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Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers:
Stationary and time-dependent aspects of a wire model versus an extended ladder model
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We employ two tight-binding (TB) approaches to systematically study the electronic structure and hole or
electron transfer in B-DNA monomer polymers and dimer polymers made up of N monomers (base pairs): (I)
at the base-pair level, using the onsite energies of base pairs and the hopping integrals between successive base
pairs, i.e., a wire model and (II) at the single-base level, using the onsite energies of the bases and the hopping
integrals between neighboring bases, i.e., an extended ladder model since we also include diagonal hoppings. We
solve a system of M (matrix dimension) coupled equations [(I) M = N , (II) M = 2N ] for the time-independent
problem, and a system of M coupled first order differential equations for the time-dependent problem. We
perform a comparative study of stationary and time-dependent aspects of the two TB variants, using realistic sets
of parameters. The studied properties include HOMO and LUMO eigenspectra, occupation probabilities, density
of states and HOMO-LUMO gaps as well as mean over time probabilities to find the carrier at each site [(I) base
pair or (II) base], Fourier spectra, which reflect the frequency content of charge transfer, and pure mean transfer
rates from a certain site to another. The two TB approaches give coherent, complementary aspects of electronic
properties and charge transfer in B-DNA monomer polymers and dimer polymers.
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I. INTRODUCTION

Today, remarkable parts of the physical, chemical, biologi-
cal, and medical communities as well as a broad spectrum of
other scientists and engineers are interested in charge transfer
(CT) in biological systems. CT is the basis of many biological
processes, e.g., in various proteins [1] including metallopro-
teins [2] and enzymes [3], with medical and bioengineering
applications [4,5]. CT plays a central role in DNA damage and
repair [6–8]. CT might also be an indicator to discriminate
between pathogenic and nonpathogenic mutations at an early
stage [9]. The influence of the oxidative damage of 7,8-
dihydro-8-oxoguanine on the charge transport characteristics
of short DNA segments has also been investigated [10].

DNA plays a key role in the development, function, and
reproduction of living organisms because the sequence of
its bases (adenine, guanine, thymine, cytosine) carries their
genetic code, hence, its study is usually associated with
molecular biology and genetics. However, its remarkable
properties have spurred in recent years the interest of a broad
interdisciplinary community. From the perspective of physics,
its electronic structure and its CT properties are studied with
the aim of understanding its biological functions as well as its
potential applications in nanotechnology (e.g., nanosensors,
nanocircuits, molecular wire).

At least for 20 years, we try to understand carrier movement
through DNA [11–21]. Today, we know that many external
factors related to the environment, like aqueousness and
presence of counterions, extraction process, contact quality
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with electrodes, purity, substrate, and so on, influence carrier
movement. This leads to the need of a deeper understanding of
endogenous factors affecting carrier movement in DNA, like
base-pair sequence and geometry. Maybe the most important
endogenous factor is the base-pair sequence, to which this
article is devoted, too.

Additionally, we have to discriminate between the words
transport (usually implying the use of electrodes), transfer,
and migration (a transfer over rather long distances). The car-
riers (electrons or holes) can be either inserted via electrodes
or generated by UV irradiation and by chemical reduction
or oxidation. Moreover, although unbiased charge transfer in
DNA nearly vanishes after 10 to 20 nm [22,23], DNA still
remains a promising candidate as an electronic component in
molecular electronics, e.g., as a short molecular wire [24].
Favoring geometries and base-pair sequences have still to be
explored, e.g., incorporation of sequences serving as molecular
rectifiers, using non-natural bases or using the triplet acceptor
anthraquinone for hole injection [25]. Structural fluctuations
could be another important factor which influences quantum
transport through DNA molecular wires [26–29]. Recently, a
tight-binding model for hole transport, in molecular assemblies
that involve a donor and an acceptor connected by fluorene and
phenyl bridges, was presented [30]. Fluctuations in the values
of transfer integral and energy landscape were calculated by
including variations of the dihedral angle between neighboring
units and the electrostatic interaction of the hole moving
along the bridge and the negative charge that remains on
the hole donor. The rapid fall of hole transfer rate for short
bridges was attributed to the electrostatic interaction, while
for longer bridges, charge transport was mostly attributed to
fluctuation-assisted incoherent hole migration. Furthermore,
recent work has been devoted to studying spin-selectivity
effects in DNA nanowires, by considering Hamiltonians with
terms coming from factors such as the lattice, the charge,
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the spin-orbit coupling, the metallic leads, dephasing, and
external fields [31–34]. Finally, the carrier transfer rate
through DNA can be manipulated by chemical modification
[35].

On the theoretical side, both ab initio calculations
[36–43] and model Hamiltonians [44–55] try to interpret the
diversity of experimental results and ascertain the underlying
CT mechanism. The former can provide a more detailed
description, but are currently limited to very short segments,
while the latter are much less detailed but allowing to address
systems of realistic length, grasping hopefully the underlying
physics [56–59]. Here, we study rather long B-DNA segments,
hence, we adopt the latter approach.

Specifically, we employ two tight-binding (TB) approaches.
TB I is very simple: it is an approach at the base-pair (bp) level.
We need the onsite energies of base pairs and the hopping
integrals between successive base pairs. In other words, TB
I is a wire model [60]. TB II is an approach at the single-
base (sb) level. We need the onsite energies of bases and the
hopping integrals between neighboring bases. We also include
diagonal hoppings, in that sense, TB II is an extended ladder
model [56]. The inclusion of diagonal hoppings is crucial in
some cases as will become evident below. With these two TB
models we study the electronic structure and hole or electron
transfer in B-DNA monomer polymers and dimer polymers.
This means that we call monomer a B-DNA base pair and study
polymers made of N monomers, with repetition unit one or
two monomers. To this end, we shall see below, we have to
solve a system of M (matrix dimension) coupled equations for
the time-independent problem, and a system of M coupled first
order differential equations for the time-dependent problem. In
TB I M = N , while in TB II M = 2N . In this article, we study
HOMO and LUMO eigenspectra and the relevant density of
states (DOS) as well as the mean over time probabilities to
find the carrier at each site, which is a base pair for TB I and a
base for TB II. We are also interested in the frequency content
of carrier movements, hence, we analyze the Fourier spectra,
too. The pure mean transfer rate from a certain site to another
describes the easiness of CT; it gives us a measure of how much
of the carrier is transferred and also of how fast this process is.
Our two TB approaches give coherent, complementary aspects
of electronic properties and charge transfer in these B-DNA
monomer polymers and dimer polymers.

The rest of the paper is organized as follows: In Sec. II,
we delineate the basic theory behind the time-independent
(Sec. II A) and the time-dependent (Sec. II B) problem. In
Sec. III, we discuss our results for eigenspectra and occupation
probabilities (Sec. III A), the density of states (Sec. III B),
the HOMO-LUMO gaps (Sec. III C), the mean over time
probabilities to find the carrier at each site (Sec. III D), the
CT frequency content (Sec. III E), and the pure mean transfer
rates (Sec. III F). In Sec. IV, we state our conclusions. In
Appendix A, we give a list of the hopping integrals used in
this work. In Appendix B, we show the results of our fits of
the pure mean transfer rates.

II. THEORY

Let us begin with some notations. We call monomer a
B-DNA base pair. We denote a system of two successive

monomers by YX, according to the convention

σ = 1 σ = 2
... 5′ 3′
μ Y Ycompl

μ + 1 X Xcompl
... 3′ 5′

(1)

for the B-DNA strands orientation. Xcompl (Ycompl) is the
complementary base of X (Y). The base pair X-Xcompl is
separated and twisted by 3.4 Å and 36◦, respectively, relatively
to the base pair Y-Ycompl, around the B-DNA growth axis. We
call μ the monomer index, with μ = 1,2, . . . ,N , and σ the
strand index (σ = 1 for the strand with 5′-3′ directionality,
σ = 2 for the strand with 3′-5′ directionality). Further, we
define the base index β(μ,σ ), β = 1,2, . . . ,2N , according to
the expression β = 2(μ − 1) + σ . Schematically,

μ σ β

1 1 1
1 2 2
2 1 3
2 2 4
...

...
...

.

In this work, we study all possible periodic B-DNA segments
of the form YXYX . . . , consisting of N monomers, i.e.,
monomer polymers and dimer polymers. There are three types
of such polymers: (type α′) poly(dG)-poly(dC), poly(dA)-
poly(dT), (type β ′) GCGC . . . , CGCG . . . , ATAT . . . ,
TATA . . . , and (type γ ′) ACAC . . . , CACA . . . , TCTC . . . ,
CTCT . . . , AGAG . . . , GAGA . . . , TGTG . . . , GTGT . . . .
We employ two tight-binding (TB) approaches to study the
electronic structure and single carrier transfer in such B-DNA
polymers, under the hypothesis that an extra hole or electron
travels through HOMOs or LUMOs, respectively. (I) Within
TB I (description at the base-pair level), we use the HOMO
or LUMO onsite energies of base pairs and the HOMO or
LUMO hopping integrals between successive base pairs. The
TB parameters for TB I are the same as in Refs. [22,23,61,62].
(II) Within TB II (description at the single-base level), we use
the HOMO or LUMO onsite energies of bases and the HOMO
or LUMO hopping integrals between (a) two successive bases
on the same strand, (b) complementary bases that constitute
a monomer, and (c) diagonally located bases of successive
monomers, in the directions 5′-5′ and 3′-3′. The TB parameters
for TB II are taken from Ref. [63]. For a list of all hopping
integrals used, cf. Appendix A, Table II.

The types of polymers considered in this article are the
simplest ones having specific common characteristics. The
intricacy of the energy structure, i.e., the number of different
TB parameters involved, increases from type α′ to type β ′ and
further to type γ ′ polymers. Specifically, for TB I, there are in
type α′ polymers, 2 (1 onsite energy and 1 hopping integral), in
type β ′ polymers, 3 (1 onsite energy and 2 hopping integrals),
and finally, in type γ ′ polymers, 4 (2 onsite energies and 2
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hopping integrals) different TB parameters. For TB II, there
are in type α′ polymers, 7 (2 onsite energies and 5 hopping
integrals), in type β ′ polymers, 9 (2 onsite energies and 7
hopping integrals), and finally, in type γ ′ polymers, 14 (4 onsite
energies and 10 hopping integrals) different TB parameters.

The choice of the values of the parameters used here for
TB I is discussed in Ref. [22], and for TB II in Ref. [63].
Other authors have also calculated TB parameters, e.g., the
reader could consult Refs. [64,65] or Refs. [22,23,61–63] and
references therein. In other words, within TB I, a monomer is
considered as a single site, characterized by the index μ, while,
within TB II, a base is considered as a single site, characterized
by the index β. Below, we use a generic site index j , j =
1,2, . . . ,M , where, j = μ and M = N , for TB I, while, j = β

and M = 2N , for TB II. M denotes the matrix dimension.

A. Stationary states: Time-independent problem

The HOMO-LUMO Hamiltonian of a given B-DNA seg-
ment can be written as

Ĥ =
M∑

j=1

Es(j )|j 〉〈j | +
⎛
⎝∑

〈j,j ′〉
t s(j,j ′)|j 〉〈j ′| + H.c.

⎞
⎠, (2)

where Es(j ) is the HOMO or LUMO onsite energy of the
j th site [base pair (bp) for TB I or base (b) for TB II], and
t s(j,j ′)(= t s(j ′,j )∗) is the HOMO or LUMO hopping integral
between the sites j and j ′. H.c. means Hermitian conjugate.
〈j,j ′〉 denotes summation over all relevant neighbors. The
neighboring sites which are taken into account for each TB
approach are described above. For TB I (wire model), the
Hamiltonian can be written as

ĤW =
N∑

μ=1

Ebp(μ)|μ〉〈μ|

+
⎛
⎝N−1∑

μ=1

tbp(μ,μ+1)|μ〉〈μ + 1| + H.c.

⎞
⎠. (3)

For TB II (extended ladder model), the Hamiltonian can be
written as

ĤEL =
M∑

β=1

Eb(β)|β〉〈β| +
⎛
⎝M−2∑

β=1

tb(β,β+2)|β〉〈β + 2| + H.c.

⎞
⎠

+
⎛
⎝ M−1∑

β=1,odd

tb(β,β+1)|β〉〈β + 1| + H.c.

⎞
⎠

+
⎛
⎝ M−3∑

β=1,odd

tb(β,β+3)|β〉〈β + 3| + H.c.

⎞
⎠

+
⎛
⎝ M−2∑

β=2,even

tb(β,β+1)|β〉〈β + 1| + H.c.

⎞
⎠, (4)

where the second term represents intrastrand, the third intra-
base-pair, the fourth interstrand 5′-5′, and the fifth interstrand
3′-3′ hoppings. In the context of TB, we suppose that
〈j |j ′〉 = δjj ′ .

The HOMO-LUMO state of the segment can be expressed
as

|DNA〉 =
M∑

j=1

vj |j 〉. (5)

Substituting Eqs. (2) and (5) to the time-independent
Schrödinger equation

Ĥ |DNA〉 = E|DNA〉, (6)

we arrive to a system of M coupled equations. Within TB I,
the system is of the form

Evμ = Ebp(μ)vμ + tbp(μ,μ+1)vμ+1 + tbp(μ,μ−1)vμ−1, (7)

for μ even or odd, while, within TB II, the system is of the form

Evβ = tb(β,β−2)vβ−2 + tb(β,β−1)vβ−1 + Eb(β)vβ

+ tb(β,β+1)vβ+1 + tb(β,β+2)vβ+2 + tb(β,β+3)vβ+3 (8a)

for β odd, i.e., for the bases of strand 1, and

Evβ = tb(β,β−3)vβ−3 + tb(β,β−2)vβ−2 + tb(β,β−1)vβ−1

+Eb(β)vβ + tb(β,β+1)vβ+1 + tb(β,β+2)vβ+2 (8b)

for β even, i.e., for the bases of strand 2. Equations (7) and (8)
are equivalent to the eigenvalue-eigenvector problem

H �v = E�v, (9)

where H is the Hamiltonian matrix of order M , composed
of the TB parameters Es and t s , and �v is the vector matrix
composed of the coefficients vj . For the segments studied in
this work, within TB I, H is either a tridiagonal symmetric
Toeplitz matrix of order N for type α′ polymers, or a
tridiagonal symmetric 2-Toeplitz matrix of order N for type
β ′ and type γ ′ polymers. Within TB II, for type β ′ and γ ′
polymers, H is a heptadiagonal 4-Toeplitz matrix of order
2N , or, seen another way, a tridiagonal block Toeplitz matrix
of order N

2 , with blocks of order 4, while, for type α′ polymers,
H is a heptadiagonal 2-Toeplitz matrix of order 2N , or, seen
another way, a tridiagonal block Toeplitz matrix of order N ,
with blocks of order 2. The diagonalization of H leads to the
determination of the HOMO or LUMO eigenenergy spectra
(eigenspectra) {Ek}, k = 1,2, . . . ,M , for which we suppose
that E1 < E2 < · · · < EM , as well as to the determination of
the occupation probabilities for each eigenstate |vjk|2, where
vjk is the j th component of the kth eigenvector. {vjk} are nor-
malized, and their linear independence is checked in all cases.

Having determined the eigenspectra, we can compute the
DOS, generally given by

g(E) =
M∑

k=1

δ(E − Ek). (10)

Changing the view of a B-DNA segment from one (e.g., top)
to the other (e.g., bottom) side of the growth axis, reflects the
Hamiltonian matrix H of the segment on its main antidiagonal.
This reflected Hamiltonian H equiv describes the equivalent
polymer. H and H equiv are connected by the similarity
transformation H equiv = P −1HP , where P (= P −1) is the unit
antidiagonal matrix of order M . Therefore, H and H equiv
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have identical eigenspectra (hence the equivalent polymers’
DOS is identical) and their eigenvectors are connected by
vjk = v

equiv
(M−j+1)k . For the types of B-DNA polymers studied

in this work,

equiv(YX. . . ) =
{

YcomplXcompl . . . , for odd N

XcomplYcompl . . . , for even N.
(11)

For example, for N odd, ACAC . . . ≡ TGTG . . . , while, for
N even, ACAC . . . ≡ GTGT . . . .

B. Time-dependent problem

To describe the spatiotemporal evolution of an extra carrier
(hole or electron), inserted or created (e.g., by oxidation or
reduction) in a B-DNA segment, we consider the HOMO-
LUMO state of the segment as

|DNA(t)〉 =
M∑

j=1

Cj (t)|j 〉, (12)

where |Cj (t)|2 is the probability of finding the carrier at the
j th site at time t . Substituting Eqs. (2) and (12) to the time-
dependent Schrödinger equation

Ĥ |DNA(t)| = ih̄
∂

∂t
|DNA(t)〉, (13)

we arrive at a system of M coupled differential equations of
first order. With TB I, the system is of the form

ih̄
dCμ

dt
= Ebp(μ)Cμ + tbp(μ,μ+1)Cμ+1 + tbp(μ,μ−1)Cμ−1,

(14)

for μ even or odd. With TB II, the system is of the form

ih̄
dCμ

dt
= tb(β,β−2)Cβ−2 + tb(β,β−1)Cβ−1 + Eb(β)Cβ

+tb(β,β+1)Cβ+1 + tb(β,β+2)Cβ+2 + tb(β,β+3)Cβ+3

(15a)

for β odd, and

ih̄
dCμ

dt
= tb(β,β−3)Cβ−3 + tb(β,β−2)Cβ−2 + tb(β,β−1)Cβ−1

+Eb(β)Cβ + tb(β,β+1)Cβ+1 + tb(β,β+2)Cβ+2

(15b)

for β even. Equations (14) and (15) are equivalent to a first
order matrix differential equation of the form

�̇C(t) = − i

h̄
H �C(t), (16)

where �C(t) is a vector matrix composed of the coefficients
Cj (t), j = 1,2, . . . ,M . Equation (16) can be solved with the
eigenvalue method, i.e., by looking for solutions of the form
�C(t) = �ve− i

h̄
Et ⇒ �̇C(t) = − i

h̄
E�ve− i

h̄
Et . Hence, Eq. (16) leads

to the eigenvalue problem of Eq. (9), that is, H �v = E�v. Having
determined the eigenvalues and eigenvectors of H , the general
solution of Eq. (16) is

�C(t) =
M∑

k=1

ck �vke
− i

h̄
Ekt , (17)

where the coefficients ck are determined from the initial
conditions. In particular, if we define the M × M eigenvector
matrix V , with elements vjk , then it can be shown that
the vector matrix �c, composed of the coefficients ck, k =
1,2, . . . ,M , is given by the expression

�c = V T �C(0). (18)

Suppose that the extra carrier is placed at the lth site, that is,
Cl(0) = 1, Cj (0) = 0, ∀ j �= l. Then,

�c =

⎡
⎢⎢⎢⎢⎢⎢⎣

vl1
...

vlk

...
vlM

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

In other words, the coefficients ck are given by the row of the
eigenvector matrix which corresponds to the site the carrier
is initially placed at. In this work, within TB I, we choose
l = 1, i.e., we initially place the extra carrier at the first
monomer (initial condition) and, within TB II, we choose
either l = 1 (initial condition 1) or l = 2 (initial condition 2),
i.e., we initially place the extra carrier at each base of the first
monomer.

From Eq. (17) it follows that the probability to find the extra
carrier at the j th site of a B-DNA segment is

|Cj (t)|2 =
M∑

k=1

c2
kv

2
jk

+ 2
M∑

k=1

M∑
k′ = 1
k′ < k

ckck′vjkvjk′ cos(2πfkk′ t), (20)

where

fkk′ = 1

Tkk′
= Ek − Ek′

h
, ∀ k > k′ (21)

are the frequencies (fkk′) or periods (Tkk′) involved in charge
transfer. If m is the number of discrete eigenenergies, then,
the number of fkk′ or Tkk′ involved in CT is S = (

m

2

) =
m!

2!(m−2)! = m(m−1)
2 . If the there are no degenerate eigenenergies

(which holds for all cases studied here, but, e.g., does not
hold in TB I for cyclic type α′ polymers [23]), then m = M .
If the eigenenergies are symmetric relative to some central
value, then, S decreases (there exist degenerate fkk′ or Tkk′).
Specifically, in that case, S = m2

4 , for even m and S = m2−1
4

for odd m.
From Eq. (20) it follows that the mean over time probability

to find the extra carrier at the j th site is

〈|Cj (t)|2〉 =
M∑

k=1

c2
kv

2
jk. (22)

Furthermore, from Eq. (20) it can be shown that the
one-sided Fourier amplitude spectrum that corresponds to the
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TABLE I. On-site HOMO and LUMO energies of B-DNA bases
and base pairs [63]. All energies are given in eV.

Base Adenine Thymine Guanine Cytosine

Eb
H −8.3 −9.0 −8.0 −8.8

Eb
L −4.4 −4.9 −4.5 −4.3

Eg 3.9 4.1 3.5 4.5

Base pair A-T G-C

E
bp
H −8.3 −8.0

E
bp
L −4.9 −4.5

Eg 3.4 3.5

probability |Cj (t)|2 is given by

|Fj (f )| =
M∑

k=1

c2
kv

2
jkδ(f )

+ 2
M∑

k=1

M∑
k′ = 1
k′ < k

|ckck′vjkvjk′ |δ(f − fkk′). (23)

A quantity that can be defined to estimate the transfer rate,
i.e., simultaneously, the magnitude of charge transfer and the
time scale of the phenomenon, is the pure mean transfer rate

kj ′j = 〈|Cj (t)|2〉
tj ′j

. (24)

tj ′j is the mean transfer time, i.e., having placed the carrier
initially at site j ′, the time it takes for the probability to find
the extra carrier at site j , |Cj (t)|2, to become equal to its mean
value, 〈|Cj (t)|2〉, for the first time. For the pure mean transfer
rates it holds

kj ′j = kjj ′ = k
equiv
(M−j ′+1)(M−j+1) = k

equiv
(M−j+1)(M−j ′+1). (25)

III. RESULTS

A. Eigenspectra and occupation probabilities

Let us start by saying that within TB II (TB I), we
take the HOMO or LUMO eigenenergies of bases (base
pairs) as the onsite energy of a hole or an electron on a
base (base pair). Using the HOMO or LUMO energies of
the bases that constitute a base pair, we can estimate the
HOMO or LUMO energy of the base pair [63]. Specifically,
supposing that |ψbp〉 = C1|ψb1〉 + C2|ψb2〉, and taking the
time-independent Schrödinger equation Ĥ |ψbp〉 = E|ψbp〉 we
find that the base-pair eigenenergies are E1,2 = Eb1+Eb2

2 ±√
(Eb1−Eb2

2 )2 + t2, where Eb1 and Eb2 are the onsite energies of

the bases and t = 〈ψb1|Ĥ |ψb2〉 is the intra-base-pair hopping
integral, i.e., between the two bases that constitute a base
pair. However, due to the weak hydrogen bonding between the
bases that constitute a base pair, t is very small [63], of the
order of 10 meV (cf. Appendix A). As a result, practically,
E1,2 ≈ Eb1,Eb2 (with accuracy of 1 meV). Hence, we make
the following Observation: Approximately, the HOMO of the
base pair is the highest HOMO of the two bases and the LUMO
of the base pair is the lowest LUMO of the two bases. This

FIG. 1. An example of type α′ polymers: LUMO (first row) and
HOMO (second row) eigenspectra of poly(dA)-poly(dT), for wire
model (TB I, first column) and extended ladder model (TB II, second
column).

is expressed in Table I, where we show all energies in eV
with accuracy of 0.1 eV. Our numerical results for type α′,
β ′, and γ ′ polymers (cf. Figs. 1, 2, and 3) indicate that, as,
increasing N , a polymer is formed, the energy eigenvalues are
distributed around the onsite energies of the base pairs within
TB I or the bases within TB II. Hence, the HOMO (LUMO)
eigenspectrum of a given polymer within TB I corresponds
to the upper (lower) part of its eigenspectrum within TB II.
A list of all hopping integrals used in this article is shown in
Appendix A, in Table II.

1. Type α′ polymers

For TB I, an analytical expression for the eigenvalues of
type α′ polymers exists [23]. All eigenvalues are symmetric

FIG. 2. An example of type β ′ polymers: LUMO (first row) and
HOMO (second row) eigenspectra of GCGC . . . , for wire model
(TB I, first column) and extended ladder model (TB II, second
column).
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FIG. 3. An example of type γ ′ polymers: LUMO (first row) and
HOMO (second row) eigenspectra of TCTC . . . , for wire model
(TB I, first column) and extended ladder model (TB II, second
column).

around the onsite energy Ebp of the monomers and lie in
the interval [Ebp − 2|tbp|,Ebp + 2|tbp|]. For odd N , the trivial
eigenvalue E = Ebp exists. In the left column of Fig. 1 we
present the calculated HOMO and LUMO eigenspectra for
an example of type α′ polymers, poly(dA)-poly(dT). For
TB I, an analytical expression can also be found for the
eigenvectors [23]. The eigenvectors (hence, the occupation
probabilities, too) are eigenspectrum independent [23], i.e.,
they do not depend on the TB parameters Ebp,tbp. Furthermore,
the occupation probabilities display palindromicity [23], i.e.,
the occupation probability of each eigenstate of the μth
monomer is equal to that of the (N − μ + 1)th monomer
(|vμk|2 = |v(N−μ+1)k|2).

For TB II, up to our knowledge, there are no analytical
expressions for eigenvalues and eigenvectors. As an example
of type α′ polymers, we show, in the right column of
Fig. 1, the calculated HOMO and LUMO eigenspectra of
poly(dA)-poly(dT). The eigenvalues are distributed in two
subbands of different width, around the onsite energies of the
bases. Furthermore, in accordance with the Observation, the
upper (lower) subband of the HOMO (LUMO) eigenspectrum
corresponds to the band calculated with TB I. For TB II, our
numerical results for the eigenvectors indicate that, for β odd
(strand 1), |vβk|2 ≈ |v(2N−β)k|2, while, for β even (strand 2),
|vβk|2 ≈ |v(2N−β+2)k|2, i.e., the occupation probabilities of the
eigenstates display approximate strand palindromicity. For
HOMO poly(dG)-poly(dC), a case where, according to the
parameters here [63], the hopping integrals between diagonally
located bases of successive monomers in the 3′-3′ and 5′-5′
directions are equal, strand palindromicity is strict. This also
holds for all type α′ polymers, if our extended ladder model is
reduced to a simple ladder model by neglecting 3′-3′ and 5′-5′
interstrand interactions.

2. Type β ′ polymers

As far as equivalent polymers are concerned, for N

even, reflection of the Hamiltonian matrix H on its main

antidiagonal leads to the same polymers, while for N odd,
GCGC . . . ≡ CGCG . . . , ATAT . . . ≡ TATA . . . .

For TB I, analytical expressions for the eigenvalues
of type β ′ polymers with N odd exist [23]. For N odd
the eigenvalues can be expressed explicitly in terms of
Chebyshev zeros [66]. All eigenvalues are symmetric around
the onsite energy of the monomers Ebp, and the trivial
eigenvalue Ebp exists. The eigenvalues lie in the interval

[Ebp −
√

t2
1 + t2

2 + 2|t1t2|, Ebp +
√

t2
1 + t2

2 + 2|t1t2|], where
t1,t2 are the two different hopping integrals, e.g., moving from
the beginning to the end of the polymer, from-odd-to-even μ

and from-even-to-odd μ, respectively. For N even, there is no
explicit formula, although a recipe to produce the eigenvalues
exists [66]. Our numerical results show that all eigenvalues are
symmetric around the onsite energy Ebp of the monomers, and
lie in the same interval as for N odd. The calculated HOMO
(LUMO) eigenspectrum for an example of type β ′ polymers
(GCGC . . . ), displaying all the above mentioned properties, is
shown in the left column of Fig. 2.

For TB I and N odd, analytical expressions for the eigen-
vectors exist [67]. These eigenvectors (hence, the occupation
probabilities, too) are partially eigenspectrum dependent [23],
i.e., they depend on t1,t2 but not on Ebp. Furthermore, for
μ even, the occupation probability of each eigenstate of the
μth monomer is equal to that of the (N − μ + 1)th monomer
(|vμk|2 = |v(N−μ+1)k|2), i.e., for N odd, the occupation prob-
abilities of type β ′ polymers display partial palindromic-
ity [23]. Finally, for N odd, equivalence leads to the property
|vμk|2(YX. . .) = |v(N−μ+1)k|2(XY. . .). For N even, we are
aware of no analytical expressions for the eigenvectors, but
our numerical results show that the occupation probabilities
display palindromicity [23], i.e., for each eigenstate, the
occupation probability of the μth monomer is equal to that
of the (N − μ + 1)th monomer (|vμk|2 = |v(N−μ+1)k|2).

For TB II, up to our knowledge, there are no analytical
expressions for eigenvalues and eigenvectors. As an example
of type β ′ polymers, we show in the right column of
Fig. 2 the calculated HOMO and LUMO eigenspectra for
GCGC . . . . The eigenvalues are distributed in two subbands
of different width, around the onsite energies of the bases.
Moreover, in accordance with the Observation, the upper
(lower) subband of the HOMO (LUMO) eigenspectrum
corresponds to the band calculated within TB I. For the
TB II eigenvectors, for N odd, equivalence leads to the
property |vβk|2(YX. . .) = |v(2N−β+1)k|2(XY. . .), while for N

even, |vβk|2 = |v(2N−β+1)k|2. In other words, the occupation
probabilities of the eigenstates display base palindromicity.

3. Type γ ′ polymers

Here, the equivalent polymers are for N odd,
ACAC . . . ≡ TGTG . . . , CACA . . . ≡ GTGT . . . ,
CTCT . . . ≡ GAGA . . . , TCTC . . . ≡ AGAG . . . , and for
N even, ACAC . . . ≡ GTGT . . . , CACA . . . ≡ TGTG . . . ,
CTCT . . . ≡ AGAG . . . , TCTC . . . ≡ GAGA . . . .

For TB I, analytical expressions for the eigenvalues
with N odd exist [23]. Let us call E

bp
o(e) the onsite en-

ergy of monomers with μ odd (even), 
 = (Ebp
o + E

bp
e )/2

and � = (Ebp
o − E

bp
e )/2. Then, the eigenvalues include
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FIG. 4. DOS for an example of type α′ polymers, poly(dG)-
poly(dC) (N = 105, HOMO), for the base-pair (TB I, top) and the
single-base (TB II, bottom) approaches.

E
bp
o , while the rest eigenvalues lie in the interval [
 −√
�2 + t2

1 + t2
2 + 2|t1t2|,
 +

√
�2 + t2

1 + t2
2 + 2|t1t2|]. For

N even, there is no explicit formula, although a recipe to
produce the eigenvalues exists [66]. Our numerical results
show that all eigenvalues are symmetric around 
, and lie
in the same interval as for N odd. The calculated HOMO
(LUMO) eigenspectrum for an example of type γ ′ polymers
(TCTC . . . ), displaying all the above mentioned properties,
is shown in the left column of Fig. 3. For TB I and for
N odd, analytical expressions can also be found for the
eigenvectors [68]. The eigenvectors (hence, the occupation
probabilities, too) are eigenspectrum dependent [23], i.e., they
depend on E

bp
1 ,E

bp
2 ,t1, t2. Furthermore, for μ even, the occupa-

tion probability of each eigenstate of the μth monomer is equal
to that of the (N − μ + 1)th monomer (|vμk|2 = |v(N−μ+1)k|2),
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FIG. 5. DOS for an example of type β ′ polymers, CGCG . . .
(N = 105, LUMO), for the base-pair (TB I, top) and the single-base
(TB II, bottom) approaches.
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FIG. 6. DOS for an example of type γ ′ polymers,
CTCT . . . ≡ AGAG . . . (N = 105, HOMO) for the base-pair
(TB I, top) and the single-base (TB II, bottom) approaches.

i.e., for N odd, the occupation probabilities of type γ ′ poly-
mers display partial palindromicity. For N odd, equivalence
leads to |vμk|2(YX. . .) = |v(N−μ+1)k|2(YcomplXcompl . . . ). For
N even, up to our knowledge, no analytical expres-
sions for the eigenvectors exist, but equivalence leads
to |vμk|2(YX. . .) = |v(N−μ+1)k|2(XcomplYcompl . . . ). Our nu-
merical results show that, for all μ, |vμk|2(YX. . .) =
|vμ(N−k+1)|2(XcomplYcompl . . . ).

For TB II, there are no analytical expressions in the
literature for eigenvalues and eigenvectors, as far as we
know. The calculated HOMO and LUMO eigenspectra for
an example of type γ ′ polymers (TCTC . . . ) are demonstrated
in the right column of Fig. 3. The eigenvalues are distributed in
four subbands of different width, around the onsite energies of

FIG. 7. HOMO-LUMO gaps of type α′, β ′, and γ ′ polymers, for
the base-pair (TB I, blue dots) and the single-base (TB II, purple
squares) approaches. The horizontal lines denote the HOMO-LUMO
gaps of the two possible monomers.
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FIG. 8. Type α′ polymers. TB I and initial condition (extra carrier
initially at the first base pair). Mean over time probabilities to find
an extra hole (HOMO) or electron (LUMO) at each base pair. Here
N = 12.

the bases. Moreover, in accordance with the Observation, the
two upper (lower) TB II subbands of the HOMO (LUMO)
eigenspectrum correspond to the bands calculated with
TB I. For the TB II eigenvectors, equivalence leads to the prop-
erties |vβk|2(YX. . .) = |v(2N−β+1)k|2(YcomplXcompl . . . ), for N

odd, and |vβk|2(YX. . .) = |v(2N−β+1)k|2(XcomplYcompl . . . ), for
N even. Our numerical results indicate that there are no
palindromic properties.

B. Density of states

For TB I or TB II, the DOS can be determined directly
by the eigenspectra [cf. Eq. (10)]. It represents nicely the
corresponding eigenspectral properties (cf. Sec. III A). In
Figs. 4, 5, and 6, we illustrate the numerically determined
DOS for some representative examples of type α′, β ′, and γ ′
polymers, respectively, for N = 105, i.e., in the large N limit.
We observe that, due to the fact that the eigenenergies become
denser and denser as we approach the band or subband edges,
van Hove singularities (vHS) occur at the edges of each band or

subband. We also notice that, in the large N limit, the polymer
boundaries play an insignificant role in the electronic structure,
hence, for the same set of TB parameters, the polymers’ DOS
is essentially the same. For example, in the large N limit, either
GCGC . . . or CGCG . . . , for either N odd or N even, have
practically the same DOS. In some simpler cases, the DOS can
be analytically obtained. For example, for type α′ polymers,
within TB I, in the large N limit and using periodic boundaries,
i.e., for cyclic type α′ polymers [23],

g(E) = N

π
√

4(tbp)2 − (E − Ebp)2
. (26)

For TB I, the numerically derived DOS for type α′ polymers
(cf. Fig. 4) is in accordance with Eq. (26), because in the large
N limit the boundary conditions play an insignificant role. In
Fig. 4, for TB I, there is no minigap, but for TB II there is a
minigap of ≈ 0.545 eV; in accordance with the Observation,
the upper subband of the HOMO band calculated with TB II
corresponds to the HOMO band calculated with TB I. The
minigap is mainly due to the different HOMO onsite energies
of the two bases (−8.0 eV for G, −8.8 eV for C) [63].

A DOS example in type β ′ polymers is shown in Fig. 5. For
TB I, there is a small (≈0.004 eV) minigap. For TB II, there is
a minigap of ≈ 0.200 eV; in accordance with the Observation,
the lower subband of the LUMO band calculated with TB
II corresponds to the LUMO band calculated with TB I. For
TB II, there are two additional small (≈0.003 eV, 0.001 eV)
minigaps, hardly noticeable at this scale. The italicized TB
II minigap corresponds to the TB I minigap, also italicized.
For TB II, apart from the vHSs at the subband edges, there is
an additional singularity inside the second subband, which is
hardly seen at this scale and an additional singularity inside
the third subband, which is almost invisible at this scale.

A DOS example in type γ ′ polymers is shown in Fig. 6.
For TB I, there is a minigap a little greater than 0.340 eV,
mainly due to the different HOMO onsite energies of the two
base pairs (−8.0 eV for G-C, −8.3 eV for A-T) [63]. For
TB II, four minibands are formed approximately around the

FIG. 9. Type α′ polymers. TB II and either initial condition 1 (left) or initial condition 2 (right), i.e., extra carrier initially at the first or the
second base of the first base pair, respectively. Mean over time probabilities to find an extra hole (HOMO) or electron (LUMO) at each base.
Here N = 12.
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FIG. 10. Type β ′ polymers. TB I and initial condition (extra carrier initially at the first base pair). Mean over time probabilities to find an
extra hole (HOMO) or electron (LUMO) at each base pair. N even (here N = 12, left) or N odd (here N = 13, right).

HOMO onsite energies of the four bases (−9.0 eV for T,
−8.8 eV for C, −8.3 eV for A, and −8.0 eV for G) [63],
with three relevant minigaps (0.205 eV, 0.362 eV, 0.334 eV).
Two of these minibands are very narrow. In accordance with
the Observation, the higher two subbands of the HOMO
band calculated with TB II correspond to the HOMO band
calculated with TB I. The italicized TB II minigap corresponds
to the TB I minigap, also italicized.

C. HOMO-LUMO gaps

In Fig. 7, we present the HOMO-LUMO energy gaps, in the
large N limit, for all types of polymers. Both TB approaches

predict similar gaps, in the range ≈ 3.04–3.42 eV. For TB I, the
HOMO-LUMO gaps can also be derived analytically, from the
maxima and minima of the HOMO and LUMO eigenspectra,
respectively (cf. Sec. III A). We also compare the polymer
gaps with the two possible monomer gaps. The decrease of the
energy gap, as we move from monomer to polymer, is larger
for type γ ′ polymers.

D. Mean over time probabilities

Within TB I, from Eq. (20) and the initial condition (carrier
initially placed at the first monomer), it follows that the mean
over time probability to find the extra carrier at the μth

FIG. 11. Type β ′ polymers. TB II and either initial condition 1 (left) or initial condition 2 (right), i.e., extra carrier initially at the first or
the second base of the first base pair, respectively. Mean over time probabilities to find an extra hole (HOMO) or electron (LUMO) at each
base. N even (upper panels, here N = 12) or N odd (lower panels, here N = 13).
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FIG. 12. Type γ ′ polymers. TB I and initial condition (extra carrier initially at the first base pair). Mean over time probabilities to find an
extra hole (HOMO) or electron (LUMO) at each base pair. N even (here N = 12, left) or N odd (here N = 13, right).

monomer is

〈|Cμ(t)|2〉 =
N∑

k=1

v2
1kv

2
μk. (27)

Within TB II, from Eq. (20) and the initial condition 1 (carrier
initially placed at the first base) or the initial condition 2
(carrier initially placed at the second base), it follows that

the mean probability to find the extra carrier at the βth base is

〈|Cβ(t)|2〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2N∑
k=1

v2
1kv

2
βk, for initial condition 1

2N∑
k=1

v2
2kv

2
βk, for initial condition 2

. (28)

From Eqs. (27) and (28), we conclude that the palin-
dromicity and eigenspectrum (in)dependence properties

FIG. 13. Type γ ′ polymers. TB II and either initial condition 1 (left) or initial condition 2 (right), i.e., extra carrier initially at the first or
the second base of the first base pair, respectively. Mean over time probabilities to find an extra hole (HOMO) or electron (LUMO) at each
base. N even (upper panels, here N = 12) or N odd (lower panels, here N = 13).
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for the occupation probabilities, presented in Sec. III A,
hold also for the mean over time probabilities. Finally,
for equivalent polymers it can be shown that in TB
I 〈|CN (t)|2〉YX. . . = 〈|CN (t)|2〉equiv(YX. . . ), while in TB II
〈|C2N (t)|2〉YX. . . = 〈|C2N (t)|2〉equiv(YXYX. . . ) (for initial condi-
tion 1) and 〈|C2N−1(t)|2〉YXYX. . . = 〈|C2N−1(t)|2〉equiv(YXYX. . . )

(for initial condition 2).

1. Type α′ polymers

In Figs. 8 and 9, we show an example (for N = 12) of our
numerical results for the mean over time probabilities to find
an extra hole or electron at (I) each base pair according to TB I
and the initial condition (Fig. 8), and (II) each base according
to TB II and the initial condition 1 or the initial condition 2
(Fig. 9), for type α′ polymers.

For TB I, the mean over time probabilities to find the carrier
at a specific monomer display palindromicity and eigenspec-
trum independence [23]. Specifically, it can analytically be
shown that

〈|C1(t)|2〉 = 〈|CN (t)|2〉 = 3

2(N + 1)
, ∀ N � 2 (29a)

〈|C2(t)|2〉 = · · · = 〈|CN−1(t)|2〉 = 1

N + 1
, ∀ N � 3.

(29b)

For TB II, the mean over time probabilities to find the carrier
at a specific base display approximate strand-palindromicity.
Moreover, adding the mean probabilities of the bases that
constitute each monomer, it follows that the mean probabilities
to find the carrier at a specific monomer are approximately
palindromes and almost identically equal, for all cases, to the
mean probabilities within TB I, which are strictly palindromes
[cf. Eq. (29)]. This quantitative agreement suggests that the
eigenspectrum independence predicted within the simpler TB I
approach leads to essentially the same results as those derived
by the more complicated TB II approach. In Fig. 9, we observe
that, within TB II, the carrier moves almost exclusively through
the strand it was initially placed at, i.e., carrier movement is
mainly of intrastrand character. Furthermore, within TB II, our
results for the two initial conditions are in complete agreement.

2. Type β ′ polymers

In Figs. 10 and 11 we present examples of our numerical
results for type β ′ polymers, for the mean over time proba-
bilities to find an extra hole or electron (I) at each base pair
according to TB I and the initial condition (Fig. 10), and (II)
at each base according to TB II and the initial condition 1 or
the initial condition 2 (Fig. 11).

For TB I, the mean probabilities to find the carrier
at a specific monomer display [23] partial eigenspectrum
dependence (i.e., dependence on the hopping parameters but
not on the onsite energy), partial palindromicity (i.e., only for
even μ) for N odd and palindromicity (i.e., for all μ) for N

even.
For TB II, for N even, the mean probabilities to find

the carrier at a specific base display base-palindromicity.
Moreover, adding the mean probabilities of the bases that
constitute each base pair, the mean probabilities to find the

carrier at a specific base pair are palindromes, in accordance
with the prediction of TB I. In Fig. 11, we observe that within
TB II, the carrier moves preferably through the bases that
are identical with the one it was initially placed at, in other
words it moves crosswise through identical bases, i.e., carrier
movement is mainly of interstrand character.

For N odd, both TB approaches show that there are some
cases, in which the carrier hardly moves from its initial site.
If we add or subtract a monomer, i.e., for N even, both
TB approaches show that a large percentage of the carrier
is transferred at the end monomer. Furthermore, both TB
approaches show that the mean probability to find the carrier
at the last monomer is generally bigger for N even than for N

odd.

3. Type γ ′ polymers

In Figs. 12 and 13, we present examples of our numerical
results for the mean over time probabilities to find an extra
hole or electron (I) at each base pair according to TB I and
the initial condition (Fig. 12), and (II) at each base according
to TB II and the initial condition 1 or the initial condition 2
(Fig. 13), for type γ ′ polymers.

In TB I, given that for all μ, |vμk|2(YX. . .) =
|vμ(N−k+1)|2(XcomplYcompl . . . ), Eq. (27) leads to identical
mean probabilities for (i) TCTC . . . and GAGA . . . , (ii)
CTCT . . . and AGAG . . . , (iii) ACAC . . . and GTGT . . . , and
(iv) CACA . . . and TGTG . . . .

In Fig. 12, we observe that within TB I, the carrier moves
preferably through the monomers that are identical with the
one it was initially placed at, i.e., from the first monomer to the
third, and so forth. Within TB II, the carrier moves preferably
through the bases that are identical with the one it was initially
placed at, i.e., it moves through the same strand from the one
or the other base of the first monomer to the identical base
of the third monomer, and so forth, i.e., carrier movement is
mainly of intrastrand character.

Both TB approaches show that the mean probability to find
the carrier at the last monomer is generally bigger for N odd
than for N even (cf. Figs. 12 and 13).

E. Charge transfer frequency content

For TB I, for type α′ and β ′ polymers, all eigenvalues are
symmetric around the onsite energy of the base pairs. Hence,
the total number of frequencies involved in charge transfer is
N2−1

4 for N odd and N2

4 for N even. For type γ ′ polymers

with N even, the eigenvalues are symmetric around E
bp
1 +E

bp
2

2 ,

hence, the total number of frequencies is N2

4 , too. For type

γ ′ polymers with N odd, the eigenvalues include E
bp
1 and the

total number of frequencies is (N−1)(N+3)
4 . For TB II, there are

no symmetries like those mentioned for TB I, hence, the total
number of frequencies for all types of polymers (α′, β ′, γ ′) is
N (2N − 1). From Eq. (23) it follows that all the palindromicity
and equivalence properties presented in Sec. III D for the mean
over time probabilities 〈|Cj (t)|2〉 hold for the Fourier spectra
|Fj (f )| too. In the following subsections, we focus on the
Fourier spectra that correspond to charge transfer from the
first to the last monomer, i.e., on |F1(f )| and |FN (f )| for
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FIG. 14. Type α′ polymers, here poly(dA)-poly(dT), N = 20. TB
I and initial condition (extra carrier initially at the first base pair). Hole
transfer Fourier spectra at the first and the last monomer.

TB I, and on |F1(f )|, |F2(f )|, |F2N−1(f )|, and |F2N (f )| for
TB II. Both TB approaches show that the frequency content is
mainly in the THz domain (cf. Figs. 14–19).

1. Type α′ polymers

Within TB I the main frequencies are in the range ≈ 0.3–
97 THz. Within TB II, they are in the range ≈ 0.1–110 THz.
The main frequency content is between far-infrared (FIR) and
mid-infrared (MIR). As an example, we show in Fig. 14 (TB I
and initial condition) and Fig. 17 (TB II and initial condition
1 or initial condition 2), the Fourier spectra, at the first and
the last monomer, of an extra hole in poly(dA)-poly(dT) with
N = 20. In Fig. 14, we observe that the Fourier amplitudes for
the first and the last monomer are equal, mirroring the efficient
hole transfer in poly(dA)-poly(dT), (cf. also Fig. 8). Inspection
of Fig. 17 leads to the same conclusion. Additionally, Fig. 17
underlines the intrastrand character of carrier transfer and
shows that initial conditions 1 and 2 lead to similar form of
Fourier spectra.

FIG. 15. Type β ′ polymers, here ATAT . . . , N = 14. TB I and
initial condition (extra carrier initially at the first base pair). Electron
transfer Fourier spectra at the first and the last monomer.

FIG. 16. Type γ ′ polymers, here TCTC . . . , N = 21. TB I and
initial condition (extra carrier initially at the first base pair). Hole
transfer Fourier spectra at the first and the last monomer.

2. Type β ′ polymers

Within TB I, the main frequencies are in the range ≈ 0.01–
40 THz, i.e., between microwaves (MW) and MIR. Within
TB II, they are in the range ≈ 0.01–210 THz, i.e., between
the MW and near-infrared (NIR). As an example, we show in
Figs. 15 (TB I and initial condition) and 18 (TB II and initial
condition 1 or initial condition 2) the Fourier spectra, at the first
and the last monomer, of an extra electron in ATAT . . . with
N = 14. In Fig. 15, we observe that the Fourier amplitudes
for the first and the last monomer are approximately equal,
mirroring the finally large electron transfer in ATAT . . . for N

even (cf. also Fig. 10). However, this large transfer is very slow,
its main frequency is very small but with a large amplitude.
The same conclusions can be drawn from Fig. 18, where we
can additionally observe the interstrand character of charge
transfer and that initial conditions 1 and 2 lead to similar form
of Fourier spectra.

3. Type γ ′ polymers

Within TB I, the main frequencies are in the range ≈ 0.4
GHz–40 THz, i.e., between radiowaves (RW) and MIR. Within
TB II, they are in the range ≈ 0.02–190 THz, i.e., between
MW and FIR. As an example, we show in Figs. 16 (TB I
and initial condition) and 19 (TB II and initial condition 1
or initial condition 2) the Fourier spectra, at the first and the
last monomer, of an extra hole in TCTC . . . with N = 21. In
Fig. 16, we observe that the Fourier amplitudes for the first
monomer are much larger than the ones for the last monomer,
mirroring the inefficient hole transfer in TCTC . . . for N odd
(cf. also Fig. 12). In Fig. 19, we can additionally observe
the intrastrand character of charge transfer and that initial
conditions 1 and 2 lead to somehow different form of Fourier
spectra, initial condition 1 being more efficient than initial
condition 2 for hole transfer (cf. also Figs. 12 and 13).

F. Pure mean transfer rates

In the following, we focus on pure mean transfer rates
between the first and the last monomer, either within TB I or
within TB II.
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FIG. 17. Type α′ polymers, here poly(dA)-poly(dT), N = 20. TB II and either initial condition 1 (left) or initial condition 2 (right). Hole
transfer Fourier spectra at the first and the last monomer.

FIG. 18. Type β ′ polymers, here ATAT . . . , N = 14. TB II and either initial condition 1 (left) or initial condition 2 (right). Electron transfer
Fourier spectra at the first and the last monomer.

FIG. 19. Type γ ′ polymers, here TCTC . . . , N = 21. TB II and either initial condition 1 (left) or initial condition 2 (right). Hole transfer
Fourier spectra at the first and the last monomer.
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FIG. 20. Type α′ polymers, here poly(dG)-poly(dC). Hole pure mean transfer rates (I) k1,N for TB I (left), and (II) k1,2, k2N−1,2N , k1,2N−1,
k2,2N , k1,2N , and k2,2N−1 for TB II (right).

1. Type α′ polymers

As a characteristic example, we present in Fig. 20 the
hole pure mean transfer rates for poly(dG)-poly(dC), from
the first to the last monomer, either within TB I or within
TB II. Specifically, (I) for TB I we illustrate k1,N on the
left panel, and (II) for TB II we illustrate the pairs k1,2 =
k2N−1,2N [cf. Eq. (25)], k1,2N−1 and k2,2N , k1,2N and k2,2N−1,
on the right panel. We have already noticed in Sec. III D 1
that, within TB II, carrier transfer is almost exclusively of
intrastrand character. Hence, within TB II, k1,2N−1 ≈ k2,2N

are the largest transfer rates. Comparing k1,N for TB I
with k1,2N−1 ≈ k2,2N for TB II, we observe an excellent
agreement, both qualitatively and quantitatively. Within TB
II, the intra-base-pair rates k1,2 = k2N−1,2N are small and the
interstrand rates k1,2N ≈ k2,2N−1 insignificant. Increasing N ,
the intrastrand transfer rates k1,2N−1 ≈ k2,2N decrease reaching
gradually the level of the intra-base-pair rates k1,2 = k2N−1,2N ,
at which point, finally, charge transfer along the polymer is
insignificant. Increasing N , the insignificant interstrand rates
k1,2N ≈ k2,2N−1 also gradually decrease further.

2. Type β ′ polymers

We have already mentioned (cf. Secs. III D 2 and III E 2)
that both TB approaches predict that for some cases of type
β ′ polymers, for N even, the carrier is transferred at a large
percentage to the last monomer but the transfer is very slow.
Such a case is presented in Fig. 21. Specifically, we show
the electron pure mean transfer rates for ATAT . . . , from the
first to the last monomer, either within TB I or within TB II.
(I) for TB I, we illustrate k1,N (left), and (II) for TB II, we
illustrate the largest transfer rates (right). We have already
demonstrated in Sec. III D 2 that, within TB II, the extra
carrier is transferred almost exclusively crosswise, through
identical bases. Hence, for TB II, the largest transfer rates
are k1,2N−1 and k2,2N for N odd, and k1,2N and k2,2N−1 for
N even. In other cases of type β ′ polymers, the pure mean
transfer rates fall over N in a different manner, somehow
similar to the behavior of type γ ′ polymers, which is shown in
Sec. III F 3.

3. Type γ ′ polymers

As a characteristic example, we present in Fig. 22 the hole
pure mean transfer rates for TCTC . . . , from the first to the last
monomer, either within TB I or within TB II. Specifically, (I)
for TB I we illustrate k1,N on the left panel, and (II) for TB II
we illustrate k1,2N−1 and k2,2N on the right panel. We have
already mentioned in Sec. III D 3 that, within TB II, the extra
carrier is transferred almost exclusively through the strand it
was initially placed at, i.e., for type γ ′ polymers the charge
transfer is mainly of intrastrand character. Hence, for TB II,
we show k1,2N−1 and k2,2N which are the largest transfer rates.

4. Comments on pure mean transfer rates

The definition of the pure mean transfer rate given by
Eq. (24) includes the magnitude of charge transfer as well
as the relevant time scale. In Fig. 20, Fig. 21 with odd N ,
and Fig. 22, we can roughly distinguish two regions: let us
say 2 � N � 10 and 10 � N � 30. For the former region,
the fall of k is rather strong, for the latter range it is much
slower. This is the general behavior of the polymers studied
in this work. In Fig. 21 for LUMO ATAT . . . with even N ,
the behavior is different: the pure mean transfer rates given
by Eq. (24) continue to fall in the range 10 � N � 30. This
different behavior of LUMO ATAT . . . for even N arises from
the fact that in this case, as N increases, although the mean
over time probability at the last monomer is significant and
falls slowly, the mean transfer time increases very fast. This
leads to a rapid decrease of k. We can also observe the slowness
of charge transfer from the Fourier spectra of these polymers
(cf. Fig. 18). Other cases of type β ′ polymers do not display
this whimsy and the pure mean transfer rates fall over N in a
way somehow similar to that of type γ ′ polymers.

5. Pure mean transfer rate fits

Finally, we compare the results of our two TB approaches
by performing the exponential fits k = k0e

−βd and k = A +
k0e

−βd , where d = (N − 1) × 3.4 Å is the charge transfer
distance, as well as the power-law fit k = k′

0N
−η. For the

fits, we use the pure mean transfer rate values up to N = 30.
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FIG. 21. Type β ′ polymers, here is a case where, for N even, the carrier is transferred at a large percentage to the last monomer but the
transfer is very slow: electron pure mean transfer rates in ATAT . . . , either k1,N within TB I (left) or the largest transfer rates in TB II, i.e.,
k1,2N−1 for N odd, k1,2N for N even, k2,2N for N odd, k2,2N−1 for N even.

Our results for TB I have already been presented in Figs. 8
and 9 of Ref. [23]. For TB II, we again focus on the pure
mean transfer rates between the bases of the initial and the
final monomer for which carrier transfer is significant, cf.
Figs. 23–28. The conclusions are similar to those within TB
I. The fits are considerably improved if polymers with N odd
and N even are fitted separately. Our results for the exponent
η of the power-law fits and for the decay length β of the
exponential fits, within TB II, including the relevant correlation
coefficients, are presented in Appendix B. Similar fits, within
TB I, can be found in Ref. [23]. The power-law fits in the range
N = [2,30], are generally slightly better, especially for type α′
and type γ ′ polymers. This seems to agree with the assertion of
Refs. [69,70] that when every single hopping step occurs over
the same distance, the hopping mechanism is described better
by a power-law fit. This observation cannot be generalized
to other types of polymers and/or to donor-bridge-acceptor
systems like those of Ref. [19], where exponential dependence
on the donor-acceptor distance was found for the transfer rates,
which were defined through the so-called survival probability.
We notice that the usual definition of transfer rate, e.g., the
definition used in Ref. [19] is different from our definition of

the pure mean transfer rate given by Eq. (24), which includes
the magnitude of charge transfer as well as the relevant time
scale. We also notice that the systems studied in this article
are not donor-bridge-acceptor systems because although the
carrier is initially placed at the first monomer, it performs
oscillations and our boundary conditions are like a string fixed
at both ends, where the probability amplitudes before and after
the end monomers are zero. Our results confirm the statement
that the fall of k as a function of N or d becomes generally
steeper as the intricacy of the energy structure increases, i.e.,
from type α′ to type β ′ and further to type γ ′ polymers [23].
Furthermore, both TB I and TB II show that there is perfect
agreement between our results for β and η for all type α′
polymers. This leads to the conclusion that although the
interaction strength (as reflected in the hopping integrals) is
different in each case of type α′ polymers leading to different
values of k, the way k falls over N or d is the same.

Our results show that the transfer rates diminish after
a few monomers. We have systematically studied how this
happens in three characteristic types of B-DNA segments.
Other mechanisms can also be useful to understand car-
rier movement along DNA, under various conditions. For

FIG. 22. Type γ ′ polymers, here TCTC . . . . Hole pure mean transfer rates k1,N for TB I (left), and k1,2N−1, k2,2N for TB II (right).

062403-15



K. LAMBROPOULOS et al. PHYSICAL REVIEW E 94, 062403 (2016)

FIG. 23. The decay length β of the exponential fits k = k0e
−βd , within TB II.

FIG. 24. The decay length β of the exponential fits, k = A + k0e
−βd , within TB II.
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FIG. 25. The exponent η of the power-law fits k = k′
0N

−η, within TB II.

FIG. 26. The correlation coefficients of the exponential fit k = k0e
−βd , within TB II.
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FIG. 27. The correlation coefficients of the exponential fit k = A + k0e
−βd , within TB II.

FIG. 28. The correlation coefficients of the power-law fit k = k′
0N

−η, within TB II.
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example, unistep superexchange and multistep hopping, car-
rier excitations across single particle gaps, bandlike electronic
transport, variable range hopping, and small polaron transport
are among the mechanisms suggested (cf. Ref. [17] and
references therein).

IV. CONCLUSION

We employed two tight-binding approaches to examine
time-independent and time-dependent aspects of the electronic
structure and carrier transfer in B-DNA monomer polymers
(type α′) and dimer polymers (type β ′ and type γ ′). We used a
simplistic wire model (TB I) where a carrier is initially located
at a base pair (called also a monomer in this article) and then
moves to the next or to the previous base pair, as well as a
more detailed extended ladder model (TB II) where the carrier
is initially located at a base and then moves to all possible
neighboring bases including diagonally located ones. The
inclusion of diagonal hoppings is crucial for type β ′ polymers
where carrier transfer is mainly of interstrand character. The
time-dependent and the time-independent problems involve
diagonalization of matrices with matrix dimension M = N

for TB I and M = 2N for TB II. The two TB approaches
give coherent, complementary aspects of electronic properties
and charge transfer in B-DNA monomer polymers and dimer
polymers.

For the time-independent problem, we studied the HOMO
and the LUMO eigenspectra and the occupation probabilities,
the density of states, and the HOMO-LUMO gap. The
upper (lower) subband of the HOMO (LUMO) eigenspectrum
calculated with TB II corresponds to the band calculated with
TB I. The occupation probabilities within TB I and TB II
show various degrees of palindromicity and eigenspectrum
(in)dependence of the probabilities to find the carrier at a site.
The DOS displays nice van Hove singularities at the (sub)band
edges, while the numerically calculated DOS for simple cases
agrees with the analytical solution. As expected, the polymer
HOMO-LUMO gaps are smaller than the HOMO-LUMO gaps
of the two possible monomers, reaching a level of 3.4 to 3.0 eV.
The smallest HOMO-LUMO gaps occur for type γ ′ polymers.

For the time-dependent problem, we investigated the mean
over time probabilities to find the carrier at each site (base
pair for TB I and base for TB II), the Fourier spectra and the
pure mean transfer rates from a certain site to another. The
mean over time probabilities illustrate clearly the basically
intrastrand character of carrier transfer in type α′ and type
γ ′ polymers. However, while in type α′ polymers the carrier
moves successively through all bases of the same strand, in
type γ ′ polymers the carrier moves through the bases that are
identical with the one it was initially placed at, i.e., it moves
through the same strand from the one or the other base of the
first monomer to the identical base of the third monomer, and
so forth. Carrier transfer is basically of interstrand character
in type β ′ polymers. The Fourier spectra give us a nice
representation of the frequency content of charge transfer. Both
TB approaches show that this frequency content is mainly in
the THz domain; the details depend on the type of polymers

and the TB approach used. The pure mean transfer rates k show

both how fast carrier transfer is and how much of the carrier is
transferred from the initial site to the final site. The k(N ) and
k(d) fits are considerably improved if polymers with N odd
and N even are fitted separately. Additionally, the power-law
fits of the pure mean transfer rate defined by Eq. (24) are
generally slightly better, especially for type α′ and type γ ′
polymers. Our results confirm the statement that the fall of
k as a function of N or d becomes generally steeper as the
intricacy of the energy structure increases, i.e., from type α′ to
type β ′ and further to type γ ′ polymers.
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APPENDIX A: HOPPING INTEGRALS

A list of all hopping integrals used in this article is shown
in Table II.

TABLE II. The HOMO, LUMO hopping integrals t (j,j ′), in meV.
Second column (TB I): hopping integrals between successive base
pairs [22]. Third through fifth columns (TB II): intrastrand hopping
integrals between bases of successive base pairs in the 5′-3′ direction,
and interstrand diagonal hopping integrals in the 3′-3′ and 5′-5′

directions, respectively [63]. The interstrand, intra-base-pair hopping
integrals (TB II) [63] are −12, −9 for G-C and −12, 16 for A-T,
respectively.

Base sequence TB I TB II

(j,j ′) t53 t53 t33 t55

GG −100, 20 −62, 20 −44, −5 3, −2

CC −100, 20 −66, −47 1, 0.3 1, 2

AA −20, −29 −8, 16 48, 29 2, 6

TT −20, −29 −117, −30 0.5, 0.2 4, 2

GC 10, −10 80, 43 4, −4 4, −3

CG −50, −8 −1, 15 4, −4 4, −3

AT 35, 0.5 68, 7 −3, 3 9, 2

TA 50, 2 26, −7 −3, 3 9, 2

CT −30, 3 −107, 63 0.5, −0.2 2, −2

AG −30, 3 −5, 1 −3, −6 4, 3

TC −110, −1 −86, 22 0.5, −0.2 2, −2

GA −110, −1 −79, 30 −3, −6 4, 3

CA −10, 17 5, −12 −5, −3 5, −2

TG −10, 17 28, −17 5, 2 5, 3

AC 10, 32 68, −3 −5, −3 5, −2

GT 10, 32 73, −32 5, 2 5, 3
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APPENDIX B: FITS

We show the outcome of the exponential fits k = k0e
−βd and k = A + k0e

−βd , where d = (N − 1) × 3.4 Å is the charge
transfer distance, as well as of the power-law fit k = k′

0N
−η, within TB II (for results within TB I, cf. Ref. [23]). For the fits, we

use the pure mean transfer rate values up to N = 30. For each type of polymers, we depict the pure mean transfer rates between
the bases of the initial and the final monomer for which carrier transfer is significant. In Figs. 23, 24, and 25, for each segment,
the two bars correspond to initial conditions 1 and 2, respectively. In Figs. 26, 27, and 28, for each segment, the two symbols
correspond to initial conditions 1 and 2, respectively. HO stands for HOMO and odd N , HE for HOMO and even N , LO for
LUMO and odd N , and LE for LUMO and even N .
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