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Stiffer double-stranded DNA in two-dimensional confinement due to bending anisotropy
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Using analytical approach and Monte Carlo (MC) simulations, we study the elastic behavior of the intrinsically
twisted elastic ribbons with bending anisotropy, such as double-stranded DNA (dsDNA), in two-dimensional (2D)
confinement. We show that, due to the bending anisotropy, the persistence length of dsDNA in 2D conformations
is always greater than three-dimensional (3D) conformations. This result is in consistence with the measured
values for DNA persistence length in 2D and 3D in equal biological conditions. We also show that in two
dimensions, an anisotropic, intrinsically twisted polymer exhibits an implicit twist-bend coupling, which leads
to the transient curvature increasing with a half helical turn periodicity along the bent polymer.
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I. INTRODUCTION

The bending flexibility of double-stranded DNA plays a
crucial role in its interactions with other macromolecules, e.g.,
proteins. The most convenient measure of bending flexibility
of a polymer is the “persistence length” (P ), which is defined
as the correlation length of the tangent unit vector along
the contour length [1]. Many experimental and simulational
techniques have been performed to measure this quantity of
the DNA molecule [2–16] and characterize its dependence on
the ionic strength [3,5,13,17], temperature [10], sequence [18],
and length scale [19–21]. In the single-molecule stretching
experiment, Baumann et al. have shown that the persistence
length of a random DNA sequence in moderate salt buffer is
around 45–50 nm [3]. Other bulk experiments, such as DNA
cyclization [6,18] and gel electrophoretic mobility [5,22], also
result in a value in this range (Table I).

On the other hand, single-molecule imaging techniques,
including atomic force microscopy (AFM) and electron
microscopy (EM), introduce an important new class of exper-
iments to measure the persistence length of DNA molecule. In
these experiments the molecules are attracted onto the surface
of a substrate by divalent counterions, e.g., Mg2+ [15,23].
These divalent ions allow the molecule freely equilibrate in
two dimensions and decrease the effects of the substrate on
the chain statistics [9]. It is also known that a small amount
of Mg2+ in solution can dramatically decrease the persistence
length [3,4]. Baumann et al. show that, with 0.1 mM of Mg2+,
even with a small amount of monovalent counterions (e.g.,
1.86 mM Na+), the persistence length of DNA decreases
to 40.9 ± 3.7 nm [3]. However, the DNA persistence length
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measured in 2D, P2D [7–9,11–13,15,16], is generally bigger
than the three-dimensional (3D) values, P3D [2–6,10,14],
in the presence of divalent counterions (see Fig. 1). There
are two experiments which do not address this discrepancy
between two-dimensional (2D) and 3D persistence lengths of
dsDNA [24,25]. In these works different buffers were used
in the 2D and 3D experiments, where Mg2+ is present only
in the 2D experiment buffer. Thus, they are not shown in
Fig. 1. According to Fig. 1, the average value of P2D is about
55.8 ± 3.5 nm and remains almost constant with increasing
the ionic strengths in contrast to P3D, which drops slowly.

This visible difference may arise from different effects
of the divalent counterions within the experiments, i.e.,
measuring the persistence length in 2D and 3D conformations.
It is known that in two dimensions, the divalent counterions
bridge the negative charges of the phosphate backbone to
the negatively charged mica surface [15,24], while they act
as intramolecular bridges between two phosphates in 3D
conformations [30]. The bridges in the latter can greatly
reduce the entropy of the chain and lead to low persistence
lengths. In addition, the excluded volume interactions in 2D
conformations can swell the molecule and therefore increase
the persistence length [15,31,32]. Rivetti et al. show that,
although these interactions can increase the 2D persistence
length, this effect is negligible when DNA length is less
than 1000 nm (�3400 bp) [15]. But the molecules in two
dimensions remain stiffer, even for lengths shorter than
3400 bp [8,9,12,13,15,16]. Moreover, transition from B-DNA
to A-DNA during the imaging in the dry air can also make
DNA stiffer [33–36]. To avoid this structural transition, DNA
molecules in Fig. 1 were scanned in solution and biological
conditions. Also, the errors in contour length estimation can
affect the measured values for the persistence length.
Underestimating by ∼2% leads to about ∼60% overestimation
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TABLE I. Some reported values of the persistence length of dsDNA measured by various techniques in 3D conformations.

Buffer composition Method P(3D) (nm) Ref.

10 mM Na+, pH 7.0, 25 ◦C DEa 47.4 ± 1.0 [2]
93.0 mM Na+, pH 7.0, 25 ◦C DE 43.8 ± 1.4 [3]
10 mM Na+ DE 50 [26]
200 mM K+, 10 mM Tris-HC1, pH 7.2, 25 ◦C LSb 48 ± 1 [27]
100 mM Na+, 20 ◦C LS 45 [28]
110 mM Na+, pH 7.4, 25 ◦C TPMc 47.8 ± 0.7 [4]
100 mM Na+, 20 ◦C FDd 48 [22]
101 mM Na+, 20 ◦C TEDe 44 [5]
0-162 mM Na+, 1 mM Mg2+, pH 7.8, 16 ◦C DCf 45.0 ± 1.5 [6]
89 mM Tris borate/2 mM EDTA, pH 8.3 DC 48.5 [18]
Moderate salt buffer Cryo-EMg 45 [29]

aDNA stretching
bLight scattering
cTethered particle motion
dFlow dichroism
eTransient electric dichroism
fDNA cyclization
gCryo-electron microscopy

of P2D for a 100 bp DNA [37]. But this effect is reduced
by increasing the contour length, where the overestimation
decreases to ∼10% for a 500 bp DNA [37]. Finally, it has
been also mentioned that the surface charges can affect
the flexibility of DNA [13]. Apart from above possibilities
here we show that the anisotropic bending tendency of
double-stranded DNA (dsDNA) increases the stiffness of the
molecule in two dimensions.

The anisotropic bending of (dsDNA) is a property of the
sugar-phosphate backbone structure, in the sense that bending
toward the grooves direction (roll) is much easier than toward
the backbone direction (tilt) [38]. Fourier analysis of free
energy of DNA loops with lengths between 60–100 bp shows
two main oscillatory components [39]: one with a helical
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FIG. 1. Comparison between the reported values of P2D (red dots)
and P3D (blue dots) for different ionic strength in the presence of
divalent counter-ions. The ionic strength is defined as Ref. [4], and
different markers correspond to different references as indicated in
the legend.

period (∼10.5 bp) and another with a half helical period
(∼5.6 bp) which may reflect the bending anisotropy. The
sequence-dependent bending anisotropy of B-DNA has been
observed in x-ray crystallography of DNA-protein complexes
[40,41] and NMR spectroscopy [42], as well as all-atomistic
simulations [43–50]. Many theoretical studies have considered
such anisotropic bending into the elastic models [51–57],
and it is shown that although the bending anisotropy affect
the elastic properties of a short DNA molecule in three
dimensions, it becomes unimportant when the DNA segment
is long enough to include a few full helical turns [54,58].

Here we exploit methods from the statistical field theory as
well as Monte Carlo simulation technique to study the elastic
properties of an intrinsically twisted ribbon with anisotropic
bending in two dimensions. We show that it is possible to
assign an effective persistence length to a long DNA molecule
in two dimensions, similar to the 3D case. Whereas the
isotropic bending model predicts equal persistence lengths in
two and three dimensions, we show that due to the anisotropic
bending the 2D persistence length is always bigger than the
one in three dimensions. The difference between 2D and 3D
persistence lengths depends on the relative strengths of the
bending elastic constants (the strength of anisotropy) and also
twist rigidity, while the latter implies an implicit twist-bend
coupling in the model. The prediction of our model for
the DNA persistence length in two dimensions is in good
agreement with the experimental data, shown in Fig. 1. Our
finding can be relevant to other anisotropic chain polymers,
e.g., double-stranded RNA or carbon nanoribbons [59].

II. MODEL AND MATERIALS

A. The planar anisotropic elastic rod model

Double-stranded DNA is a helical nanoribbon polymer
which is represented as an anisotropic elastic rod. As Fig. 2
shows, at each point of arc length parameter s on the centerline,
�r(s), one can attach an orthonormal basis {d̂1,d̂2,d̂3}, a so-
called “material frame.” There are the two usual definitions
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FIG. 2. Parametrization of the elastic rod.

for d̂3 [19], but in the simplest way it can be chosen to be
along the tangent to the rod at every point so that d̂3(s) =
t̂(s) ≡ (d/ds)�r(s) [60]. d̂1 is along the grooves direction and
points toward the major groove, and d̂2 = d̂3 × d̂1. Here we
assume bending about the d̂2 axis is easer than the d̂1 axis,
therefore, the d̂1 and d̂2 axes correspond to the hard and soft
bending directions (see Fig. 2).

The derivatives of the orthonormal triads with respect to s

are defined as

˙̂di ≡ d

ds
d̂i = � × d̂i , i = 1,2,3, (1)

where �(s) = κ1d̂1 + κ2d̂2 + ωd̂3 is called the strain vector.
The components of � (i.e., κ1,κ2, and ω) respectively corre-
spond to rotation of the filament around d̂1, d̂2, and d̂3 and
called tilt, roll, and twist [21]. Therefore, the elastic energy
of an inextensible, unshearable, and anisotropic filament in
harmonic approximation can be written as [54,56]

E/kBT = 1/2
∫ L

0
ds

[
A1κ

2
1 + A2κ

2
2 + C(ω − ω0)2

]
, (2)

where A1 and A2 are bending rigidities, respectively, for the
hard and soft directions, C is the twist rigidity, and ω0 =
1.8 nm−1 is intrinsic twist of B-DNA. In the elastic energy
of Eq. (2), we have ignored the explicit twist-bend coupling
[61–63].

For a planar DNA (confined in the x-y plane where ẑ.d̂3 =
0), it is convenient to express the local triads in terms of Euler
angles �(s) = [α(s),β(s),ψ(s)] (0 < α < 2π , β(s) = π/2,
0 < ψ < 2π ) as [54]

d̂1(s) = − sin ψ sin α x̂ + sin ψ cos α ŷ + cos ψ ẑ,

d̂2(s) = − cos ψ sin α x̂ + cos ψ cos α ŷ − sin ψ ẑ, (3)

d̂3(s) = cos α x̂ + sin α ŷ,

where α(s) and ψ(s), respectively, correspond to the local bend
and twist angles. By substituting Eq. (3) into Eq. (1) one can
obtain the components of �,

κ1(s) = α̇(s) cos ψ(s),

κ2(s) = α̇(s) sin ψ(s), (4)

ω(s) = ψ̇(s),

and the local curvature is κ(s) =
√

κ2
1 + κ2

2 = α̇.
Experimentally, the persistence length of DNA in a 2D

conformation can be determined by measuring various statis-
tical properties, such as the orientational correlation function

[24,64], the probability distribution of the bending angle
[11,16], the mean-square end-to-end distance [12,15,23,30],
and force extension [65]. The isotropic wormlike chain (WLC)
model, i.e., A1 = A2 = P , has been widely used to fit the
experimental data and obtain the persistence length. Below we
derive each of these statistical properties for an anisotropic
elastic model, where A1 > A2.

For a chain with length L and global bend angle θ (L)
(= ∫ L

0 κ(s)ds) in two dimensions the free energy is given by
the canonical relation [66,67]:

F [θ (L)] = −kBT ln{p2D[θ (L)]}, (5)

where p[θ (L)]2D is the normalized probability distribution of
θ for 2D conformation. This probability distribution can be
written as a path integral

p2D[θ (L)] = N
∫

D[�] exp

[
−

∫ L

0

e[�(s)]

kBT
ds

]

×δ

[
θ −

∫ L

0
κ(s) ds

]
, (6)

where N is the normalization constant and
e[�(s)]

kBT
= 1

2
(A1 cos2 ψ + A2 sin2 ψ)α̇2 + 1

2
C(ψ̇ − ω0)2

(7)
is the density of elastic energy. In the case of the isotropic
WLC model, p2D[θ (L)] follows a Gaussian distribution as√

2P/πL exp(−Pθ2/2L), but in general, due to the first term
of the right-hand side of Eq. (7), it is not easy to find an
expression for p2D[θ (L)]. Using the probability distribution
(6), the tangent-tangent correlation function, 〈d̂3(L)d̂3(0)〉2D =
〈cos[θ (L)]〉2D, as a function of L is defined as [15]

〈cos[θ (L)]〉2D ≡
∫ +∞

0
dθ cos[θ (L)]p(2D)[θ (L)], (8)

where we suppose that θ � 0. It can be easily shown that
for the isotropic case we have 〈cos[θ (L)]〉2D = exp(−L/2P ).
Finally, the mean-squared end-to-end distance of the chain
for short lengths, where the excluded volume interactions are
negligible [32], is written by

〈R2〉2D =
∫ L

0

∫ L

0
〈d̂3(s) d̂3(s ′)〉2D ds ds ′

=
∫ L

0

∫ L

0
〈cos(θ (s − s ′)〉2D ds ds ′, (9)

where θ (s − s ′) is the angle between tangent vectors at points
s and s ′ along the contour. The above equation for the isotropic
model can be directly determined by substituting 〈cos[θ (s −
s ′)]〉2D = exp[−(s − s ′)/2P ] and straightforward integration
as [68]

〈R2〉2D = 4PL − 8P 2

[
1 − exp

(−L

2P

)]
. (10)

In the case of an anisotropic elastic model the first term
of the right-hand side of Eq. (7) implies an implicit twist-
bending coupling for the model. In order to find the effects of
this coupling, we evaluate p2D[θ (L)] in two extreme limits:
the large and small twist rigidity (i.e., C → ∞ and C → 0,
respectively).
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A1A2 (Eq. (14)) as a function of

length for two different values of φ and ψ0 = 0.

For large twist rigidity, the relative variations of ψ̇ is
negligible and ψ̇ � ω0, which gives ψ = ω0s + ψ0, where
ψ0 is the initial twist angle. Therefore, the density of energy
(7) reduces to

e∞[κ(s)]/kBT = 1
2 Ã(ω0s + ψ0)κ(s)2, (11)

where Ã(ω0s + ψ0) = A1 cos2(ω0s + ψ0) + A2 sin2(ω0s +
ψ0). By substituting this energy density into Eq. (6) and
replacing the Dirac delta function by the appropriate Fourier
transform, one can find the probability distribution of
p2D(θ (L)) as

p2D[θ (L)] =N
∫ +∞

−∞

dK

2π
eiKθ

∫
D[κ]

× exp

{
−

∫ L

0

[
Ã(ω0s + ψ0)

2
κ2 + iKκ

]
ds

}
.

(12)

Then, upon a straightforward integration, this equation yields
a Gaussian distribution

p2D[θ (L)] =
√

2P max
2D

πL
× exp

(
−P max

2D θ2

2L

)
(13)

with

1

P max
2D

= 1

L

∫ L

0

ds

Ã(ω0s + ψ0)

= Y(Lω0 + ψ0) − Y(ψ0)

Lω0
√

A1A2
, (14)

where

Y(x) = tan−1[φ−1/2 tan(x)] + π

[[
1

2
+ x

π

]]
, (15)

and φ = A1/A2. The double brackets mean “integer part,”
which is added to get rid of discontinuity in the tan−1 function.
Figure 3 indicates the length dependence of P max

2D /
√

A1A2

for ψ0 = 0 and two different values of φ. It can be shown
that by increasing the chain length, P max

2D soon approaches its
asymptotic value

√
A1A2 [71] for any value of ψ0, and then

P max
2D =

√
A1A2 for Lω0 
 1, (16)

which implies that at large twist rigidity limit, a long enough
2D anisotropic DNA behaves like an isotropic DNA with the
bending constant

√
A1A2.

On the other hand, in the limiting case of the small twist
rigidity, there is no constraint on the twist degree of freedom,
and then the local twist angle, ψ(s), is free to choose any value
in the range [0,2π ]. The distribution of ψ for an unconstrained
chain is uniform due to temperature and entropy. But under
additional external constraints it would change. Therefore, the
energy density of (7) in this limit is rewritten as

e0[κ,ψ]/kBT = 1
2 Ã(ψ)κ2. (17)

Substituting this equation into Eq. (6), one can find p2D[θ (L)],
in this limit, as

p2D[θ (L)] =N
∫ +∞

−∞

dK

2π
eiKθ

∫
D[κ]D[ψ]

× exp

{
−

∫ L

0

[
Ã(ψ)

2
κ2 + iKκ

]
ds

}

=
√

2P min
2D

πL
× exp

(
−P min

2D θ2

2L

)
, (18)

where

P min
2D =

∫ 2π

0 dψ/Ã(ψ)1/2

∫ 2π

0 dψ/Ã(ψ)3/2
. (19)

We numerically solve this equation for any given A1 and A2

in the rest of this work.
From Eqs. (13) and (18), it can be deduced that the

anisotropic elastic model in 2D behaves like a isotropic model
with an effective persistence length, P2D, which is a function
of A1, A2, C, and ω0L. As P2D varies by the strength of twist
rigidity, the upper and lower limits of P2D are given by P max

2D
[Eq. (14)] and P min

2D [Eq. (19)], respectively. We perform Monte
Carlo simulations to evaluate P2D between these two extreme
limits.

B. Monte Carlo simulations

To calculate the statistical properties of the chain, we
performed Metropolis Monte Carlo (MC) simulations of a
discrete elastic model from Eq. (2) at the base pair level
same as in Ref. [21]. Here the chain consists of beads were
connected to adjacent beads via a link length 0.34 nm and
without excluded volume interactions (a phantom chain). We
used the pivot, twist, and crankshaft (just in 3D simulations)
moves with appropriate Boltzmann distributions to construct
equilibrium configurations of the chain. Our simulations were
done with a linear chain containing 600 beads in 2D and 3D
conformations, and each bead has an equal chance to move
during the simulations.

We start with a random initial condition, and the first
105 MC steps were discarded to ensure the equilibration of
the system and the next 107 MC steps were considered for
sampling. To estimate the statistical errors, we performed five
realizations with different initial conditions. Figure 4 shows
the typical configurations of the chain in 3D and 2D states that
are obtained by the MC simulations.
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FIG. 4. The typical configurations of the chain in 3D (a) and 2D
(b) states.

III. RESULTS AND DISCUSSION

A. The elastic properties of the long anisotropic chain

Similar to experiments [9,15,64], we used the tangent-
tangent correlation function as well as the mean square of
end-to-end distance to extract the effective persistence length
of a long chain from the MC simulations. To address the effects
of 2D confinement on the flexibility of chain, we compare the
effective persistence length in both 2D and 3D conformations.

It is well known that the tangent-tangent correlation
function of a free, long, and highly twisted anisotropic model
in three dimensions decays as 〈cos θ (L)〉3D = exp(−L/P3D),
where P3D is given by the harmonic mean of the hard and soft
bending rigidities, A1 and A2 [46,54,69]:

P3D = 2(1/A1 + 1/A2)−1. (20)

Figure 5(a) compares the MC results of the 3D correlation
function, 〈cos θ (L)〉3D, for the chains with A1 = 275 nm and
A2 = 27.5 nm (i.e.m φ = 10) and three different values of
C, i.e., 0.1 (open blue squares), 5 (open green circles), and
100 nm (open red triangles). P3D is determined by the slope of
the best fitted lines to −L/ln〈cos θ (L)〉3D (the solid lines). As
can be seen from the inset of Fig. 5(a), P3D is independent on
C and equal to the harmonic mean of A1 and A2 (i.e., 50 nm,
dashed line). Figure 5(b) shows the correlation function in
two dimensions, 〈cos θ (L)〉2D = exp(−L/2P2D); here a clear
dependence on C is evident. We found that P2D is always
greater than P3D [dashed line in the inset of Fig. 5(b)] and varies
from P min

2D = 64.2 nm for C = 0.1 nm to P max
2D = 87.0 nm for

C = 100 nm [the solid lines in the inset of Fig. 5(b)]. Since
the zero-energy configuration of a curved anisotropic chain is
not planar [56], then it takes energy to enforce the chain in 2D
confinement. This extra energy makes the chain stiffer in two
than three dimensions.

All sets of A1 and A2 result in the same P3D, but different
φ values are given by

A1 = P3D/(1 − λ),

A2 = P3D/(1 + λ), (21)

where λ = φ−1
φ+1 . Therefore, it is convenient to consider P2D as

a function of P3D, φ, and C. Figure 6 shows a fairly linear
relationship between P2D and P3D for different values of φ and
C. We therefore expect that the ratio P2D/P3D is independent
of P3D. Figure 7 shows the dependence of this ratio on φ and
C. As Fig. 7(a) indicates, P2D is always greater than P3D when
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FIG. 5. The MC results for the tangent-tangent correlation func-
tion in 3D (a) and 2D (b) for A1 = 275 nm, A2 = 27.5 nm with a
harmonic mean of 50 nm (dashed lines in the insets). The data points
correspond to C = 0.1 (open, blue squares), 5 (open, green circles),
and 100 nm (open, red triangles), and the straight lines indicate linear
fits to data. The insets show the measured persistence lengths from
the slope of the fitted lines (see text). The solid lines, in the inset
of panel (b), correspond to the upper (87.0 nm) and lower (64.2 nm)
limits of P2D versus C [Eqs. (16) and (19), respectively].

φ �= 1 (i.e., anisotropic bending), and they are equal at φ = 1
(i.e., isotropic bending). It can be seen that P2D as well as its
lower and upper limits P min

2D and P max
2D increase with φ. The

twist-bend coupling which is reflected in the dependence of
P2D on C also becomes stronger with increasing φ. As Fig. 7(b)
shows, P2D strongly depends on the twist rigidity, C, in the
range 1–30 nm (the region between two vertical dashed line)
and beyond that is approximately constant and given by P max

2D
[Eq. (16)] and P min

2D [Eq. (19)] for C � 30 nm and C � 1 nm,
respectively.
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Another way to calculate the persistence length is based
on the mean-square of end-to-end distance 〈R2〉2D. Figure 8
shows the MC results of 〈R2〉2D lie perfectly on the predictions
of Eq. (10), where P2D is substituting from Fig. 5(b). It means
that the persistence lengths which are extracted from the mean-
square of end-to-end distance are very close to those calculated
from the tangent-tangent correlation function, and the relative
error between these two is less than 1%.

B. Stretching anisotropic chain in two dimensions

We also studied the entropic stretching of the anisotropic
chain in response of an external force in two dimensions using
MC simulations. The external potential U = −f x is added
to the the elastic energy [Eq. (2)], where f is the magnitude
of the external force which is exerted on the last bead of the
chain, and x is the component of the end-to-end vector in the
direction of the external force. It is known that the force versus
extension curve of an isotropic chain (i.e., A1 = A2 = P ) in
two dimensions is given by [70]

f P/kBT = 1

16

[
6
〈x〉
L

− 1 +
(

1 − 〈x〉
L

)−2]
, (22)

where 〈x〉 is the average extension along the force direction.
Figure 9 shows the 2D force-extension curve for the chains
with L = 204 nm, C = 100 nm, P3D = 50 nm, and different
values of φ: 1 (open blue circles), 3 (open green triangles),
6 (open red squares), and 10 (open black triangles). As can
be seen, each set of force-extension data perfectly lies on
the theoretical prediction of Eq. (22) (solid curve), when the
external force is scaled by its corresponding P2D [extracted
from Fig. 7(b)]. This shows the force-extension characteristic
of an anisotropic chain is same as an isotropic chain with the
appropriate persistence length of P2D.

C. The elasticity of the anisotropic chain at small length scales

To investigate the flexibility of the anisotropic model at
short length scales, we computed the negative logarithm of

FIG. 7. (a) Dependence of P2D/P3D on φ for different values
of C in the range 0.01–100 nm (from dark blue to dark red). The
solid curves correspond to theoretical predictions for P min

2D (when
C → 0) and P max

2D (when C → ∞). (b) Dependence of P2D/P3D on
C for different values of φ. The horizontal solid lines indicate the
value of P max

2D for the corresponding φ, and the region between the
vertical dashed (gray) lines indicates the region with strong twist-bend
coupling regime. Error bars (not shown) are about the size of the
markers.

the probability distribution of bending angle, −ln{p2D[θ (L)]}.
Figure 10 shows the result for 10.2 nm chain with P3D =
50 nm, φ = 10, and C = 0.1, 1.4, and 55 nm. The effective
persistence length of the chain at this length can be extracted
by fitting a parabola of the form (P2D/2L)θ2 + const to the
data (see the inset of Fig. 10) and is in good agreement with
our previous result [see Fig 5(b)]. It can be seen in Fig. 10
that the large bending appears to be easier than the expected
from the theory in C = 1.4 and C = 0.1. It means for small
values of C (<30 nm) there is no guarantee that the bending
free energy is a parabola.

Due to the intrinsic helicity and bending anisotropy of the
DNA molecule, we expect that the effective persistence length
at small length scales oscillates with a period of π/ω0 �
1.7 nm. Using −ln{p2D[θ (L)]} we calculate P2D for the
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FIG. 8. The mean-square of end-to-end distance 〈R2〉2D versus
the chain length L. The data points correspond to the MC simulations
of chains with P3D = 50 nm, φ = 10, and different values of C (same
as Fig. 5), and the solid curves are the predictions. Error bars (not
shown) are about the size of the markers.

segment lengths between 1.7 and 6.8 nm. Figure 11 compares
the MC results (the squares) and theoretical predictions (solid,
red line) of the ratio P2D/

√
A1A2 for C = 100 nm and

different values of φ = 1, 3, 5, 7, and 9. The theoretical
predictions are obtained by taking average of Eq. (14) over
0 � ψ0 � 2π , because the initial value of twist angle, ψ0, can
be changed during the simulation procedure. It can be seen that
P2D oscillates with a period of about 1.7 nm and decays to its
extreme value of

√
A1A2 = P3D/

√
1 − λ2 by increasing the
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FIG. 9. Semilogarithmic plot of the relative extension, 〈x〉/L,
versus the scaled force, f P2D/kBT , for the anisotropic chains with
L = 204 nm, C = 100 nm, P3D = 50 nm, and different values of
φ (as indicated) in two dimensions. P2D for each set of data
was extracted from Fig, 7(b). The solid curve corresponds to the
theoretical prediction of Eq. (22).
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FIG. 10. The probability distribution p2D(θ ) for the angle θ

between tangents of two points separated by a contour length of
L = 10.2 nm. The data points correspond to MC simulations of the
chains with P3D = 50 nm, φ = 10, and three different values of C,
as indicated. Solid curves are the best parabolic fits to the data.
Inset: Semilogarithmic plot of P2D versus C. The solid (black) lines
correspond to the upper (i.e., P max

2D ) and lower (i.e., P min
2D ) limits of

P2D, and the dashed line indicates P3D.

length. This oscillation is amplified if the strength of bending
anisotropy, φ, increases.

The oscillations are due to the formation of tran-
sient curvature increasing with periodic arrangement in 2D

1

1.02

1

1.02

1

1.02

P
2D

/√
A

1A
2

1

1.02

1 2 3 4 5 6 7

1

1.02

L (nm)

φ = 9

φ = 7

φ = 5

φ = 3

φ = 1

FIG. 11. The length dependent of the ratio of P2D/
√

A1A2 for
C = 100 nm, P3D = 50 nm, and different values of φ, as indicated.
Squares (blue) are the simulation results. (Dashed curves serve as
guides for the eye.) and solid lines (red) are our theoretical predictions
from Eq. (14) and taking an average over ψ0.
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FIG. 12. Right: The normalized curvature, κ(s)/κ0 (with κ0 =
2π/L), of the averaged configuration of a two-dimensional
anisotropic loop at room temperature. The data correspond to L =
34 nm, C = 100 nm, P3D = 50 nm, and different values of φ, as
indicated. Left: Fourier spectra of the curvature profile. The arrows
indicate the two main periodic components of the curvature.

ground-state conformation of a bent and twisted anisotropic
chain [71,72]. We performed MC simulations for a loop with
L = 34 nm, C = 100 nm, P3D = 50 nm, and different values
of φ = 1, 4, 7, and 10. As the right column of Fig. 12 shows, the
curvature along the loop is not uniform, and it is localized with
a periodic arrangement (which leads to the transient curvature
increasing). In order to visualizing the oscillations during the
simulations, we aligned the configurations in the following
way: the Fourier spectrum of each snapshot is calculated,
then we have taken an average over Fourier transforms,
and finally the averaged oscillations in curvature have been
constructed by inverse transform. The Fourier spectrum of the
curvature reveals two main periodic components, with helical
(2π/ω0 � 3.4 nm) and half helical (π/ω0 � 1.7 nm) periods
(the two arrows in Fig. 12). This half helical-pitch periodicity
is a result of the anisotropic model and vanishes at the isotropic
model (i.e., φ = 1). The amplitude of this component increases
by increasing the strength of the anisotropy, φ.

D. Contribution of bending anisotropy in 2D
persistence length of dsDNA

Sequence dependence and bending anisotropy of dsDNA
has been widely noticed in base-pair steps approaches, by
partitioning the DNA deformation energy through six local
variables, slide, shift, rise, tilt, roll, and twist [73]. The rigidity
parameters corresponding to these six variables are extracted
from their standard deviation as [40]

Ai = kBT

σ 2
i

, (23)

where σ denote the standard deviation and the index i refers
to the six local variables. Therefore, the ratio of bending
rigidities, φ, can be determined by [74]

φ = (σroll/σtilt)
2. (24)

A survey of the values of φ obtained by different techniques
is presented in Table II. Some of papers cited in this table
explicitly report the values of stiffness or standard deviation

TABLE II. Some reported values of φ measured by different
techniques.

Investigators φ Method Ref.

Zhurkin et al. (1991) 2–4a MCc [75]
Olson et al. (1998) 1–5 XRCd [40]
El Hassan and Calladine (1997) ∼4b XRC [76]
Richmond et al. (2003) ∼2b XRC [41]
Chua et al. (2012) 2–4b XRC [77]
Stefl et al. (2004) ∼3b NMRe [78]
Dornberger et al. (1998) ∼2b NMR [79]
Lankas et al. (2000) ∼2 MDf [46]
Lankas et al. (2003) ∼2 MD [80]
Lankas et al. (2009) ∼3 MD [81]
Lankas et al. (2010) 2–3b MD and NMR [42]
Bishop (2005) 1.56 MD [43]
Lavery et al. (2009) ∼2.5a MD [47]
Perez et al. (2005) ∼2 MD [82]
Perez et al. (2008) ∼2 MD [49]
Becker and Everaers (2007) 1.8 MD [58]
Teng and Hwang (2015) 2–6 MD [50]
Balasubramanian et al. (2009) ∼2a NADg [84]

aφ calculated from the standard deviations and Eq. (24).
bStandard deviations calculated from distribution functions.
cMonte Carlo simulations.
dX-ray crystallography of protein-DNA complexes.
eNuclear magnetic resonance spectroscopy.
fAll-atom molecular dynamic simulations.
gNucleic Acid Database [83].

of the two variables. But in some cases, they present only the
distributions of roll and tilt (shown by an asterisk), and we
calculate their standard deviations. Despite the diversity, the
average value of φ from Table II is 2.5 ± 0.2.

For B-DNA the twist rigidity C is in the range 40–110 nm
[85,86]. Therefore, the relation between P2D/P3D and φ can
be written as

P2D

P3D
= φ + 1√

4φ
, (25)

which is valid for C � 30 nm (see Sec. III A). By putting φ =
2.5 ± 0.2 into Eq. (25) we obtain P2D/P3D = 1.11 ± 0.02,
which means, due to the bending anisotropy, the persistence
length of dsDNA in two dimensions should be about 11 ± 2%
greater than in three dimensions. On the other hand, based
on Fig, 1 the average values for P2D and P3D are given
by 55.8 ± 3.5 and 43.3 ± 3.7 nm, respectively (P2D/P3D =
1.29 ± 0.19). It can be deduced that with the stiffening of
dsDNA the bending anisotropy is partially caused to increase
the DNA persistence length in two dimensions (about 10%),
while the other effects, such as the excluded volume interac-
tions, different role of divalent ions, and experimental artifacts
(e.g., the errors in contour estimation and perturbation during
air drying), significantly contribute to the overestimated P2D.

IV. CONCLUSIONS

In summery, we have shown that enforcing the chain
into a 2D conformation increases its stiffness. Our analytical
approach and MC simulations showed that due to a twist-bend
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coupling in the 2D anisotropic model, the effective persistence
length depends on the twist rigidity and soon reaches its
maximum value when C � 30 nm. In this limit, the 2D
persistence length is given by the geometric mean of the
hard and soft bending rigidities, instead of the harmonic
mean in three dimensions. In addition, we show that the
twist-bend coupling leads to the formation of transient kinks
along a curved chain as previously predicted using the energy
minimization treatment [71,72].

By taking an average over data reported in the literature we
found the average bending anisotropy of dsDNA, and it turns
out that the hard bending rigidity is almost 2.5 times larger
than the soft bending rigidity. We showed that this bending
anisotropy leads to about a 10% increasing 2D persistence

length of dsDNA than the 3D one. However, we expect that
this estimation is sensitive to the experimental conditions
and other effects, such as the excluded volume interactions,
divalent ions, and experimental artifacts (e.g., the error in
contour estimation and perturbation during air drying). Our
analytical procedure can be used as a way to estimate the
bending rigidities of other anisotropic bending polymers, such
as nanoribbons and dsRNA.
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