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Hysteresis loop of nonperiodic outbreaks of recurrent epidemics
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Most of the studies on epidemics so far have focused on the growing phase, such as how an epidemic spreads
and what are the conditions for an epidemic to break out in a variety of cases. However, we discover from real
data that on a large scale, the spread of an epidemic is in fact a recurrent event with distinctive growing and
recovering phases, i.e., a hysteresis loop. We show here that the hysteresis loop can be reproduced in epidemic
models provided that the infectious rate is adiabatically increased or decreased before the system reaches its
stationary state. Two ways to the hysteresis loop are revealed, which is helpful in understanding the mechanics
of infections in real evolution. Moreover, a theoretical analysis is presented to explain the mechanism of the
hysteresis loop.
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I. INTRODUCTION

The spreading of epidemics is currently one of the
hottest topics in the field of complex networks, and a
great deal of significant progress has been achieved so far,
including the infinitesimal threshold [1–6], the reaction-
diffusion model [7–10], flow-driven epidemics [11–15], ob-
jective spreading [16,17], temporal and/or multilayered net-
works [18–27], and other aspects [28–36]; see Refs. [37–39]
for details. A common point in all these contributions is that
their infectious rate β remains constant during an evolutionary
process, i.e., β will not change for the whole evolutionary
process from an initial infected seed to the final stationary state.
It is well known at present that there is a critical βc, although
it may be different for different cases. In the thermodynamic
limit, the infected fraction will be zero when β < βc, and it
will become nonzero at β = βc. After the critical point βc,
the infected fraction will gradually increase with a further
increase of β. Thus, a key question for all these cases is
how to determine βc. To figure out the answer, a bifurcation
diagram of β is usually calculated by using the same or similar
initial conditions for each β, i.e., one or a few initial infected
seeds. To be specific, for each β in the bifurcation diagram we
let the system evolve until it attains its stationary state, and
then we record the stabilized infectious density [37]. Then,
we turn to a new β and perform the same process. Thus, the
obtained bifurcation diagram of β describes how the stabilized
infectious density depends on the parameter β. In this sense,
we are concerned with how an epidemic breaks out, i.e., the
growing phase where β changes from β < βc to β > βc.

However, we noticed from real data that on a large scale,
the spread of an epidemic is in fact a recurrent event with both
growing and recovering phases [40–42]. That is, there is a
recovering phase with gradually decreasing β, and a growing
phase with gradually increasing β. This recovering phase is
distinctive from the recovery process at the individual level
with fixed β. For example, in the traditional SIS model, β will
remain unchanged when the infected individuals recover to
susceptible status. Additionally, in the SIR model, β will also
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remain unchanged in the evolutionary process in which the
infected fraction will first gradually increase to its maximum
and then decrease until zero. A primary purpose of studying
epidemic spreading is to understand it and then to control
or eradicate it. For the same reason, it is also necessary to
understand the recovery phase, but little attention has been
paid to this subject so far.

On the other hand, it was pointed out that the infectious rate
β is in fact dependent on time and is seriously influenced by
seasonal variation [40–45]. To reflect this influence, Ref. [40]
assumed that β depends sinusoidally on time t , and Ref. [45]
assumed that β depends on the infected density. Based on these
assumptions, an interesting finding is that it is possible for the
transition from β < βc to β > βc to be a first-order phase
transition with hysteresis [44,45], in contrast to the second-
order transition observed in all the cases of constant β [37–39].

We recheck several real data here [46,47], and we pay
attention to both the features of growing and recovering phases
and the features of a transition with hysteresis. We find that
(i) the growing and recovering phases do not overlap but take
different paths, forming a hysteresis loop (see Fig. 2 as an
example), and (ii) there is no jumping behavior in the hysteresis
loop, indicating that the hysteresis is not a first-order but rather
a second-order transition. To reveal the underlying mechanism
of this new hysteresis loop, we present an epidemic model that
incorporates two characteristic features of real data. The first
one is the influence of seasonal variation. A seasonal epidemic
spreading generally lasts for a few months, i.e., beginning from
a healthy state, then gradually developing into an outbreak, and
finally recovering to the healthy state again. In this process,
the weather and environment will undergo an approximately
periodic change, implying that β will increase accordingly
from zero to its maximum βe and then decrease to zero again.
The second feature is the succession of status during the
evolutionary process of epidemic spreading, indicating that
the system’s parameters are adiabatically changed.

Through the long history of epidemic study, much data
have been collected and many epidemic models have been
presented to explain the data [48]. These models have been
adequate in explaining traditional epidemics. However, for
modern epidemics, much evidence has shown that they spread
on complex networks. For example, the data on gonorrhoea
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told us that the epidemic spreading paths are of network
topology [49]. It has been widely confirmed in recent years
that the topology of a network plays an important role in
epidemic spreading [37]. Accordingly, the developed models
and theories can be used in practical applications. For example,
the original seeds of SARS can be successfully tracked by a
small fraction of epidemic data [50]. In this sense, we will
take here a typical complex network as the infrastructure for
an epidemic to spread.

Using our model, we show that the hysteresis loop can be
reproduced if β is adiabatically increased or decreased before
the system reaches its stabilized state. This way of changing β

in a transient process is more similar to the process of epidemic
spreading in reality, in contrast to the previous ways in which β

is allowed to update only when the system reaches its stationary
state, and the initial infected seeds for the updated β will be
reset [37]. Thus the critical role of the practical mechanics
of infections in evolution is revealed. Moreover, we present a
theoretical analysis to explain the underlying mechanism.

The paper is organized as follows. In Sec. II, we first analyze
the real data and then introduce our model. In Sec. III, we
perform numerical simulations to regenerate the phenomenon
of the hysteresis loop revealed in Sec. II. In Sec. IV, we
present a mean field to explain the numerical results. In
Sec. V, we present conclusions and discussions. Finally, in
the Appendixes, we present two more accurate theoretical
approaches to explain the numerical results. One is the
theoretical analysis based on the microscopic Markov-chain
approach, and the other is the theoretical analysis based on the
effective degree Markov-chain approach.

II. MODEL DESCRIPTION

By following the approach from data to model, we recheck
here the recurrent epidemic data of Hong Kong, New York,
and Baltimore [46,47], and we replot them in Figs. 1(a), 1(b),
and 1(c), respectively. From these we see that each time series

FIG. 1. Real data of epidemics. Part (a) represents the weekly
consultation rates of influenza-like illness (per 1000 consultations)
in Hong Kong from the general practitioners (GPs) [46], where the
value of C is from 0 to 150. Parts (b) and (c) represent the time series
of reported cases of infective measles I in New York and Baltimore,
respectively, where the variable I is from 0 to 3 × 104 in (b) and from
0 to 8 × 103 in (c) [47].

consists of a small amplitude background with occasionally
large bursts, implying that an epidemic outbreak is unlikely to
occur unless some necessary conditions, such as the match of
seasonal weather, humidity, and sunlight, are satisfied. We also
see from Figs. 1(a)–1(c) that each epidemic outbreak lasts a
relatively long time, i.e., from one to a few months, indicating
the mark of a season. On the other hand, we have to point
out that each time series in Fig. 1 is not from one or a few
initial seeds in the same initial stage, rather each time series is
a sum from different initial seeds at different initial stages. For
example, the data in Fig. 1(a) were collected by the Hong Kong
Department of Health from a sentinel surveillance system
with 50 general practitioners [46], i.e., a summation of 50
subtime series. In this sense, we conclude that the data reflect
in fact the match between epidemic spreading and seasonal
environment. A better match implies a better environment for
epidemic spreading. That is, we may assume that the degree of
match is closely related to the value of β. Therefore, a burst (or
an epidemic outbreak) in Fig. 1 can be modeled by a change
of β from β < βc to β > βc.

Moreover, we notice from Fig. 1 that each burst consists of
both growing and recovering phases, separated by a maximum
of an infected fraction, i.e., a peak. For the former, the epidemic
increases gradually until it reaches its maximum, while for the
latter, the epidemic decreases gradually until it recovers to
a healthy society again. To see this more clearly, we replot
one typical burst of Fig. 1 in Fig. 2(a). With the help of the
dashed line, we see that the growing and recovering phases in
Fig. 2(a) are not symmetric. Let t0 be the time of the peak in
Fig. 2(a) and �t = |t − t0|. Figure 2(b) shows the dependence
of I on �t , where the squares and circles denote the growing
and recovering phases, respectively. It is easy to see that there
is a hysteresis loop in Fig. 2(b).

If we ignore the aspect of how the data are collected and
assume that each time series can be reproduced by an epidemic
model, two conclusions can be drawn from Figs. 1 and 2:
(i) The infected fraction continuously increases (decreases)
in the growing (recovering) phases, implying that the initial
conditions for each β are not randomly chosen but are inherited
from the last values of the state variables at the previous β, i.e.,
the succession of status when changing β. This is in contrast
to most of the previous studies in which the initial conditions

FIG. 2. A typical hysteresis loop in real data on epidemics. (a)
Amplification of the data around the peak between 1938 and 1939 in
Fig. 1(b), where the dashed line indicates the location of the rescaled
zero point. (b) The hysteresis loop of (a) in the rescaled framework,
where the squares and circles denote the growing and recovering
phases, respectively.
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for each β are always chosen randomly. To reflect the seasonal
influence, we may assume that the growing phase corresponds
to an adiabatic increase of β. For the same reason, we may
assume that the recovering phase corresponds to an adiabatic
decrease of β. (ii) Each burst usually lasts several weeks or
months, indicating the time dependence of β on a large scale.
This is also in contrast to most of the previous studies, where
β is allowed to change only after the transient process. A key
problem is how β depends on the time t . We notice from our
observation that we generally have a few continuously sunny or
rainy days in a season, indicating that β can be approximately
considered as a constant in this short period of time, although
β changes with t on a larger scale. To reflect this feature of
real data, we let T be a step change, i.e., β will be updated to
a new value β + �β once the system has stayed at the current
β for a time period T , and it can be expressed as

β(t + 1) = β(t) if t �= nT , n = 1,2, . . . ,

β(t + 1) = β(t) ± �β if t = nT , n = 1,2, . . . . (1)

Our model can be any known epidemic model with
the above two characteristic features. We take the classical
susceptible-infected-susceptible (SIS) model as an example,
but a similar analysis can also be performed in the classical
susceptible-infected-refractory (SIR) model. In this model,
we initially choose a small value of β and a few infected
seeds. Then, we let the system freely run a period of time
T where a susceptible individual will become infected with
probability β if he/she is connected to an infected neighbor,
and an infected one will recover to susceptible again with
probability μ [37]. When there are more than one infected
neighbors, a susceptible individual will become infected with
probability 1 − (1 − β)kinf , where kinf is the number of its
infected neighbors. After a time period of T , we let β have
an increase as in Eq. (1), but we keep the individual states
unchanged. We repeat this process until β reaches its maximum
βe. After that, we simulate the recovering phase by letting
β(t + 1) = βe − �β but we let the individual states remain.
Then, we let the system run as a traditional SIS model. Once
t = nT for n = 1,2, . . . , we let β decrease as in Eq. (1), and
we keep all the other aspects unchanged. We repeat this process
until β reaches zero.

III. NUMERICAL SIMULATIONS

In numerical simulations, we take the random Erdös-Rényi
(ER) network with size N = 10 000 and average degree
〈k〉 = 6 as an example, which is generated by the algorithm
of Ref. [51]. First, we discuss the case of the SIS model, i.e.,
we let each node of the network be a SIS model with our two
characteristic features. We set μ = 0.2 and �β = 0.01 in this
paper if there is no specific illustration. Initially, we randomly
choose a small fraction of individuals such as 1% and set them
as infected while the rest of the population is set as susceptible
or healthy.

We increase β adiabatically with an increment �β = 0.01
from β = 0 to 1, we let the system stay at each β for only a
finite evolution time T , and we compute the infected fraction
ρI for each β. This is the growing phase. Then, we begin
the recovering phase, i.e., we decrease β adiabatically with

the same �β and T , and we compute ρI for each β. Our
numerical simulations show that the two phases are generally
not overlapping, i.e., with a hysteresis loop. Figure 3(a) shows
the results for different T , where the curves with squares,
circles, up triangles, and down triangles represent the cases of
T = 1, 2, 5, and 1000, respectively. Comparing the hysteresis
loops in Fig. 3(a) with that in Fig. 2(b) we see that they are
similar, indicating that the phenomenon of the hysteresis loop
has been successfully reproduced by our modified SIS model.

On the other hand, we have noticed that there is a bifurcation
point βm for each hysteresis loop in Fig. 3(a) where the growing
and recovering phases will merge into one phase when β > βm.
The inset of Fig. 3(b) shows the dependence of βm on T , which
is a monotonous decreasing curve. We have also noticed that
in the case of T = 1000, the two curves with down triangles
in Fig. 3(a) are overlapping, implying no hysteresis loop. To
understand this better, we have calculated the hysteresis area
S surrounded by the growing curve ρ

g

I (β) and the recovering
curve ρr

I (β), i.e., S = ∫ βm

0 |ρr
I (β) − ρ

g

I (β)|dβ, as shown in
Fig. 3(b). It is easy to see that S is approximately zero
for T > Ts ≈ 100, indicating that the hysteresis loop exists
only when T is in the transient process with T < Ts . By
checking the behaviors of ρI (t), we find that the system has
reached its stationary state after T > Ts . As the stationary state
is generally independent of initial conditions, we conclude
that the hysteresis loop comes from a memory effect on the
adiabatical process with T < Ts .

Secondly, we discuss the case of the SIR model. Con-
sidering that the hysteresis loop exists in different real data
of Fig. 1, it is necessary to reproduce it in other epidemic
models. For this purpose, we take another classical epidemic
model, i.e., the SIR model, as an example. To make the SIR
model suitable for the case of recurrent epidemics, we extend
it to the susceptible-infected-refractory-susceptible (SIRS)
model [37], where an infectious will become a refractory with
probability μ, a refractory will recover to susceptible again

FIG. 3. (a) and (b) The SIS model. (c) and (d) The SIRS model.
(a) and (c) Hysteresis loops for the SIS and SIRS models, respectively,
where the curves with squares, circles, up triangles, and down
triangles represent the cases of T = 1, 2, 5, and 1000, respectively.
(b) and (d) S and βm vs T for the SIS and SIRS models, respectively.
The results are an average of 1000 realizations.
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FIG. 4. Cases of the SIS model with βr < βm, where (a)–(d)
represent the cases of T = 1, 2, 5, and 10, respectively, and the curves
with squares, circles, up triangles, and down triangles represent the
cases of βr = 0.3, 0.2, 0.15, and 0.1, respectively. The results are an
average of 1000 realizations.

with probability δ, and the other parts will remain the same as
in the SIS model. We let μ = 0.2 and δ = 0.5, and we perform
the same simulations as in the SIS model. We find that there is
also a hysteresis loop in this SIRS model. Figure 3(c) shows the
results, where the curves with squares, circles, up triangles, and
down triangles represent the cases of T = 1, 2, 5, and 1000,
respectively. Comparing Fig. 3(c) with Fig. 3(a), we see that
they are similar to each other, confirming the universality of
the hysteresis loop in both the SIS and SIRS models. We have
also calculated the hysteresis area S and the bifurcation point
βm for different T in the SIRS model, as shown in Fig. 3(d).
It is easy to see that there also exists a Ts ≈ 100 in Fig. 3(d)
where S is approximately zero when T > Ts , confirming again
that one of the necessary conditions to observe the hysteresis
loop is T < Ts .

Up to now, the considered growing and recovering phases
have been assumed to be separated by the maximum ρI at βm.
An interesting question would be whether there is another way
to explain the hysteresis loop in Fig. 2(b). As we mentioned
before, β may vary from day to day in the real data. Because
of the uncertain environment, β may not go to βm before
starting the recovering phase. Once this happens, do we still
have the hysteresis loop? To answer this question, we let βr

be the turning point to separate the growing and recovering
phases. That is, we let β increase adiabatically from β = 0 to
βr and then we let it decrease adiabatically. We first consider
the case of the SIS model. Figure 4 shows the numerical
simulations, where (a)–(d) represent the cases of T = 1, 2,
5, and 10, respectively, and the curves with squares, circles, up
triangles, and down triangles in each panel represent the cases
of βr = 0.3, 0.2, 0.15, and 0.1, respectively. From Fig. 4(a), we
see that the case of βr = 0.3 is similar to Fig. 3(a), implying
that this βr is larger than the βm of T = 1. However, the other
three cases of Fig. 4(a) belong to the case of βr < βm, and they
have different behaviors from Fig. 3(a), where their ρI do not
reach the maximum at βr but rather during the recovering
phase. That is, the recovering phase is not monotonously
decreasing but has a bell shape, indicating a delay effect on

FIG. 5. Case of the SIRS model, where (a)–(d) represent the cases
of T = 1, 2, 3, and 10, respectively, and the curves with squares,
circles, up triangles, and down triangles represent the cases of βr =
0.08, 0.12, 0.16, and 0.2, respectively. The results are an average of
1000 realizations.

the appearance of the maximum ρI . This delay effect can
be understood as follows. When β is decreased to a value
of β < βr but still satisfies β > βc, the epidemic will keep
growing until β � βc. The delay effect is common in all four
panels of Fig. 4, indicating that it is general for βr < βm. On the
other hand, we notice that the three curves with βr = 0.2, 0.15,
and 0.1 in Fig. 4(a) keep rising from Fig. 4(b) to Fig. 4(d) and
gradually become the normal hysteresis loops. This is because
βm decreases with the increase of T [see the insets of Figs. 3(b)
and 3(d)] and thus βr gradually changes from βr < βm to
βr > βm when T changes from Fig. 4(a) to Fig. 4(d).

Then, we discuss the case of the SIRS model. Figure 5
shows the results. Comparing Fig. 5 with Fig. 4, we see that
they are similar to each other, confirming that the case of

FIG. 6. Dependence of the hysteresis loop on the chosen �β

with N = 10 000, 〈k〉 = 6, μ = 0.2, and T = 1, where the curves
with squares, circles, and triangles represent the cases of �β =
0.01,0.001, and 0.0001, respectively. Parts (a) and (b) represent the
cases of the SIS and SIRS models, respectively, with δ = 0.5 in (b).
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βr < βm can also show the hysteresis in different epidemic
models.

All the above results are obtained for fixing �β = 0.01.
Do they depend on the value of �β? To figure out the answer,
we change �β but keep the other parameters unchanged.
Figure 6(a) shows the results for the case of the SIS model
where the curves with squares, circles, and triangles represent
the cases of �β = 0.01, 0.001, and 0.0001, respectively. We
see that the area of the hysteresis loop decreases with decreas-
ing �β, indicating that the hysteresis loop will disappear in
the limit �β → 0. We arrived at the same conclusion for the
case of the SIRS model; see Fig. 6(b) for the corresponding
results.

IV. A BRIEF THEORETICAL ANALYSIS

To gain a deeper insight into the origin of the hysteresis
loop in recurrent epidemics, we perform a brief theoretical
analysis here by using the SIS model as an example. As the
random ER network can be considered homogeneous [37], we
take the framework of mean-field theory. For convenience, we
divide the evolution time t into segments T ,2T , . . . ,nT , . . . .
Let β(nT ) represent the value of β at time t = nT . For an
adiabatic process, we have β[(n + 1)T ] = β(nT ) ± �β, with
�β being the increment, and the “±” representing the growing
and recovering phases, respectively. The evolution of ρI (t)
during the segment nT → (n + 1)T can be described by the
following mean-field equation:

ρ̇I = β(nT )〈k〉ρI (1 − ρI ) − μρI , (2)

By dividing ρ2
I on both sides of Eq. (2), we have

d 1
ρI

dt
= [μ − β(nT )〈k〉] 1

ρI

+ β(nT )〈k〉. (3)

Letting 1/ρI be a new variable and integrating Eq. (3) for an
evolution time T , we obtain its solution as

ρI [(n + 1)T ] =
(

1 − μ

β(nT )〈k〉
)

Ce[β(nT )〈k〉−μ]T

1 + Ce[β(nT )〈k〉−μ]T
, (4)

where

C = ρI (nT )

1 − ρI (nT ) − μ/β(nT )〈k〉 (5)

and ρI (nT ) is the initial value of ρI for the segment nT →
(n + 1)T and also the last value of ρI in the segment (n −
1)T → nT with β[(n − 1)T ]. This dependence of β(nT ) on
time nT is in contrast to previous cases in which β is a constant
for an evolution. On the other hand, the growing and recovering
phases have the same range of varying β. Do the two phases
have the same ρI when they pass the same value of β? The
answer is no, and the reason is as follows. In the growing phase,
ρI (nT ) is the minimum of ρI in the segment nT → (n +
1)T , while in the recovering phase, ρI (nT ) is the maximum
of ρI in the segment nT → (n + 1)T . Therefore, the way to
choose ρI (nT ) in Eqs. (4) and (5) leads to asymmetric initial
conditions for the two phases of growing and recovering in
the segment with the same β, which is how the memory effect
occurs, and this is the direct reason why the hysteresis loop is
produced. The down triangles and pentagons in Fig. 7 show
the solutions of Eq. (4) with μ = 0.2, 〈k〉 = 6, and T = 1,

FIG. 7. Comparison between numerical simulations and theo-
retical approaches of mean-field theory (MFT), the microscopic
Markov-chain approach (MMCA), and effective degree theory (EDT)
with μ = 0.2, 〈k〉 = 6, and T = 1, where the squares, circles, up
triangles, and down triangles represent the case of βr = 0.4 for the
four approaches, respectively, and the left triangles, right triangles,
diamonds, and pentagons represent the case of βr = 0.15 for the
four approaches, respectively. The results for the simulations are an
average of 1000 realizations.

where the down triangles represent the case of βr = 0.4 > βm,
and the pentagons represent the case of βr = 0.15 < βm. For
comparison, we also plot the corresponding numerical results
in Fig. 7, where the squares and left triangles represent the
cases of βr = 0.4 > βm and βr = 0.15 < βm, respectively. It
is easy to see that the numerical simulations and theoretical
results are qualitatively consistent.

For achieve better consistency between the numerical
simulations and the theoretical predictions, we have also
introduced the mechanism of memory into the microscopic
Markov-chain approach (MMCA) [52,53] and the effective
degree theory (EDT) [28,53,54] by considering the adiabatical
increase of β; see Appendixes A and B for details. The
circles, up triangles, right triangles, and diamonds in Fig. 7
show the results of these two methods for βr = 0.4 and 0.15,
respectively. We see that they are more consistent with the
numerical simulations than the mean-field theory (MFT) of
Eq. (4).

The dynamical equations of both the SIS and SIRS models
used in this work are deterministic, indicating that there is
no time direction and thus no difference between growing
and recovering phases. However, we show analytically that
with the introduction of ρI (nT ), i.e., the effect of adiabatic
continuation, both models become asymmetric on the growing
and recovering phases. This asymmetry induces a dependence
of dynamics on the integration paths or equivalently a time
direction, which may be a new feature in the field of epidemic
spreading.

V. DISCUSSION AND CONCLUSIONS

Both the numerical simulations and the theoretical analysis
have confirmed the hysteresis loop in real data. A characteristic
feature of this kind of hysteresis loop is that both its growing
and recovering phases are smooth, indicating a second-
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order transition. This feature is different from the previous
results in Refs. [44,45], where a first-order transition with
a hysteresis loop is predicted in their models. The data we
collected in this paper support the features of a second-order
transition, but some data may also exist with the features
of a first-order transition, which may be found in the near
future.

We notice from Fig. 7 that although the effective degree
theory is better than the mean-field theory, it is still not
completely consistent with the numerical simulations. In fact,
this effective degree theory is quite similar to the approach
of improved compartmental formalism [55] in which nodes
are categorized not only by their state of infectiousness, but
also by the state of their neighbors. We also notice that in
Ref. [55], the approach works quite well for Poisson networks.
This causes us to wonder why the effective degree theory does
not perform well at predicting the results of the numerical
simulations. To figure out the answer, we apply the effective
degree theory to the Poisson networks, and surprisingly it
also works well. Thus, we conjecture that the gap between
the numerical simulations and the analytical approaches in
Fig. 7 comes from the adiabatical feature of evolution. Roughly
speaking, all of the theoretical approaches, including both
the effective degree theory and the approach in Ref. [55],
are based on probability theory, which is good for smooth
processes. However, the changing of β in an adiabatic way
somehow breaks this feature of “smooth” and thus results
in the small gap between the theories and simulations in
Fig. 7.

In conclusion, we have presented an approach to study the
mechanism of recurrent epidemics in real data. We show that
there is a hysteresis loop in real data, and it can be reproduced
by incorporating two characteristic features into a general
epidemic model, i.e., updating β before the system is stabilized
and adopting the system’s state with its previous β. Two ways
to generate the hysteresis loop are presented: in the first, the
growing and recovering phases are separated by a maximum
of infected fraction, while in the second, the infected fraction
keeps increasing even in the recovering phase. A theoretical
analysis shows that the hysteresis loop comes from a memory
effect on the adiabatic process with T < Ts , which enhances
our understanding of real epidemics.
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APPENDIX A: A THEORETICAL ANALYSIS BASED ON
THE MICROSCOPIC MARKOV-CHAIN APPROACH

1. SIS model

Let P S
i (t) and P I

i (t) be the probabilities for node i to
be in the states of S and I at time t , respectively. Then,
we have ρS(t) = 1

N

∑N
i=1 P S

i (t) and ρI (t) = 1
N

∑N
i=1 P I

i (t),
where ρS(t) and ρI (t) represent the densities of susceptible,
infected individuals at time t , respectively. They satisfy the
conservation ρS(t) + ρI (t) = 1. Let q

S,I
i (t) and q

I,S
i (t) be

the transition probabilities from the states S to I and I to
S, respectively. By the microscopic Markov-chain approach
(MMCA) [22,52,56–58], we have

q
S,I
i (t) = 1 −

∏
l∈�i

[
1 − β(t)P I

l (t)
]
, (A1)

q
I,S
i (t) = μ, (A2)

where �i in Eq. (A1) represents the neighbors of node i, and
the term

∏
l∈�i

[1 − β(t)P I
l (t)] is the probability that node i is

not infected by the infected neighbors. Based on this analysis,
we formulate the following difference equations to understand
the epidemic spreading on the network:

P S
i (t + 1) = P S

i (t)
[
1 − q

S,I
i (t)

] + P I
i (t)qI,S

i (t), (A3)

P I
i (t + 1) = P I

i (t)
[
1 − q

I,S
i (t)

] + P S
i (t)qS,I

i (t). (A4)

The first term on the right-hand side of Eq. (A3) is the
probability that node i remains as a susceptible state. The
second term stands for the probability that node i is changed
from an infected to a susceptible state. Similarly, we have the
same explanation for Eq. (A4). Substituting Eqs. (A1) and (A2)
into Eqs. (A3) and (A4), we obtain

P S
i (t + 1) = P S

i (t)
∏
l∈�i

[
1 − β(t)P I

l (t)
] + P I

i (t)μ,

P I
i (t + 1) = P I

i (t)(1 − μ)

+P S
i (t)

⎡
⎣1 −

∏
l∈�i

[1 − β(t)P I
l (t)]

⎤
⎦. (A5)

We let β(t) be time-dependent in the following way:

β(t + 1) =
{
β(t) ± �β, t = nT , n = 1,2, . . . ,

β(t), t �= nT , n = 1,2, . . . ,
(A6)

where the “±” denote the growing and recovering phases,
respectively. We numerically integrate Eq. (A5) for separated
growing and recovering phases, respectively. For the growing
(recovering) phase, we increase (decrease) β(t) adiabatically
with an increment �β = 0.01 after an evolution time T in
Eq. (A6) from β(t) = 0 (1) to 1 (0). Initially, we randomly
choose 1% of individuals as infected seeds. We use the last
value of ρI with β(t) as the initial condition for the next state
with β(t + 1) in the growing and recovering phases.

2. SIRS model

Let P S
i (t), P I

i (t), and P R
i (t) be the probabilities for node

i to be in the states of S, I , and R at time t , respectively.
Then, we have ρS(t) = 1

N

∑N
i=1 P S

i (t), ρI (t) = 1
N

∑N
i=1 P I

i (t),

and ρR(t) = 1
N

∑N
i=1 P R

i (t), where ρS(t), ρI (t), and ρR(t)
represent the densities of susceptible, infected, and refractory
individuals at time t , respectively. They satisfy the conser-
vation ρS(t) + ρI (t) + ρR(t) = 1. Let q

S,I
i (t), q

I,R
i (t), and

q
R,S
i (t) be the transition probabilities from the states S to I ,

I to R, and R to S, respectively. Using the Markov-chain
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approach [22,52,56–58], we have

q
S,I
i (t) = 1 −

∏
l∈�i

[
1 − β(t)P I

l (t)
]
,

q
I,R
i (t) = μ, (A7)

q
R,S
i (t) = δ,

where �i in Eq. (A7) represents the neighbors of node i, and
the term

∏
l∈�i

[1 − β(t)P I
l (t)] is the probability that node i is

not infected by the infected neighbors. Based on this analysis,
we formulate the following difference equations:

P S
i (t + 1) = P S

i (t)
[
1 − q

S,I
i (t)

] + P R
i (t)qR,S

i (t),

P I
i (t + 1) = P I

i (t)
[
1 − q

I,R
i (t)

] + P S
i (t)qS,I

i (t),

P R
i (t + 1) = P R

i (t)
[
1 − q

R,S
i (t)

] + P I
i (t)qI,R

i (t). (A8)

The first term on the right-hand side of the first equation of
Eq. (A8) is the probability that node i remains as a susceptible
state. Similarly, we have the same explanation for the second
and third equations of Eq. (A8). Substituting Eq. (A7) into
Eq. (A8), we obtain

P S
i (t + 1) = P S

i (t)
∏
l∈�i

[
1 − β(t)P I

l (t)
] + P R

i (t)δ,

P I
i (t + 1) = P I

i (t)(1 − μ)

+P S
i (t)

⎡
⎣1 −

∏
l∈�i

[
1 − β(t)P I

l (t)
]⎤⎦,

P R
i (t + 1) = P R

i (t)(1 − δ) + P I
i (t)μ. (A9)

Instead of getting the analytic solution of Eq. (A9), we solve
it by numerical integration, as was done in the SIS model.

APPENDIX B: A THEORETICAL ANALYSIS BASED ON
THE EFFECTIVE DEGREE MARKOV-CHAIN APPROACH

1. SIS model

For the effective degree approach [28,53,54,59], each node
in the network is categorized not only by its state, i.e.,
susceptible (S) or infectious (I ), but also by the numbers
of its susceptible and infected neighbors. In this way, the
effective degree method can achieve high-order accuracy in
addressing the continuous-time epidemic spreading problem.
In details, we use Ssi and Isi to represent the numbers
of susceptible and infectious individuals with s susceptible
neighbors and i infectious neighbors, respectively. At each
time step, all individuals update their states in a synchronous
way. A susceptible individual in the class Ssi may be infected
at this time step with a probability 1 − (1 − β)i . At the same
time, an infected individual in Isi will be recovered to the class
Ssi with a probability γ . For those individuals in the classes Ssi

and Isi , if their q (q � s) susceptible neighbors are infected
and p (p � i) infected neighbors are recovered at the next
time step, they will become Ss−q+p,i−p+q and Is−q+p,i−p+q ,
i.e., join the Smn and Imn class with

m = s − q + p, n = i − p + q. (B1)

It is easy to realize that Smn(t + 1) has the same effective
degree as Ssi(t) (i.e., m + n = s + i).

To derive the Markov function, we need to know the formu-
lation of the probability of one neighbor, either a susceptible
or an infected individual. The infection of a neighbor of a node
will increase its infectious degree by 1 and decreases its sus-
ceptible degree by 1. The new infected number at one time step
is

∑kmax
k=0

∑
j+l=k Sjl[1 − (1 − β)l]. Then, the numbers of sus-

ceptible and infected individuals whose effective degrees are
changed by these new infections are

∑kmax
k=0

∑
j+l=k jSjl[1 −

(1 − β)l] and
∑kmax

k=0

∑
j+l=k lSjl[1 − (1 − β)l], respectively.

Thus, the infected number of susceptible neighbors, belonging
to the S category, is

∑kmax
k=0

∑
j+l=k jSjl[1 − (1 − β)l]. Since

the total number of the susceptible neighbors of S individuals
is

∑kmax
k=0

∑
j+l=k jSjl , the probability of one susceptible

neighbor, belonging to an S individual, being infected is

Ps =
∑kmax

k=0

∑
j+l=k jSjl[1 − (1 − β)l]∑kmax
k=0

∑
j+l=k jSjl

. (B2)

Similarly, the probability of one susceptible neighbor, belong-
ing to an I individual, being infected is

Pi =
∑kmax

k=0

∑
j+l=k lSjl[1 − (1 − β)l]∑kmax
k=0

∑
j+l=k jIjl

. (B3)

With these formulations, it is easy to calculate that, for
an Smn individual, the probability of q susceptible neighbors
being infected is

(
m

q

)
P

q
s (1 − Ps)m−q , and the probability of

p infected neighbors being healed is
(
n

p

)
γ p(1 − γ )n−p. After

considering Eq. (B1), the effective degree Markov chain for
the discrete-time SIS epidemic process satisfies

∑kmax
k=0 2(k + 1)

equations:

Ssi(t + 1) =
∑

m+n=s+i

{Smn(t)G(1 − β)n + Imn(t)Fγ },

Isi(t + 1) =
∑

m+n=s+i

{Smn(t)G[1 − (1 − β)n]

+ Imn(t)F (1 − γ )}, (B4)

where G is the probability of the subscript transformation for
Smn, and F is the probability of the subscript transformation
for Imn:

G =
n∑

p=0

m∑
q=0

(
n

p

)
γ p(1 − γ )n−p

×
(

m

q

)
P q

s (1 − Ps)
m−qδ(s,m − q + p),

F =
n∑

p=0

m∑
q=0

(
n

p

)
γ p(1 − γ )n−p

×
(

m

q

)
P

q

i (1 − Pi)
m−qδ(s,m − q + p). (B5)

Taking into account the conservation of the size of the pop-
ulation

∑
[Ssi(t) + Isi(t)] = N , we can obtain the susceptible
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density and infected density at time t :

ρS(t) = 1

N

kmax∑
k=0

∑
s+i=k

Ssi(t),

ρI (t) = 1

N

kmax∑
k=0

∑
s+i=k

Isi(t).

For the growing (recovering) phases, we increase (decrease)
β(t) adiabatically with an increment �β = 0.01 for a finite
evolution time T as Eq. (A6) from β(t) = 0 (1) to 1 (0).
Initially, we randomly choose ρI (0) = 1% of individuals as
infected seeds and set initial conditions:

Isi(0) = Np(k)ρI (0)

(
k

i

)
ρI (0)i[1 − ρI (0)]k−i ,

Ssi(0) = Np(k)[1 − ρI (0)]

(
k

i

)
ρI (0)i[1 − ρI (0)]k−i ,

where p(k) is the network degree distribution. Then, we use
the last value of ρI with β(t) as the initial condition for the
next state with β(t + 1) in the growing and recovering phases.

2. SIRS model

In the case of SIRS, a susceptible individual may be
infected with a probability β, and infected individuals will
become a refractory with probability γ . At the same time, a
refractory will recover to susceptible again with probability δ.
Following the effective degree Markov-chain approach in the
SIS model [28,53,54,59], we denote the numbers of suscep-
tible, infectious, and refractory individuals with s susceptible
neighbors, i infectious neighbors, and r refractory neighbors
by Ssir, Isir, and Rsir, respectively. Then, the probability of
one susceptible neighbor, belonging to an S individual, being
infected becomes

Ps =
∑kmax

k=0

∑
l+m+n=k lSlmn[1 − (1 − β)m]∑kmax

k=0

∑
l+m+n=k lSlmn

. (B6)

Similarly, the probability of one susceptible neighbor, belong-
ing to an I individual, being infected is

Pi =
∑kmax

k=0

∑
l+m+n=k mSlmn[1 − (1 − β)m]∑kmax

k=0

∑
l+m+n=k lIlmn

. (B7)

The probability of one susceptible neighbor, belonging to an
R individual, being infected is

Pr =
∑kmax

k=0

∑
l+m+n=k nSlmn[1 − (1 − β)m]∑kmax

k=0

∑
l+m+n=k lRlmn

. (B8)

It is not difficult to realize that Slmn(t) must have the
same effective degree as Ssir(t + 1). If u susceptible neighbors
are infected, v infected neighbors become refractory, and w

refractory neighbors are recovered at the next time step, then
the numbers of susceptible neighbors s, infected neighbors i,
and refractory neighbors r after one time step must satisfy

s = l + w − u, i = m + u − v, r = n + v − w, (B9)

s + i + r = l + m + n. (B10)

With Ps , Pi , and Pr on hand, it is possible to compute
that for an Slmn individual, the probability of u susceptible
neighbors being I is

(
l

u

)
P u

s (1 − Ps)l−u, and for an Ilmn

individual, the probability of u susceptible neighbors being I is(
l

u

)
P u

i (1 − Pi)l−u, while for an Rlmn individual, the probability
of u susceptible neighbors being I is

(
l

u

)
P u

r (1 − Pr )l−u. At the
same time, the probability of v infected neighbors being R is(
m

v

)
γ v(1 − γ )m−v , and the probability of w refractory neigh-

bors being S is
(

n

w

)
δw(1 − δ)n−w. After considering Eq. (B9),

the effective degree Markov chain for the discrete-time SIRS
epidemic process satisfies

∑kmax
k=0 3(k + 1) equations:

Ssir(t + 1) =
k∑

l+m+n=k

{Ssir(t)G(1 − β)m + Rsir(t)Zδ},

Isir(t + 1) =
k∑

l+m+n=k

{Ssir(t)G[1 − (1 − β)m]

+ Isir(t)F (1 − γ )}, (B11)

Rsir(t + 1) =
k∑

l+m+n=k

{Isir(t)Fγ + Rsir(t)Z(1 − δ)},

where G, F , and Z are the probabilities of the subscript
transformation for Ssir, Isir, and Rsir, respectively,

G =
l∑

u=0

m∑
v=0

n∑
w=0

{(
l

u

)
P u

s (1 − Ps)
l−uδ(u,l + w − s)

×
(

m

v

)
γ v(1 − γ )m−vδ(v,m + u − i)

×
(

n

w

)
δw(1 − δ)n−wδ(w,n + v − r)

}
, (B12)

F =
l∑

u=0

m∑
v=0

n∑
w=0

{(
l

u

)
P u

i (1 − Pi)
l−uδ(u,l + w − s)

×
(

m

v

)
γ v(1 − γ )m−vδ(v,m + u − i)

×
(

n

w

)
δw(1 − δ)n−wδ(w,n + v − r)

}
, (B13)

Z =
l∑

u=0

m∑
v=0

n∑
w=0

{(
l

u

)
P u

r (1 − Pr )l−uδ(u,l + w − s)

×
(

m

v

)
γ v(1 − γ )m−vδ(v,m + u − i)

×
(

n

w

)
δw(1 − δ)n−wδ(w,n + v − r)

}
. (B14)

Taking into account the conservation of the size of the
population

∑
[Ssir(t) + Isir(t) + Rsir(t)] = N , we can obtain

the densities of susceptible, infected, and refractory individuals
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at time t :

ρS(t) = 1

N

kmax∑
k=0

∑
l+m+n=k

Ssir(t),

ρI (t) = 1

N

kmax∑
k=0

∑
l+m+n=k

Isir(t),

ρR(t) = 1

N

kmax∑
k=0

∑
l+m+n=k

Rsir(t).

For the growing (recovering) phases, we increase (decrease)
β(t) adiabatically with an increment �β = 0.01 for a finite
evolution time T as Eq. (A6) from β(t) = 0 (1) to 1 (0).

Initially, we randomly choose ρI (0) = 1% of individuals as
infected seeds. We should note that there are no refractory
individuals at the initial moment. Thus, we can obtain the
following initial conditions:

Ssi0(0) = Np(k)[1 − ρI (0)]

(
k

i

)
ρI (0)i[1 − ρI (0)]k−i ,

Isi0(0) = Np(k)ρI (0)

(
k

i

)
ρI (0)i[1 − ρI (0)]k−i , (B15)

Rsi0(0) = 0,

where p(k) is the network degree distribution. Then, we use
the last value of ρI with β(t) as the initial condition for the
next state with β(t + 1) in the growing and recovering phases.
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