

At t = 0 we abruptly change the occupancy probabilities
and switch flexibility from (p̃0,p̃1,ε̃) to (p0,p1,ε), keeping
them constant for t � 0. To study set and reset dynamics
of the RAD unit we consider three distinct experiments and
we show the corresponding time-dependent joint probability
distributions for each one of these experiments in Fig. 3.
The first two experiments correspond to the preparation of
a pure state. We start with initial condition corresponding
to a pure state p̃0 = 1 where all cells are expressing only
GFP (in the schematic description presented in Fig. 1 this

means that a strong excisionase signal is applied together with
the integrase), and at time t = 0 we change the asymptotic
occupancy parameter to the complementary pure state, p1 = 1,
driving all the cells to express only RFP in the asymptotic
configuration (excisionase is washed out). During the setting
we use fast switching (ε = 10) for the first experiment
Fig. 3(a) and slow switching (ε = 0.5) for the second one
Fig. 3(b) (corresponding to high and low concentrations of
integrase). In the third experiment, Fig. 3(c), we start with
an unimodal mixed steady-state configuration, in the fast
switch regime (ε = 10, corresponding to high integrase and
excisionase concentrations) and change the switch flexibility
to low values (ε = 0.1, lower concentrations). We call this
last experiment “developing” because it transforms the initial
unimodal mixed state in which single cells express both
GFP and RFP (state occupancy prg = 1) into a bimodal,
separated mixed state when two subpopulations have pure
phenotypes, expressing either RFP or GFP (pr = pg ≈ 0.5 in
Fig. 2). More generally, the final state occupancies are given
by the DNA configurations probabilities pr ≈ p̃1,pg ≈ p̃0).
Therefore, lowering the switching frequencies by lowering the
integrase and excisionase concentrations reveals previously
hidden information about the DNA register probabilities. The
last column of Fig. 3 shows the time dependence of the state
occupancies [pg(t), pr (t) and prg(t)] corresponding to each
one of the three experiments.

These experiments emphasize a clear distinction between
slow and fast switches. Slow switches are separative, they

ln(g)

(a)

(b)

(c)

t=0 t=2 t=10

t=0

t=0

t=2

t=2

t=10

t=10

ln
(r
)

ln
(r
)

ln(g) ln(g)

ln
(r
)

pr
ob

ab
ili
ty

pr
ob

ab
ili
ty

pr
ob

ab
ili
ty

�me

pg

pg

pg

pr

pr

pr

prg

prg

prg

(e)

(f)

(d)

FIG. 3. Time-dependent distributions of a RAD unit (time is measured in units of ρ−1). In (a), (b) we illustrate setting of a pure state.
The t = 0 state corresponds to a pure distribution with p̃0 = 1 (green) and switch flexibility ε̃ = 0.5. During set operation (for t > 0) the
unit evolves towards a pure state p1 = 1 (red) but with different switch parameters: ε = 10 for (a) (fast switching) and ε = 0.5 for (b) (slow
switching). In (c) we illustrate separation of a unimodal mixed state. An unimodal mixed state with p̃0 = p̃1 = 0.5 and ε̃ = 10 (fast switching)
is transformed to a bimodal mixed state by lowering the switch flexibility, ε = 0.1 (slow switching). Also, in (c) one can see that for fast
switching the phenotype is unimodal: bacteria express both GFP and RFP. The t = 10 phenotype, is bimodal: 50% of the cells express RFP
and 50% express GFP. The remaining parameters are: Ng = Nr = 40 and ρ = 1. The rightmost columns (d)–(f) show the time dependence of
the state occupancies.
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tend to transform unimodal distributions into bimodal ones.
They can be used as developers of mixed states, as occupancy
probability can be read on bimodal distributions by counting
cells in the two subpopulations, whereas it is much more
difficult to estimate it from unimodal distributions. This can
also be seen from the values of the state occupancies prg(t)
that remain low (indicating separated population) during the
dynamics. For slow switches there is a tradeoff between good
separation and bandwidth because the time needed to reach a
final unimodal, pure state distributions is longer. Fast switches
are aggregative, they tend to transform bimodal distributions
into unimodal distributions.

V. COMPARISON WITH THE POSITIVE FEEDBACK
GENETIC TOGGLE SWITCH

Genetic toggle switches based on positive feedback were
extensively studied in the past in relation with their bimodal
behavior [9,13–17]. In these models two genes repress each
other and generate bimodality. It was shown that the propensity
of a toggle switch for bimodality increases when the two genes
have overlapping operator sites, which means that simultane-
ous transcription is not possible when the shared promoter is
occupied [14]. An extreme version of mutual exclusion is also
present in the RAD module where simultaneous transcription
of the two genes is never possible. Contrary to the toggle
switch, the gene products from the RAD module do not
bind to the shared DNA promoter sequence and there is no

positive feedback. The previous sections showed clearly that
bimodality is possible in this case as well, which confirms
previous results from similar models with no feedback or
with negative feedback (Cook et al. [19], Hornos et al. [20],
Innocentini and Hornos [21], Radulescu et al. [22], Shahrezai
and Swain [23], Zeron and Santillan [24]). In this section we
will test the capacity of the RAD module to produce the same
quality of separation of memory states as a positive-feedback
toggle switch. We will also compare the dynamics of a memory
unit during a mixed state developing operation in the two cases.
For the comparison we consider the toggle switch model with
exclusion, mutual repression, but no cooperativity, discussed
in Ref. [17]. This model describes the production of two types
of proteins that, like in the RAD model, we denote by r and
g. It has three discrete states 0, 1, and 2, corresponding to the
free promoter, when a molecule g is bound to the promoter, or
when a molecule r is bound to the promoter, respectively. The
binding rates are proportional to the numbers of proteins and
the binding constant b is the same for r and g. The unbinding
rate is u. By binding, the promoter switches production state
and starts producing the protein that is bound with even
production rates kg = kr = k. The proteins are degraded with
the constant d. The solutions of the time-dependent master
equation are not available for this model. Furthermore, the
first and second moments of the probability distribution do
not satisfy closed form differential equations [17]. For these
reasons, we decided to estimate distributions and moments by
Monte Carlo simulations.

FIG. 4. The RAD model compared to the toggle switch model from Ref. [17] in the symmetric situation when the mean expression is the
same for the two competing genes. Parameter fitting of the RAD model enforce that the initial and final bivariate probability distributions and
the transient means are the same for the two models. The negative correlation between genes indicating the separation between memory states
reaches more rapidly its asymptotic value for the RAD switch. The toggle switch time series were obtained by Monte Carlo simulations. Fitting
of the RAD model used analytic expressions, but the final estimates were checked by comparison to Monte Carlo simulations. The parameters
of the toggle switch model are k = 0.05, d = 0.005, b = 0.1, u = 0.2 for t = 0 and u = 0.05 for t > 0. The fitted parameters of the RAD
module are ρ = 0.005, f = h = 0.07, k1 = k2 = 0.057 for t = 0 and f = h = 0.0015, k1 = k2 = 0.053 for t > 0, suggesting that a change
of the unbinding parameter in the toggle switch model can be reproduced by a change of the switching rates in the RAD switch.
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In a first stage, we simulated the toggle switch long enough
to reach the stationary distribution with parameters k = 0.05,
d = 0.005, b = 0.1, u = 0.2 (measured in s−1). Then the
parameter u was changed to u = 0.05 and the simulation was
continued until the new stationary distribution was reached.
These parameter values were used in Ref. [17] to reproduce the
behavior of an E. coli toggle switch passing from a unimodal
to a bimodal behavior. The second part of the simulation
reproduces the memory set operation. We used this part to
generate time series of the mean protein numbers (equal for r

and g for this symmetric choice of production and degradation
parameters), of the Pearson correlation coefficient and of the
bivariate probability distributions of r and g.

Equation (13) was used to compute analytically the time-
dependent first and second moments of the RAD model (see
Appendix) and Eq. (17) was used to compute the initial
and final stationary bivariate probability distributions. The
time-dependent mean and the two stationary distributions
were combined to define an objective function quantifying the
difference between the time series generated by the simulation
of the toggle switch and the RAD model predictions. The
minimization of this objective function was used to fit the RAD
model parameter to the time series data. Although it is possible
to include the time-dependent distributions in the objective
function, we found that this choice increases the execution
time without improving the fit. Furthermore, as shown in Fig. 4
the transient correlation (resulting from second moments)
behaves differently for the RAD model compared with the
time series generated with the toggle switch.

The fitting procedure shows that the RAD device can
produce the same initial and final distributions as the toggle
switch. This implies that the quality of separation of the states
in the final bimodal distribution is the same with the two types
of switches. The time-dependent mean is the same for the two
models. However, an important difference is emphasized by
our numerical experiments. The negative correlation of the two
genes, which is important for a memory device, evolves more
rapidly for the RAD device compared to the toggle switch
(Fig. 4). This means that on writing, the RAD device reaches
faster than the toggle switch the same quality of the stored
information. This argues in favor of the RAD module as a fast
and accurate memory device.

VI. CONCLUSION

The analytic time-dependent solutions for the master equa-
tions describing the RAD memory unit can be used to quanti-
tatively and qualitatively establish the basis for the design of
such biological devices. All the necessary information about
the system is encoded in the time-dependent joint probability
distributions that are obtained by applying formulas (4) to the
analytic solutions of the model. The solutions are expressed
in closed form in terms of the well-known Kummer functions
and symbolic computation software packages, such as MAPLE,
can be used for direct computation of the series expansions
leading to the desired joint distributions. Closed expressions
for any desired moment of the joint distributions, such as mean
values, variance and covariance can be obtained as shown in
the Appendix.

Our analysis of the solution of the time-dependent master
equation emphasizes several types of states and dynamics of
the RAD module. Memory set operations involve preparation
of pure states. This happens when one of the transitions, SET
or the RESET, is dominating, such that p1 ≈ 1 or p0 ≈ 1,
respectively. In this case, after a large enough time, all the
bacteria express the same gene and only one. However, the
RAD module has the potential for other type of application
involving mixed states. In particular, the developing protocol
generates a mixed state by using slow switching dynamics and
finite values of the SET and RESET transition rates: p0,p1 �=
0,1. In the resulting population of bacteria, a proportion p0

expresses only GFP and a proportion p1 = 1 − p0 expresses
only RFP. By this method we obtain a different digital-analog
way of storing information. The developing protocol of the
RAD module can be used as a biological implementation of
a p switch. A p switch [29] is a stochastic element that takes
two values, one and zero, with probabilities p and 1 − p,
respectively. In other words, it is a physical implementation
of a Bernoulli random variable, which is the basic element
in stochastic computing [30–32]. This representation allows
for a hybrid, digital-analog, form of computation in which
real numbers are represented as random strings of zeros or
ones where, the represented real number p is the frequency
of occurrence of ones. Multiplication of two numbers, for
instance, can be performed by combining random strings in
parallel by AND operations, bit by bit [30,32]. In our case, each
bit in a random string would be a cell. Although redundant from
an information theoretic point of view, this representation was
shown to be particularly robust and protected against random
faults [30,32]. Theoretical and experimental developments of
this application are ongoing and will be presented elsewhere.

Our analytic results apply to the RAD module illustrated in
Fig. 1. However, we find that RAD module produces steady-
state distributions very similar (practically indistinguishable)
to positive feedback toggle switches. In particular, the RAD
module is capable of bimodal behavior and good separation
of memory states. Differences with respect to toggle switches
occur at the level of time-dependent moments. For the same
dynamics of the mean, the RAD module perform changes
of the gene correlation more rapidly than the toggle switch,
allowing more rapid writing. Other dynamical difference
concerns the so-called switching time, which is the time
that a single cell needs to pass from a state where one
gene is highly expressed and the other has low expression
to the symmetrically opposite situation. In the RAD model the
switching time is given by the parameter ε and is relatively
independent of the protein copy number (size). For toggle
switches this time increases polynomially or exponentially
with the size in the absence, or in the presence of cooperativity,
respectively [16]. This property should be taken into account
for the way memory is operated. Mixed states developing of the
RAD module implies that switching time should be increased
as much as possible in the long-term information storing state
of the memory. This can be performed by gradually decreasing
the concentrations of integrase and excisionase. For a toggle
switch the same result can be obtained by increasing the
affinities of the TFs to the DNA. Biochemistry imposes upper
bounds to affinities, which could be a limitation especially for
small-size systems.
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APPENDIX: TIME-DEPENDENT MOMENTS

The moments of the distributions can be easily obtained
through the analytical solutions for the generating function by
using the formula

〈gprq〉(τ )

=
[(

y
∂

∂y

)q(
z

∂

∂z

)p

[φ0(z,y,τ ) + φ1(z,y,τ )]

]
z=y=1

.

(A1)

Due to the well-known properties of the Kummer functions
[M(a,b,x)], [28]:

M(a,b,x = 0) = 1;

dj

dxj
M(a,b,x) = (a)j

(b)j
M(a + j,b + j,x); (A2)

the expressions for the moments will assume simple and closed
forms, as we shall see. So, using the formula in Eq. (A1) and the
analytical solutions in Eq. (13) we are in position to obtain any
desired moment of the distribution. The mean value for green
protein is obtained by setting p = 1 and q = 0 in Eq. (A1) and
for the mean value of red proteins we set p = 0 and q = 1,
giving the general structure:

〈g1〉(τ ) = G1
1e

−ετ + G1
2e

−τ + G1
3,

〈r1〉(τ ) = R1
1e

−ετ + R1
2e

−τ + R1
3, (A3)

where the G1
j coefficients are

G1
1 = 	(p0 − p̃0)

ε − 1
,

G1
2 = 	(p̃0 − εp0)

ε − 1
+ 	̃p̃0, (A4)

G1
3 = 	p0.

The quantities 	̃, p̃0 and ε̃ (which will appear soon) represent
the value of these parameters at τ = 0, meaning that once these
parameters (	̃, p̃0, and ε̃) are specified the initial configuration
of the system is specified as well. All the R1

j are obtained by
simply changing p0 = p1 and p̃0 = p̃1 in Eqs. (A4). The sec-
ond moments for green and red proteins are obtained by setting
p = 2,q = 0, and p = 0,q = 2 in Eq. (A1), respectively. The
expressions for the second moments have the general structure:

〈g2〉(τ ) = G2
1e

−2τ + G2
2e

−(ε+1)τ + G2
3e

−ετ + G2
4e

−τ + G2
5,

〈r2〉(τ ) = R2
1e

−2τ + R2
2e

−(ε+1)τ + R2
3e

−ετ + R2
4e

−τ + R2
5,

(A5)

with coefficients G2
j given by:

G2
1 = 	2(εp0 − 2p̃0)(εp0 − 1)

(ε − 2)(ε − 1)

− 2		̃[(ε̃ + 1)εp0 − ε̃p̃0 − 1]

(ε̃ + 1)(ε − 1)

+ 	̃2p̃0(ε̃p̃0 + 1)

ε̃ + 1
,

G2
2 = 2	2(p0 − 1)[(p0 − p̃0)ε − p̃0]

(ε − 1)(ε + 1)

+ 2		̃p̃0[(p0 − p̃0)ε̃ + p0 − 1]

(ε̃ + 1)(ε − 1)
,

G2
3 = 2	2(p̃0 − p0)[(p0 − 1)ε + 1]

(ε − 2)(ε − 1)
− 	(p̃0 − p0)

ε − 1
,

G2
4 = 2	2p0(p̃0 − εp0)

ε − 1
+ 	(p̃0 − εp0)

ε − 1
+ 	̃p̃0(2	p0 + 1),

G2
5 = 	2p0(εp0 + 1)

ε + 1
+ 	p0. (A6)

Where, as before, the coefficients R2
j are obtained by doing

p0 = p1 and p̃0 = p̃1 in Eqs. (A6).
Now, setting p = 1 and q = 1 in Eq. (A1) we obtain

an expression for the covariance between the two random
variables g and r , representing green and red proteins,
respectively. The general structure of the covariance has the
form:

〈g1r1〉(τ ) = T
1,1

1 e−2τ + T
1,1

2 e−(ε+1)τ + T
1,1

3 e−ετ

+ T
1,1

4 e−τ + T
1,1

5 . (A7)

The coefficients T
1,1
j are given by:

T
1,1

1 = −	2ε
[
εp2

1 + (1 − 2p̃1 − ε)p1 + p̃1
]

(ε − 2)(ε − 1)
+ 	̃2ε̃p̃0p̃1

ε̃ + 1

+ 		̃[ε(ε̃ + 1)((2p1 − 1)p̃1 − p1) + 2ε̃p̃0p̃1]

(ε̃ + 1)(ε − 1)
,

T
1,1

2 = −	2[(p1 − p̃1)(2p1 − 1)ε + (1 − 2p̃1)p1 + p̃1]

(ε − 1)(ε + 1)

− 		̃[(p1 − p̃1)(2p̃1 − 1)ε̃ + (2p1 − 1)p̃1 − p1]

(ε̃ + 1)(ε − 1)
,

T
1,1

3 = 2	2(1 − εp0)(p̃1 − p1)

(ε − 2)(ε − 1)
− 	(p̃1 − p1)

ε − 1
,

T
1,1

4 = −	2(2εp1p0 − 2p̃1p1 + p̃1 + p1)

ε − 1

−		̃(2p̃1p1 − p̃1 − p1),

T
1,1

5 = 	2εp1p0

ε + 1
+ 	p0. (A8)

062413-8



ANALYTIC FRAMEWORK FOR A STOCHASTIC BINARY . . . PHYSICAL REVIEW E 94, 062413 (2016)

[1] S. Regot, J. Macia, N. Conde, K. Furukawa, J. Kjellén, T. Peeters,
S. Hohmann, E. de Nadal, F. Posas, and R. Solé, Nature (London)
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