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Thermal unfolding of myoglobin in the Landau-Ginzburg-Wilson approach
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The Landau-Ginzburg-Wilson paradigm is applied to model the low-temperature crystallographic Cα backbone
structure of sperm whale myoglobin. The Glauber protocol is employed to simulate its response to an increase
in ambient temperature. The myoglobin is found to unfold from its native state by a succession of α-helical
intermediates, fully in line with the observed folding and unfolding patterns in denaturation experiments.
In particular, a molten globule intermediate is identified with experimentally correct attributes. A detailed,
experimentally testable contact map is constructed to characterize the specifics of the unfolding pathway, including
the formation of long-range interactions. The results reveal how the unfolding process of a protein is driven by
the interplay between, and a successive melting of, its modular secondary structure components.
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I. INTRODUCTION

According to a paradigm by Anfinsen [1], under isothermal
physiological conditions the native structure of a protein relates
to the global minimum of Helmholtz free energy F ,

F = U − T S, (1)

where U is the internal energy, S is the entropy, and T

is the temperature. The Landau-Ginzburg-Wilson (LGW)
approach [2–8] is a systematic method to approximate (1),
in terms of the symmetry properties of the underlying physical
system. The approach was originally conceived to describe the
static properties of phase transitions and critical phenomena.
There, it has found numerous applications, for example,
in ordinary and quantum fluids, magnetic materials, and
superconductors. Subsequently the LGW approach has been
expanded to describe time-dependent critical phenomena. It
has also been extended to model, e.g., pattern formation in
nonequilibrium statistical systems and chaotic behavior in
nonlinear dynamics [7]. Even aspects of fundamental string
theory, singularity theory, and proof of existence of solutions
to certain nonlinear partial differential equations relate to the
LGW approach [8].

In the present article we develop and apply the Landau-
Ginzburg-Wilson approach to model protein dynamics. As an
example, we consider the way myoglobin folds and unfolds
when the ambient temperature increases. Myoglobin is the
first protein to have its stable three-dimensional structure
determined by x-ray crystallography [9]. It is one of the most
widely studied protein structures [10].

The protein folding problem remains under active
scrutiny [11–13]. Many theoretical proposals have been
presented to explain how the folding of a protein might
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proceed [14–17]. Recently, a soliton-based method which is
built on the LGW approach has been presented to describe
both static folded proteins [18,19] and aspects of protein
dynamics [20–22]. This method has been tested and validated
computationally by comparing its predictions both with
coarse-grained [23,24] and all-atom force fields [25,26]. The
results confirm that the folding of a simple protein proceeds
by a formation of soliton and in a manner that can be
modeled using the Landau-Ginzburg-Wilson paradigm; see,
e.g., Ref. [20] in the case of a villin headpiece.

Solitons are collective oscillations, and they emerge and
dissolve when a physical system undergoes a large scale
structural self-organization. Accordingly, the involvement of
solitons in the protein (un)folding process is fully in line with
the expected “cooperative” character of the protein folding
process [27–29].

Here we combine the LGW approach with Glauber dynam-
ics to study in detail how myoglobin folds and unfolds. Glauber
dynamics is a Markov chain Monte Carlo (MC) method that is
widely used to describe near-equilibrium relaxation dynamics
of a statistical system towards an equilibrium Gibbsian state
[30–32].

In the case of myoglobin, instead of temperature variations,
most experiments have thus far utilized denaturants to study the
unfolding and folding dynamics. However, in a computational
approach, it is more convenient to use the ambient temperature
as the variable. Moreover, the experiments have mainly
concentrated on the heme-free apomyoglobin [33–45]. The
heme containing myoglobin has also been investigated [46–51]
but, due to apparent complications with the binding of the
heme, the studies have been limited to the unfolding process.
In both cases, the unfolding of the native state proceeds
in stages with several folding intermediates. In the case of
apomyoglobin, the folding appears to proceed inversely to the
unfolding. The dynamics is also very similar in both cases,
except that in the apomyoglobin the F helix [10] is initially
disordered [37] while in the heme containing myoglobin the
F helix is initially stable but the first to become disordered
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when temperature and/or denaturation increases [46–51]. The
unfolding of the F helix is followed by an intermediate molten
globule in both cases [33–51]. When denaturation and/or
temperature increases further, the overall helicity of the molten
globule rapidly decreases as the helices B, C, D, and E start to
unfold. Finally, the remaining helices A, G, and H lose their
stability and the structure becomes a random chain [46–51].

Here we show that the experimentally observed unfolding
pattern of myoglobin can be accurately reproduced by a
combination of the Landau-Ginzburg-Wilson approach with
Glauber dynamics. In line with the apomyoglobin experiments,
we also show that the folding proceeds inversely to the
unfolding. Moreover, for future experimental scrutiny, we
propose a detailed contact map that predicts the way helix
formation proceeds and how long-range contacts disappear
and appear between the different helical segments during
the unfolding and the folding processes, respectively. An
experimental analysis of the contact map we propose should
reveal the extent of validity of the LGW approach in the case
of myoglobin.

Our experimental reference conformation is the Protein
Data Bank (PDB) [52] structure 1ABS [53] of wild-type
sperm whale heme containing myoglobin. There are 154 amino
acids, indexed i = 0 . . . 153 in the PDB file. The structure has
been measured at a very low temperature ∼20 K with very
small thermal B factors; in our approach a high experimental
accuracy is desirable since the model we develop can describe
the folded protein structure with sub-Ångström precision.

II. METHODS

A. Continuous curves

For completeness, we start with a review of basic relations
in curve geometry [54,55]. We consider a space curve x(s) :
[0,L] → R3, where L is the total length of the curve and
s ∈ [0,L] measures its proper length so

||ẋ|| = 1. (2)

The unit tangent vector is

t = ẋ ≡ dx(s)

ds
. (3)

The unit binormal vector is

b = ẋ × ẍ
||ẋ × ẍ|| (4)

and the unit normal vector is

n = b × t. (5)

The orthonormal triplet (n,b,t) defines a framing of the curve
that is subject to the Frenet equation [54,55],

d

ds

⎛
⎝n

b
t

⎞
⎠ =

⎛
⎝ 0 τ −κ

−τ 0 0
κ 0 0

⎞
⎠
⎛
⎝n

b
t

⎞
⎠. (6)

Here

κ(s) = ||ẋ × ẍ||
||ẋ||3 (7)

FIG. 1. The (blue) Frenet frame (n,b) and a generic (green)
orthogonal frame (e1,e2) on the normal plane of t, the tangent vector
of the curve.

is the curvature and

τ (s) = (ẋ × ẍ) · ...
x

||ẋ × ẍ||2 (8)

is the torsion. The fundamental theorem of space curves
states that the shape of every sufficiently regular curve in
three-dimensional space is completely determined by its
curvature and torsion; the extrinsic and intrinsic geometries
of a curve coincide. Thus, whenever κ(s) and τ (s) are known,
we can compute the Frenet framing from (6) and we can then
proceed to compute the shape of the curve by integrating (3).
Accordingly, the curvature and the torsion are the (only)
natural variables for constructing an energy function of a
structureless continuous curve. In particular, the shape of
a static curve should be computable, as a minimum of the
pertinent energy function.

Whenever (2) is valid, the tangent vector is given by (3).
But when there is an inflection point, i.e., a parameter value
s = s0 so the curvature vanishes,

κ(s0) = ||ẍ(s0)|| = 0, (9)

the vectors n and b are not determined and the Frenet framing
cannot be introduced. However, there are other ways to frame
a curve in a manner that extends continuously through an
inflection point and, more generally, through straight segments
of the curve. An example is the Bishop (parallel transport)
framing [56].

The Landau-Ginzburg-Wilson paradigm states that the
energy function must be built so it respects the symmetries
of the physical system. For this we consider a generic
orthonormal framing (e1,e2,t). As shown in Fig. 1 whenever
the curvature is nonvanishing it can be related to the Frenet
framing by a local SO(2) rotation around the tangent vector
t(s),(

n
b

)
→

(
e1

e2

)
=
[

cos η(s) − sin η(s)
sin η(s) cos η(s)

](
n
b

)
. (10)

The ensuing generalization of the Frenet equation is

d

ds

⎛
⎝e1

e2

t

⎞
⎠ =

⎡
⎣ 0 (τ − η̇) −κ cos η

−(τ − η̇) 0 −κ sin η

κ cos η κ sin η 0

⎤
⎦
⎛
⎝e1

e2

t

⎞
⎠. (11)

We deduce that the torsion transforms under frame rotations
as follows:

τ → τr ≡ τ − η̇. (12)
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For the curvature, the effect of the frame rotation is summa-
rized in terms of the complex valued quantity,

κ → κ± = κe±iη = κg ± iκn. (13)

The (generalized) Frenet equation can be represented as
follows:(

d

ds
± iτr

)
(e1 ± ie2) ≡

(
d

ds
± iτr

)
e± = −κ±t, (14)

d

ds
t = 2(κ+e+ + κ−e−). (15)

The real part κg of the complex curvature κ± is called the
geodesic curvature, and the imaginary part κn is called the
normal curvature. These two quantities refer to the extrinsic
geometry of a surface that osculates the curve. The osculating
surface is not uniquely determined, and different choices of η

correspond to different osculating surfaces. The choice η = 0
specifies the Frenet frame (Frenet gauge), and the choice

η(s) =
∫ s

0
τ (s ′)ds ′

specifies Bishop’s frames [54–56] that can be defined contin-
uously and unambiguously through an inflection point.

The invariance of the curve under frame rotations, per se,
constitutes a symmetry that can be exploited to construct LGW
energy functions. We follow standard field theory [57] and
identify in (κ±,τr ) a SO(2)∼U (1) gauge multiplet (Abelian
Higgs multiplet) [58]. The change (12) in τr is akin a
SO(2)∼U (1) gauge transformation of a one-dimensional
gauge vector, while κ± transforms like a complex scalar field.

Finally, we observe that the complex valued Hashimoto
variable [59]

ξ (s) = κ+(s) exp

(
i

∫ s

0
τr ds ′

)
≡ κ(s) exp

(
i

∫ s

0
τ ds ′

)
(16)

is gauge invariant, i.e., independent of the choice of framing.

B. Landau-Ginzburg-Wilson free energy

The Landau-Ginzburg-Wilson approach instructs us to
exploit a symmetry to construct an invariant energy function
of a curve in the limit of slow spatial variations.

We start with a generic Helmholtz free energy (1) in the limit
of slow spatial variations; we follow Ref. [60]. We assume a
theory with a single scalar order parameter field ϕ(x), i.e., with
no specific symmetry. The free energy (1) may be expanded in
powers of the order parameter,

F =
∑

n

1

n!

∫
dDx1 · · · dDxnF

(n)(x1 · · · xn)ϕ(x1) · · · ϕ(xn).

(17)

The coefficients F (n) are the n-point Green’s functions, and
they are commonly evaluated perturbatively in terms of
Feynman diagrams [57,60].

There is an alternative way to expand the free energy [57,60]
in powers of derivatives (momentum) about the point where
all external derivatives (momenta) vanish. More specifically,
we inspect the physical system over a distance scale L such
that the spatial variations of ϕ(x) over this scale are small.

The derivatives of ϕ can then be employed as small expansion
parameters, and [57,60]

F =
∫

dDx

[
V (ϕ) + 1

2
Z(ϕ)(∂μϕ)2 · · ·

]
. (18)

This is the expansion in terms of slowly varying variables. Note
that the coefficients V (ϕ),Z(ϕ), . . . are ordinary functions,
not functionals. To the leading order V (ϕ) coincides with the
classical potential in the Hamiltonian, generically [57,60]

Z(ϕ) = 1 + aϕ2 + . . . .

We now specify to the case of a regular curve: The geometry
of a structureless curve cannot depend on the way it is framed,
thus we propose to exploit invariance under local frame
rotations as the guiding symmetry; the functional form of the
ensuing Helmholtz free energy (18) should remain intact under
local frame rotations (10).

In the case of a regular structureless curve, the shape is
completely determined by the generalized torsion (12) and
curvature (13). Accordingly, these two local quantities consti-
tute a complete set of order parameter variables to specify the
Helmholtz free energy (18) of the curve. Since the free energy
should be independent of the way the curve is framed, it can
only depend on gauge-invariant, i.e., frame-rotation-invariant,
combinations of (12) and (13). Thus, in the leading large
distance (infrared) order, the pertinent expansion (18) engages
the Hamiltonian of the Abelian Higgs model [58,61],

F =
∫

ds[λ
(|κ+|2 − m2

)2 + |(∂s + iτr )κ+|2 + στr + · · · ].

(19)

To the leading order, this is the most general nonlocal
functional of (τr ,κ±) which is manifestly invariant under the
local frame rotation (10).

The last term in (19) is the helicity; it is a one-dimensional
version of the Chern-Simons term that breaks the chirality.
The helicity is not U (1) invariant, but its U (1) transformation
is a surface term. Any surface term should become irrelevant
in the thermodynamic limit.

The variables (τr ,κ±) can be eliminated in favor of
the gauge-invariant, geometric quantities (7) and (8). This
corresponds to the unitary gauge [57]: We use (13) and

τ = − i

2κ2
[κ−(∂s + iτr )κ+ − c.c.].

We substitute in (19), and we obtain

F =
∫

ds[(∂sκ)2 + κ2τ 2 + λ(κ2 − m2)2 + στ ]. (20)

Specifically, the validity of the approximation (19) and (20)
assumes that if κ0 sets a scale of curvature and when L is a
(large) distance scale of interest, then

|∂sκ| � κ0

L
.

Thus, over distance scales which are comparable to L or larger,
and subject to the frame rotation invariance, the Helmholtz free
energy of a curve is approximated by the LGW free energy,
with leading-order expansion (20) in derivatives of κ(s).
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C. Integrable hierarchy

Besides the frame rotation symmetry (10)–(13) there are
other symmetry principles that may be utilized as a guiding
principle in the construction of a Landau-Ginzburg-Wilson
energy function. As an example, we consider the (infinite)
symmetry which is associated with the concept of an integrable
model [62,63]:

We start with the observation that the (manifestly frame-
independent) Hasimoto variable (16) converts the Hamiltonian
of the Abelian Higgs Model into the Hamiltonian of the
nonlinear Schrödinger (NLS) equation. Specifically, in terms
of the variables (20)

λκ4 + κ2τ 2 + (∂sκ)2 = λ(ξ̄ ξ )2 + ∂s ξ̄∂sξ, (21)

which is the NLS Hamiltonian [62–64]. The NLS Hamiltonian
is the paradigm integrable model. It admits an infinite number
of conserved quantities, each associated with a symmetry
of (21). The last term in (20), the helicity, is an example of a
conserved quantity in the NLS model. The number density

1
2 ξ̄ ξ = 1

2κ2 (22)

is another example, and so is the momentum density

− i

2
ξ̄ ∂sξ = 1

2
κ2τ. (23)

Note that, like helicity, momentum breaks chirality.
As such, (22) is the Hamiltonian of the Worm Like Chain

(Kratky-Porod) model [65], widely used in modeling aspects
of polymers. In terms of the tangent vector,

1
2κ2 = 1

2 |∂st|2.
This is the Hamiltonian of the Heisenberg σ model [62].

The LGW paradigm, in combination with the symmetry
structure of the NLS model, proposes that the Helmholtz free
energy (1) can be systematically expanded in terms of the
conserved charges of the NLS hierarchy. In this way we arrive
at the following (slight) generalization of (20)

F =
∫

ds

[
(∂sκ)2 + λ(κ2 − m2)2

+ d

2
κ2τ 2 − bκ2τ − aτ + c

2
τ 2

]
. (24)

Here the last term is called the Proca mass in gauge theory,
and we include it for completeness [66,67].

The remaining conserved quantities of the NLS model
involve higher orders of derivatives of κ(s). As such, they
are higher-order corrections in the expansion (18). We do not
include them, in our infrared limit.

D. Topological solitons

Solitons are the paradigm structural self-organizers in
nature and the NLS equation is the paradigm equation that
supports solitons [62–64]; depending on the sign of λ, the
soliton is either dark (λ > 0) or bright (λ < 0). Moreover, the
torsion-independent contribution to (24) and (20),∫ ∞

−∞
ds {(∂sκ)2 + λ (κ2 − m2)2}, (25)

supports the double well topological soliton [68]: When m2 is
positive and when κ can take both positive and negative values,
the equation of motion

∂ssκ = 2λκ(κ2 − m2)

is solved by

κ(s) = m tanh[m
√

λ(s − s0)]. (26)

Note that this soliton engages an inflection point (9); follow-
ing [69,70], we use the convention that when a curve passes a
simple inflection point, the curvature changes its sign.

The energy function (24) is quadratic in the torsion. Thus
we can eliminate τ using its equation of motion,

τ [κ] = a + bκ2

c + dκ2
≡ a

c

1 + (b/a)κ2

1 + (d/c)κ2
, (27)

and we obtain the following equation of motion for curvature:

κss = Vκ [κ], (28)

where

V [κ] = −
(

bc − ad

d

)
1

c + dκ2
−
(

b2 + 8λm2

2b

)
κ2 + λ κ4.

(29)

This shares the same large-κ asymptotics, with the potential
in (25). With properly chosen parameters, we expect that (28)
and (29) continue to support topological solitons. But we do not
know their explicit profile, in terms of elementary functions.

Once we have the soliton of (28), we evaluate τ (s)
from (27). We substitute the ensuing (κ,τ ) profiles in the
Frenet equation (6) and solve for t(s). We then integrate (3)
to obtain the curve x(s) that corresponds to the soliton.
A generic soliton curve looks like a helix-loop-helix motif
(more generally, a regular secondary structure-a loop-a regular
secondary structure), familiar from crystallographic protein
structures. Note that depending on the parameter values, the
torsion can fluctuate substantially along a soliton profile even
when curvature is slowly varying.

E. Discrete Frenet equation

Proteins cannot be modeled by regular space curves.
Proteins are like piecewise linear polygonal chains. In order to
construct the LGW energy function for a protein, we need to
understand the structure and symmetry of such a chain [71].

In the present article we shall only address the backbone;
the folded structure is known, thus there are no issues with
potential steric clashes in the folded structure.

Let ri with i = 1, . . . ,N be the vertices of a piecewise linear
discrete chain; in the case of a protein, the vertices correspond
to the Cα atoms. At each vertex we introduce the unit tangent
vector

ti = ri+1 − ri

|ri+1 − ri | , (30)

the unit binormal vector

bi = ti1 − ti
|ti1 − ti | , (31)
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FIG. 2. Definition of bond (κi) and torsion (τi) angles along a
piecewise linear discrete chain.

and the unit normal vector

ni = bi × ti . (32)

The orthonormal triplet (ni ,bi ,ti) constitutes a discrete version
of the Frenet frames.

In lieu of the curvature and torsion, we have the bond angles
and torsion angles, defined as in Fig. 2.

Once we know the Frenet frames at each vertex, we can
compute the angles. The bond angles are

κi ≡ κi+1,i = arccos (ti+1 · ti) (33)

and the torsion angles are

τi ≡ τi+1,i = sgn{bi+1 × bi · ti} arccos (bi+1 · bi). (34)

Conversely, when the values of the bond and torsion angles
are all known, we can use the discrete Frenet equation⎛
⎝ni+1

bi+1

ti+1

⎞
⎠ =

⎛
⎝cos κ cos τ cos κ sin τ − sin κ

− sin τ cos τ 0
sin κ cos τ sin κ sin τ cos κ

⎞
⎠

i+1,i

⎛
⎝ni

bi

ti

⎞
⎠
(35)

to compute the frame at vertex i + i from the frame at vertex
i. Once all the frames have been constructed, the entire chain
is given by

rk =
k1∑

i=0

|ri+1 − ri |ti . (36)

Without any loss of generality we may choose r0 = 0, choose
t0 to point into the direction of the positive z axis, and let t1

lie on the y-z plane.
As in the case of a continuum curve, a discrete chain remains

intact under frame rotations of the (ni ,bi) zweibein around ti .
This local SO(2) rotation acts on the frames as follows:⎛
⎝n

b
t

⎞
⎠

i

→e�iT
3

⎛
⎝n

b
t

⎞
⎠

i

=
⎛
⎝ cos �i sin �i 0

− sin �i cos �i 0
0 0 1

⎞
⎠
⎛
⎝n

b
t

⎞
⎠

i

,

(37)

where T 3 is one of the SO(3) Lie algebra generators,

(T a)bc = εabc.

In terms of the bond and torsion angles the rotation amounts
to

κi T 2 → e�iT
3
(κiT

2) e−�iT
3
, (38)

τi → τi + �i1 − �i, (39)

FIG. 3. Distribution of bond length in crystallographic PDB
structures; the data set in Ref. [72] has been used.

which is a direct generalization of (12) and (13); following
standard field theory [57] the transformation of bond angles is
like an adjoint SO(2)∈SO(3) gauge rotation of a Higgs triplet
around the Cartan generator T 3, when the Higgs triplet is in the
(unitary gauge) direction of T 2. The transformation of torsion
angle coincides with that of the SO(2) lattice gauge field.

A priori, the fundamental range of the bond angle is κi ∈
[0,π ] while for the torsion angle the range is τi ∈ [−π,π ).
Thus we may identify (κi,τi) as the canonical latitude and
longitude angles of a two-sphere S2. However, to account for
the presence of putative inflection, it is useful to extend the
range of κi into negative values κi ∈ [−π,π ] mod(2π ). We
compensate for this twofold covering of S2 by a Z2 symmetry:

κk → −κk for all k � i

τi → τi − π. (40)

This is a special case of (38) and (39), with

�k = π for k � i + 1
�k = 0 for k < i + 1.

F. The Cα trace reconstruction

The discrete Frenet equations (35) and (36) discloses that a
chain can be constructed from the knowledge of bond and
torsion angles and the distances between the vertices. In
the case of crystallographic protein structures, the vertices
coincide with the positions of the Cα atoms. As shown in
Fig. 3, in PDB the virtual Cα-Cα bond lengths are very close
to their average value,

|ri+1 − ri | ∼ 3.8 Å. (41)

Moreover, according to Ref. [72], the Cα backbones of PDB
structures can be reliably reconstructed using a combination
of the actual bond and torsion angles (33) and (34) and the
average value (41). Thus the bond and torsion angles constitute
a complete set of structural order parameters in the case of
crystallographic proteins. The LGW paradigm proposes that
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FIG. 4. Distribution of bond and torsion angles in crystallo-
graphic protein structures on a stereographically projected two-sphere
with κ the latitude and τ the longitude. Red indicates a large number
of entries, blue a small number of entries, and white corresponds to no
entries. All PDB structures that have been measured with resolution
2.0 Å or better have been used. The major secondary structure regimes
are identified. The inner boundary of the annulus has a radius κ ≈ 1
(rad) and the outer boundary has a radius κ ≈ 1.6 (rad).

the leading-order approximation to the Helmholtz free energy
is a function of the bond and torsion angles only.

Note: The Ramachandran angles, together with the average
value (41), do not constitute a complete set of structural order
parameters [72].

G. LGW Hamiltonian for proteins

Proteins are commonly modeled using an all-atom force
field or a coarse-grained approximation thereof [11–13]. The
discretized Newton’s equation is solved iteratively, in what de
facto amounts to a perturbative expansion around a (randomly)
chosen initial configuration: The expansion parameter relates
to the ratio of the iterative time step length to the time
scale of a characteristic atomic oscillation. In an all-atom
approach the latter pertains to the frequency of a heavy atom
covalent bond oscillation, which makes simulations into an
extreme computational challenge. Equation (17) exemplifies a
perturbative approach.

Here we follow the Landau-Ginzburg-Wilson paradigm
to develop a complementary approach to model proteins
and their dynamics. Conceptually, our approach is like the
expansion (18) and we need to identify the slowly varying
variable: In Fig. 4 we show the distribution of Cα backbone
bond and torsion angles in crystallographic PDB protein
structures on the stereographically projected two-sphere (κ,τ ).
The torsion angles

are known to be flexible in proteins; as shown in Fig. 4,
their values are distributed over the entire range τ ∈ (−π,π ].
However, the observed range of variation �κmax in the values
of the bond angles is quite constrained. Instead of extending
over the entire plane, the angles are largely limited to the
annulus between κ ≈ 1 and κ ≈ π/2 (radians), shown in
Fig. 4. On the original two-sphere, the geometrically allowed
range of variations of the bond angle is κtot ∈ [0,π ]. Thus we
may putatively adopt the ratio

∣∣∣∣κi+1 − κi

κtot

∣∣∣∣ � �κmax

κtot
≈ 0.6

π
∼ 0.2 (42)

as a slowly varying expansion parameter in the case of crys-
tallographic protein structures. The Landau-Ginzburg-Wilson
paradigm then proposes that if we adopt the NLS hierarchy as
the symmetry principle to guide the construction of the LGW
energy function, in the case of a protein backbone, we should
adopt a discretized version of (24) as the leading-order LGW
approximation of the Helmholtz free energy:

H = −
N1∑
i=1

2 κi+1κi +
N∑

i=1

{
2κ2

i + λ
(
κ2

i − m2
)2

+ d

2
κ2

i τ 2
i − b κ2

i τi − a τi + c

2
τ 2
i

}
+ . . . . (43)

The approximation (43) should be a valid one, as long as
the expansion parameter (42) remains small, i.e., there are no
abrupt but only slowly changing bends along the backbone. In
particular, long-range interactions are accounted for, as long as
they do not cause any sharp localized buckling of the backbone.

In (43) λ, a, b, c, d, and m depend on the atomic level
physical properties and the chemical microstructure of the
protein and its environment. In principle, these parameters can
be computed from this knowledge. In practice, we train the
energy function to model a given protein.

H. Topological soliton and protein geometry

The free energy (43) is a naive discretization of the NLS
hierarchy free energy (24). It is a deformation of the energy
function of the integrable discrete nonlinear Schrödinger
equation (DNLS) [62–64]. The conventional DNLS equation
is known to support solitons. Thus we expect that (43) supports
soliton solutions as well.

We follow (27) to eliminate the torsion angle,

τi[κ] = a + bκ2
i

c + dκ2
i

= a
1 + (b/a)κ2

i

c + dκ2
i

. (44)

For bond angles we then have

κi+1 = 2κi − κi−1 + dV [κ]

dκ2
i

κi (i = 1, . . . ,N). (45)

We set κ0 = κN+1 = 0, and V [κ] is given by (29). To solve
this numerically, we use the iterative equation [19]

κ
(n+1)
i = κ

(n)
i − ε

{
κ

(n)
i V ′[κ (n)

i

]− (κ (n)
i+1 − 2κ

(n)
i + κ

(n)
i−1

)}
, (46)

where {κ (n)
i }i∈N is the nth iteration of an initial configuration

{κ (0)
i }i∈N and ε is some sufficiently small but otherwise

arbitrary numerical constant. We choose ε = 0.01, in our
simulations. The fixed point of (46) is independent of the value
of ε and clearly a solution of (45).

Once the fixed point is found, the corresponding torsion
angles are obtained from (44). The frames are then constructed
from (35), and the entire chain is constructed using (36).

We do not know of an analytical expression of the
soliton solution to Eq. (45). But an excellent approximative
solution can be obtained by discretizing the topological
soliton (26) [18,69–71,73]:

κi ≈ m1e
c1(i−s) − m2e

−c2(i−s)

ec1(i−s) + e−c2(i−s)
. (47)
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Here (c1,c2,,m1,m2,s) are parameters. The m1 and m2 specify
the asymptotic κi values of the soliton. Thus, these parameters
are entirely determined by the character of the regular, constant
bond and torsion angle structures that are adjacent to the
soliton. In particular, these parameters are not specific to the
soliton per se but to the adjoining regular structures. The
parameter s defines the location of the soliton along the string.
This leaves us with only two loop specific parameter, the c1

and c2. These parameters quantify the length of the bond angle
profile that describes the soliton.

For the torsion angle, (44) involves one parameter (a) that
we have factored out as the overall relative scale between
the bond angle and torsion angle contributions to the energy;
this parameter determines the relative flexibility of the torsion
angles, with respect to the bond angles. Then, there are three
additional parameters (b/a,c/a,d/a) in the remainder τ̂ [κ].
Two of these are again determined by the character of the
regular structures that are adjacent to the soliton. As such,
these parameters are not specific to the soliton. The remaining
single parameter specifies the size of the regime where the
torsion angle fluctuates.

On the regions adjacent to a soliton, we have constant values
of (κi,τi). In the case of a protein, these are the regions that
correspond to the standard regular secondary structures. For
example, the standard right-handed α helix is obtained by
setting

α helix :

{
κ ≈ π

2

τ ≈ 1
. (48)

and for the standard β strand

β strand :

{
κ ≈ 1
τ ≈ π

. (49)

All the other standard regular secondary structures of proteins
such as 3/10 helices, left-handed helices, etc., are similarly
modeled by definite constant values of κi and τi . Protein loops
correspond to solitons, the regions where the values of (κi,τi)
are variable.

The presence of solitons significantly reduces the number
of parameters in (43), increasing the predictive power. In
particular, the number of parameters is far smaller than the
number of amino acids, along the protein backbone.

I. Cooperativity and first-order phase transition

In Refs. [27–29] it has been argued on general grounds
that protein folding should have a “cooperative” character
and that the folding process should relate to a first-order
phase transition. The present model is fully in line with these
proposals:

Solitons are the paradigm structural self-organizers in
physical systems, and solitons are collective oscillations that
emerge and dissolve when a physical system undergoes a large
scale structural self-organization.

Moreover, in the case of a protein the bond angles are rigid
while the torsion angles are flexible. From the point of view
of a Born-Oppenheimer approximation, the torsion angles can
then be considered as “fast” variables in the background of
bond angles that can be considered as “slow” variables. In the
limit where variations of κi along the backbone become very

small in comparison to the variations in τi , we may proceed
and solve for the mean value κi ∼ κ in terms of τi ∼ τ ,

κ2 ≈ m2 + b

2λ
τ + d

4λ
τ 2.

When we substitute this in (43) we obtain an effective free
energy for the mean value of the torsion angle, this energy has
the form

F (τ ) = A + Bτ + Cτ 2 + Dτ 3 + Eτ 4.

This coincides with a Landau free energy that models a first-
order phase transition when D < 0 and E > 0: There is both a
metastable and a stable minimum energy state, and an abrupt
first-order transition takes place when the parameter values
change.

Accordingly, the model is in line with and incorporates the
proposals made in Refs. [27–29].

J. Proteins out of thermal equilibrium

When a protein folds towards its native state, it is out of
thermal equilibrium. Several studies propose, that in the case
of a small protein which is not too far away from thermal
equilibrium, the folding takes place in a manner which is
consistent with Arrhenius’ law [74]. This law states that the
reaction rate depends exponentially on the ratio of activation
energy EA and physical temperature factor,

r ∝ exp

{
− EA

kBθ

}
,

with kB the Boltzmann constant and θ the temperature
measured in Kelvin.

On the other hand, in the case of a simple spin chain,
Glauber dynamics [30–32] is known to describe the approach
to thermal equilibrium, in a manner which resembles Arrhe-
nius’s law. Glauber dynamics evaluates the transition proba-
bility from a conformational state a to another conformational
state b as follows:

P(a → b) = 1

1 + e�Fba/T
.

Here �Hba = Hb − Ha is the activation energy and we
compute it from (43). The parameter T is the Monte Carlo
temperature factor. Note that in general the Monte Carlo
temperature factor T does not coincide with the physical
temperature factor kBθ . Instead, we expect [20] that T relates
to kBθ approximatively as follows:

T ∼ kBθ eαkBθ−β, (50)

where α and β are protein specific factors.

K. Simulation details

In all our simulations, at each MC step we perturb either one
of the bond angles or torsion angles according to the following
prescription:

κi → κi + 0.015r

τi → τi + 1.5r,

where r is a random number with Gaussian distribution with
expectation value 0 and variation 1. The different scales on
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κi and τi reflect the different stiffness between the bond and
torsion angles in real proteins. We have tested various other
values of r to confirm that our results do not essentially depend
on the choice of r .

L. Steric constraints

Finally, proteins are subject to long-range interactions along
the chain. At the level of the Landau approach this can be
accounted for in terms of steric constraints; see Ref. [75],
where a detailed analysis on the effect of steric constraints has
been carried out in the present model.

In PDB, a statistical analysis shows that two Cα atoms
which are not nearest neighbors along the backbone, are
constrained by

|ri − rk| > 3.8 Å for |i − k| � 2. (51)

Here this constraint is implemented as a criterion in the
Monte Carlo algorithm: whether to accept or reject a given
Monte Carlo step during simulation. For a given Cα backbone,
different side chain libraries can then used to to reconstruct the
all-atom structure, as need be.

III. RESULTS

We have performed extensive numerical simulations to
analyze the way myoglobin unfolds when ambient temperature
increases. The motivation to consider in detail the unfolding
process in the case of a myoglobin relates to the experimental
issues due to the binding of heme: It is very difficult to control
the process of heme binding in a folding experiment, and thus
the myoglobin experiments [46–51] all address the unfolding
process.

Results from both unfolding and folding experiments are
available, in the case of the heme-free apomyoglobin [33–45].
These experiments reveal that unfolding and folding processes
are very similar.

We have confirmed that in our heating and cooling sim-
ulations, the unfolding and folding pathways are essentially
identical.

Comparisons of experiments with heme containing myo-
globin and heme-free apomyoglobin show that the unfolding
proceeds very similarly, in the two cases. The only real
exception is that, in the case of apomyoglobin, the F-helix is
disordered at low temperatures [37]. Accordingly, there are no
crystallographic data available, in the case of apomyoglobin,
that we could use to construct a high-precision LGW free
energy (43). However, the structural effects of heme during
the unfolding process are apparently minor. Thus our results
are likewise applicable, both in the case of heme-free apomyo-
globin and heme containing myoglobin.

A. Multisoliton

We start with the construction of the multisoliton solution
of (45) and (44) that models the Cα backbone of 1ABS [53].
We used a combination of the GaugeIT and Propro pack-
ages [76].

The analysis starts with the inspection of the bond and
torsion angle spectrum with the help of the Z2 symmetry (40)
to identify the individual solitons. In Fig. 5 we show the (κi,τi)

FIG. 5. Top: The bond (κ) and torsion (τ ) angle spectrum of
the PDB structure 1ABS. Bottom: The bond (κ) and torsion (τ )
angle spectrum of the multisoliton. Note that the angles are defined
modulo 2π .

spectrum both for 1ABS and for the multisoliton we have
constructed; the Cα RMS distance between the two is around
0.8 Å. In Table I we show the parameter values that we have
found; there are 92 parameters that describe the 154 different
amino acids.

B. Stability and reversibility

We have tested the stability of the multisoliton by subjecting
it to repeated heating and cooling simulations using the
Glauber algorithm: We start from the low Monte Carlo tem-
perature factor value T = 10−17 where we observe no thermal
fluctuations. We increase the temperature factor linearly on
a logarithmic scale, so we reach the value T = 10−4 after
5 million MC steps. We then fully thermalize the configuration
at T = 10−4 during another 5 million MC steps. Finally, we
cool it down, back to the original low temperature value, during
5 million steps.

For production, we have performed 100 full heating-cooling
cycles. The Fig. 6 shows the evolution of RMS distance to the
low-temperature multisoliton, during the heating and cooling
cycle; we find that the heating and cooling proceed very
symmetrically, and the configuration returns to the original
low temperature structure at the end of the cycle.

C. Heating myoglobin

In our production runs for heating simulations, described
in the sequel, we have increased the temperature factor
from T = 10−17 to T = 10−4 during 6 million Monte Carlo
steps; the results do not depend on the number of steps, as
long as this number is not very small. We have performed
100 independent full-length heating simulations. We have in
particular confirmed that the heating process is fully reversible:
On cooling the system from the high temperature value back to
the original low-temperature value the structure folds back to
the native conformation. The unfolding and folding pathways
are essentially identical.

Our simulations are extremely time efficient. For example,
with a MacPro workstation a complete heating and cooling
cycle takes around 10 s of in silico time, in a single processor;
this is the time it takes us to perform a cycle. By comparison,
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TABLE I. The parameters in the energy function for 1ABS. The ensuing profile is shown in Fig. 5 bottom. There are a total of 12 individual
soliton profiles along the entire myoglobin backbone. In each soliton, we divide the parameters c and m into c1,c2 and m1,m2 to reflect the
asymmetry of the soliton around its center.

Soliton s λ1 λ2 m1 m2 d a c b

1 4 12.078 3.9172 1.0115 1.5417 1.2567 e-7 −3.1072 e-8 8.3858 e-8 2.1701 e-6
2 20 3.4359 2.029 1.58 1.5138 2.0144 e-8 −7.2358 e-8 2.501 e-8 −1.081 e-6
3 36 7.3192 0.8146 1.5064 1.543 3.7 e-9 −1.0164 e-7 5.4087 e-10 4.8281 e-8
4 43 2.1377 0.657 1.6558 1.6022 5.7539 e-9 −9.0514 e-8 5.1017 e-11 1.2023 e-6
5 52 0.8854 5.9719 1.3645 1.5369 7.6765 e-9 −2.3414 e-7 2.362 4 e-8 −3.301 e-7
6 58 8.7118 0.8337 1.55 1.537 4.8756 e-9 −9.6428 e-8 1.0224 e-10 4.778 e-7
7 80 0.97324 2.1401 1.4617 1.5462 1.9022 e-14 −7.401 e-9 6.9463 e-10 3.8355 e-9
8 97 1.3258 2.9105 1.4771 1.0199 5.4505 e-14 −1.3745 e-13 3.492 e-14 5.6029 e-13
9 101 10.4862 4.2438 1.2225 1.6532 1.22576 e-8 −1.2136 e-7 9.9151 e-11 1.3718 e-6
10 120 0.80042 1.2897 1.5154 1.6028 7.8271 e-8 −2.0349 e-7 1.46 e-11 1.13574 e-6
11 124 3.1526 0.91475 1.5583 1.5515 7.7364 e-9 −1.0781 e-7 7.4957 e-11 1.0277 e-6
12 151 1.0122 1.0637 1.4001 1.3282 1.1378 e-8 −1.1176 e-7 4.3856 e-10 8.6209 e-7

the experimentally observed folding time of apomyoglobin is
around 2.5 s [34].

D. α-helical content

Circular dichroism (CD) spectroscopy can provide informa-
tion on the helical content of a protein as a function of temper-
ature; it can give an indication how the unfolding proceeds. By
comparing how the theoretically evaluated and experimentally
observed helical content depends on temperature, we can also
determine the relation (50) between the Glauber temperature
factor and the physical temperature. Accordingly, we have
estimated the temperature dependence of the α-helical content
during our heating simulations. By a statistical analysis of
PDB structures we have deduced the following criterion: We
define that a Cα atom which is centered at ri is in an α-helical
position when |ri+4 − ri | ≈ 6.2 ± 0.5 Å and |τi − τ0| < 0.6
(rad) where τ0 is the PDB average value of the α-helical torsion
angle. From Fig. 5 we observe that folded myoglobin has
a substantial α-helical content. According to our criterion,
around ∼72% of the Cα atoms in 1ABS are in α-helical

FIG. 6. Evolution of RMS distance between the 1ABS and the
multisoliton during the heating-cooling cycle. No further increase in
the RMS distance is observed if the Monte Carlo temperature factor
is further increased. The blue line is the average and the orange band
displays the one standard deviation from the average.

position; there is also a small fraction in the closely related
3/10 position.

We have investigated how the α-helical content depends
on the Glauber temperature factor T , during the unfolding
process. The result is shown in Fig. 7, over the entire
temperature range of our simulation.

There is a remarkable similarity with the result shown in
Fig. 7, and the experimentally observed circular dichroism
data shown in Fig. 2 of Ref. [49]; see also Fig. 8. When we
compare the two Figs., we obtain the following relation (50)
between the Glauber temperature factor T and the physical
temperature TK (measured in Kelvin),

T = TK exp{0.232TK − 107.8}. (52)

Figure 8 shows the comparison.
We note that according to Ref. [49] the heme becomes

irreversibly damaged at around ∼75–80 ◦C (the red dashed line
in Fig. 7). However, we point out that the structural stability of
myoglobin varies between species; the myoglobin in Ref. [49]
is from horse heart.

FIG. 7. Simulated α-helical content (in %) as a function of
Glauber temperature factor T . The dashed gray line estimates ∼25 ◦C,
the dashed red line estimates ∼75 ◦C, and the dashed yellow line
estimates ∼90 ◦C in Fig. 2 of Ref. [49]; see also Fig. 8.
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FIG. 8. Comparison between the simulation data in Fig. 7 and
data inferred from Fig. 2 of reference [49], with Glauber temper-
ature factor converted into centigrade scale using the functional
relation (52). An overall uniform scaling factor of 1.13 has been
introduced to account for the apparent scale difference between exper-
imentally observed and computationally defined α-helical structure.

E. Radius of gyration and its susceptibility

In protein unfolding experiments, the radius of gyration Rg

and its evolution is used widely to monitor the progress. In
Fig. 9 we show how the radius of gyration evolves during our
heating (unfolding) simulations.

We observe the presence of a folding intermediate between
log10 TL ≈ −12.8 and log10 TH ≈ −9.5. The ensemble aver-
age value Rg ≈ 24 Å of the folding intermediate is very
close to the experimentally observed value Rexp ∼ 23.6 Å
of the molten globule, measured in the case of the apomyo-
globin [36,41]. The increase in Rg during the first transition in
Fig. 9, from native state to molten globule, is around 9 Å. This
is larger than the experimentally observed 1–7 Å low pH values
in the apomyoglobin [36,41], but the difference is in line with
the observation that at low temperatures the radius of gyration
of apomyoglobin is larger than that of heme containing
myoglobin [36,41]. Between the molten globule and the fully

FIG. 9. The dependence of radius of gyration as a function of
Glauber temperature factor. As in Fig. 6, the blue line is average value
and the orange band denotes the one standard deviations fluctuation
distance. A comparison shows that the transition temperatures of Rg

are slightly lower than in the case of RMSD in Fig. 6. The dashed
gray, red, and yellow lines are as in Fig. 7.

unfolded state, the ensemble average difference Rg ∼ 10 Å
that we find is very close to the experimentally measured
11 ± 2 Å low pH value, in the case of apomyoglobin [36].

The transition temperatures during the unfolding process
can be estimated by evaluating the following radius of gyration
susceptibility:

Xg(T ) = dRg(T )

d log10 T
. (53)

To evaluate this quantity, we introduce a fitting procedure
where we first approximate Rg(T ) by a function of the form

log10(Rg(T )) ≈ Rfit
g (log10 T ),

where we choose

Rfit
g (x) = h1 + h2 arctan[h3(x − x1)]

+h4 x arctan[h5(x − x2)] − h6x. (54)

This function form has been introduced and utilized in
Ref. [77], in a related context. The numerical values of
the parameters h1 . . . h6 and x1,2 are determined by a fit to
the numerical values of Rg(T ) (not shown here). We then
use the peaks in (53) to determine the transition values of
T . There are two peaks during the heating process, at MC
temperature factor values

TRg,1 ≈ 10−13.8 ∼ 30 ◦C
TRg,2 ≈ 10−9.3 ∼ 74 ◦C,

(55)

where the relation (52) has been used.
We conclude that both in terms of α-helical content and

radius of gyration, our model appears to correctly describe
the observed reversible myoglobin unfolding dynamics below
log10 Tc ≈ −8.0. In particular, in Fig. 9 we observe a folding
intermediate between log10 TL ≈ −12.8 and log10 TH ≈ −9.5.
These three temperature factor values correspond to the three
dashed lines (gray, red, yellow) which we have also identified
in Fig. 7.

F. Energy susceptibility

The various transitions can also be monitored by changes
in energy, in terms of energy susceptibility. For this we first
evaluate the average internal energy 〈E〉 as a function of the
temperature factor T , in thermal equilibrium, using the LGW
Hamiltonian (43)

〈E〉 = − ∂

∂β
Tr exp{−βH }

(
β = 1

T

)
.

The energy susceptibility is akin to the heat capacity,

χE = d〈E〉
d log10(T )

. (56)

We use a fitting function such as (54) to numerically
estimate (56). In Fig. 10 we display the thermal equilibrium
state energy susceptibility that we have computed. We observe,
in Fig. 10(a), a clear peak, in the high-temperature regime, at

log10 T3 ≈ 0.96 ∼ 175 ◦C.

It appears that, thus far, this peak has not been observed
experimentally; the corresponding physical temperature value
is quite high.
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FIG. 10. The average energy and the energy susceptibility plots
for different temperature ranges. (A) T ∈ [10−17,104]. (B) energy
and heat capacity zoomed in T ∈ [10−17,10−9], where the scale on
the energy axis has been subtracted by the energy at native state
[equaling to ∼77.83 in units of (43)]. The red solid dots are the
average energy values at corresponding temperature, and the blue
line is the energy curve fittings based on (54). The green dashed line
is the energy susceptibility calculated from (56). The temperatures of
the energy susceptibility peaks are denoted as T1, T2, and T3.

We also observe two peaks at lower temperature values

log10 T1 ≈ −10.2 ∼ 65 ◦C
log10 T2 ≈ −9.4 ∼ 73 ◦C.

See Fig. 10(b). Note that in Fig. 10(a) these two peaks are not
very visible, as their heights are much lower than the height
of the high-temperature peak. The normalization of the peak
height reflects the relation (50).

Our observation of two lower-temperature peaks, very
close to each other, is consistent with the presence of an
experimentally measured single wide peak [33] where the
experimentally heat capacity peak at pH 5.0 is broad; see
Fig. 5 in Ref. [33].

FIG. 11. The average values (57) at three different temperature
factor values log10(T ) = −17, −13.1, −8.46.

G. α-Helix denucleation

We monitor details of the unfolding process by evaluating
the temperature dependence in the fluctuations �τi of the
individual backbone torsion angles, defined as follows:

�τi =
√√√√ 1

N

N∑
k=1

(τi,k − τ̄i)2. (57)

The index k counts the conformation in a given heating
simulation, and the average is over the entire ensemble of
N = 100 heating simulations. In Figs. 11 and 12 we display
the evolution of (57) at six different temperatures during the
unfolding process.

We observe in particular how different helices become
denucleated at different temperatures, during the unfolding
process.

To determine the denucleation temperatures of the eight
individual helical segments X = (A,B, . . . ,H ) in the natively
folded myoglobin, we evaluate the following average values
of the τ fluctuations:

�τX =
√

1

|X|
∑
X

(�τi)2. (58)
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FIG. 12. The average values (57) at three different temperature
factor values log10(T ) = −7.99, −7.06, −5.89.

Here |X| is the number of residues in the native helical segment
X, and both �τi and �τX are evaluated at 1000 different
sampling temperatures during the heating.

We introduce a susceptibility akin (53) and (56) to monitor
the individual α-helix unfolding,

Xτ = d�τX

d log10 T
. (59)

Figure 13 summarizes the results obtained from Eqs. (53), (56),
and (59).

H. Contact maps

We monitor long-range interactions between any pair of
different backbone segments in terms of a contact map. For
this we denote by

dij = |ri − rj |
the distance between any two Cα atoms. We define
a scoring function for each pair of helical segments
X,Y = (A,B, . . . ,H ) in the natively folded myoglobin as

FIG. 13. The susceptibility (59) in myoglobin. Helices B, C, D,
and E are identified by the colors magenta, cyan, red, and black,
respectively. The vertical black dotted line denotes the maximum
of (56) at log10 TE ≈ −10.2. The vertical green and red dotted lines
denote two Rg susceptibility peaks at log10 TRg,1 ≈ −13.8 and at
log10 TRg,2 ≈ −9.3. The dashed gray, red, and yellow lines are as in
Figs. 7 and 9. Units along ordinate derive from (59).

follows:

Sij =

⎧⎪⎨
⎪⎩

0 for dij > 12
12−dij

4 for 8 � dij � 12

1 for dij < 8

. (60)

We define the average contact by

SX,Y =
∑

i∈X

∑
j∈Y Sij − Sij0

min(|X|,|Y|) . (61)

Here |X|, |Y | are the lengths of the helical segments X, Y ; Sij0

is the value of (60) in the native state; and the average is taken
over the entire ensemble. A detailed analysis of (57)–(61)
confirms that in our simulations the thermal unfolding does
indeed proceed sequentially, through helical intermediates,
in a manner which is fully in line with the experimental
observations: The individual contact maps for each of the eight
helices are presented in Figs. 14–17.

Note that in the case of helices A and B we observe an
increase in mutual contacts in the high temperature (unfolded)
state. In the native state there are very few contacts between
A and B, and, as a consequence, there is an apparent increase
reflecting high-temperature random contact formation.

From the contact maps shown in Figs. 14–17, we estimate
the critical temperature values, where a long-range interaction
between each pair of helices disappears. The critical values of
temperature factors T are shown in Table II for each pair of
helices.

I. A summary of observations

According to our simulations, the α-helix unfolding
in myoglobin takes place only in conjunction with the
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FIG. 14. Top: Contact maps between helix A with all other
helices. Bottom: Contact maps between helix B with all other helices.
The value of average contacts is defined by (61). The vertical lines
indicate major changes in Rg and energy: The vertical red dashed
line denotes the high-temperature peak of the susceptibility (53)
and the vertical green dashed line denotes its low-temperature peak.
The vertical black dashed line denotes the low-temperature energy
susceptibility peak.

disappearance of long-range interactions between the ensu-
ing helix and another helical segment of the backbone. In
particular, we observe that the F helix becomes unstable
already at relatively low temperatures before the molten
globule forms. This is consistent with experiments that are
made with heme containing myoglobin and in line with the
observed disordered character of the F helix in the case of
apomyoglobin. We find that the helices B, C, D, and E remain
largely stable during the molten globule phase. Their unfolding
coincides with the melting of the molten globule, apparently
in conjunction with the irreversible destruction of the heme
pocket [49]. Subsequently we observe the unfolding of A
and H helices, in line with the original folding prediction in
Refs. [78,79]. In our simulations, the G helix is the last to
unfold.

The following diagram summaries our observed
thermal unfolding of the myoglobin, with increasing

FIG. 15. Same as in Fig. 14 for helices C and D.

temperature:

F −→ molten globule −→ B,C,D,E −→ A,H −→ G.

(62)

When all helices have become unfolded, which occurs
at around log10 T ≈ −6 (yellow line in Figs. 7 and 9), the
backbone appears to be in the universality class of self-
avoiding random walk. In particular, we observe no further
increase in Rg even when the ambient temperature becomes
substantially increased.

When we adiabatically cool the system down to the original
temperature, we observe that the helices form in an order which
is opposite to that during the heating process.

IV. CONCLUSIONS

In conclusion, we have combined the Landau-Ginzburg-
Wilson approach with nonequilibrium Glauber dynamics
to model the way myoglobin unfolds when the ambient
temperature increases. All our simulation results appear to
be in excellent agreement with available experimental results.
In addition, we have proposed new observables, including a
detailed contact map between different helical segments. This
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FIG. 16. Same as in Fig. 14 for helices E and F.

could be tested in future experiments to estimate the range of
validity of the LGW approach in the case of proteins.

The approach that we have developed models both the
natively folded low-temperature structure and its thermally
driven unfolding process in terms of a multisoliton solution of
the pertinent Landau-Ginzburg-Wilson energy function and its
Glauber dynamics. In particular, the multisoliton is a solution
of a universal discrete nonlinear Schrödinger equation. It
approximates the Cα backbone profile in the limit where the
spatial variations along the backbone have a long wavelength.

FIG. 17. Same as in Fig. 14 for helices G and H.

This is the limit where one generally expects the Landau-
Ginzburg-Wilson approach to become valid. Moreover, the
presence of solitons furnishes the energy function with a
substantial predictive power: The number of free parameters is
even much less than the number of amino acids in myoglobin.

Our results propose that the unfolding process of a
myoglobin is primarily driven by collective motions with
a relatively long wavelength along the backbone. When
the ambient temperature increases, these collective motions

TABLE II. Critical temperatures for disappearing interactions between helices. The symbol “*” indicates that no apparent change in contact
is observed, in the contact map of Figs. 14–17.

A B C D E F G H

A * [−10,−6.5] [−10,−7] [−12,−9] [−12,−8] * [−16,−13] [−15,−14]
B [−10,−6.5] * [−10,−6.5] [−10,−7] [−10,−7] [−15,−12] [−16,−13] [−15,−12]
C [−10,−7] [−10,−6.5] * [−11,−6.5] [−10,−8] * * *
D [−12,−9] [−12,−6.5] [−11,−6.5] * [−10,−6.5] * * *
E [−12,−8] [−10,−7] [−10,−8] [−10,−6.5] * [−15,−12] * [−15,−13]
F * [−15,−12] * * [−15,−12] * [−8,−5.5] [−11,−8]&[−15,−13]
G [−16,−13] [−16,−13] * * * [−8,−5.5] * [−11,−6]
H [−15,−14] [−15,−12] * * [−15,−13] [−11,−8]&[−15,−13] [−11,−6] *
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cause a stepwise melting of the individual solitons, until the
backbone resembles a random chain.

Finally, we note that the present approach is not designed
to answer at atomic-level scrutiny, how the protein folding
proceeds. For a detailed investigation, in particular over short
time periods, the present approach can be combined with all-
atom molecular dynamics. We refer to Ref. [26], where such
a hybrid approach has been investigated.
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