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In order to study how local disturbances affect the ac grid stability, we start from nonlinear power balance
equations and map them to complex linear wave equations. Having obtained stationary solutions with phases
ϕi at generator and consumer nodes i, we next study the dynamics of deviations. Starting with an initially
localized perturbation, it is found to spread in a periodic grid diffusively throughout the grid. We find the
parametric dependence of diffusion constant D. We apply the same solution strategy to general grid topologies
and analyze their stability against local perturbations. The perturbation remains either localized or becomes
delocalized, depending on grid topology, power capacity, and distribution of consumers and generator power
Pi . Delocalization is found to increase the lifetime of perturbations and thereby their influence on grid stability,
whereas localization results in an exponentially fast decay of perturbations at all grid sites. These results may
therefore lead to new strategies to control the stability of electricity grids.
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I. INTRODUCTION

The stability of electricity grids requires protecting them
against perturbations [1–3]. Therefore, electrical power sys-
tems must be constructed in such a way that a physical
disturbance does not result in exceeding bounds of system
variable fluctuations. The energy transition towards an in-
creased supply of decentralized renewable energy necessitates
studying consequences of such structural changes for the
stability of electricity grids and finding efficient ways to
modify them to ensure their stability [4]. Since this is a
highly complex and nonlinear problem, the study of its
dependence on network topology, operating conditions, and
forms of disturbances requires making modeling assumptions
[2]. Recently, the synchronization of rotor angles in electricity
grids has been modeled by a network of nonlinear oscillators
[5–9]. Here, networks of generators and engines are described
by a system of coupled differential equations for local rotor
angles of generators and loads ϕi , where i’s are grid nodes. The
numerical solution of these differential equations showed that,
on one hand, networks become more unstable with increasing
decentralization against perturbations on short time scales with
large amplitude, whereas the danger of a blackout can be
reduced by decentralization [6]. In this article, we study how
phase perturbations evolve with time in ac grids. The origin of
such phase perturbations may arise, for example, due to local
fluctuations in generating power from a wind generator. We
start by finding stationary solutions for the spatial distribution
of phase ϕi for a given distribution of active and reactive
power, Pi and Qi at the grid nodes i. Next, we reconsider
the nonlinear dynamic power balance equations. For small
deviations from the stationary solutions, we derive a linear
wave equation describing the phase perturbation dynamics.
Solving these equations, we explore how a local phase
perturbation propagates with time through the grid. Depending
on the geographical distribution of power, grid power capacity,
and topology we find that it may either spread diffusively or
become localized. This phenomenon generally is known as
Anderson localization [10] where the coherent scattering of
waves in a random medium causes their localization.

II. STEADY STATE POWER FLOW
IN AC TRANSMISSION GRIDS

The power balance equations in ac transmission grids are
obtained from Kirchhoff’s laws at node i as

Si =
∑

j

Vi

(
Vi − Vj

Zij

)∗
, (1)

where Si = Pi + iQi. Pi is the active power produced at
generator nodes Pi > 0 or consumed at consumer nodes Pi <

0, satisfying the total power balance condition
∑N

i=1 Pi = 0
with N as the total number of nodes. Vi is the voltage at node i.
In an ac grid the reactive power Qi of consumers is given while
the one of generators is adjusted [3,11]. The transmission line
from node i to j has impedance Zij . Neglecting small losses
due to Joule’s heat, we assume them to be purely inductive
Zij = iωLij , where Lij is the transmission line inductance
between nodes i and j and ω is the grid frequency. Then,
the voltage at node i is Vi = V exp(iϕi), where V is fixed to
nominal grid voltage and the power capacity of a transmission
line is Kij = V 2/(ωLij )Aij , where Aij is the adjacency matrix
of the grid. Note that only N − 1 phase angles ϕi remain to
be determined as a function of the distribution of power Pi at
N nodes constrained by the total power balance condition
so that reactive power Qi is fixed at all nodes. Defining
ψ0

i (t) = exp[−iϕ0
i (t)] with ϕ0

i (t) = ωt + θ0
i , phase angle θ0

i

at node i in the steady state, it is convenient to write Eq. (1) as
a linear wave equation,

Siψ
0
i (t) =

∑
j

iKij

[
ψ0

i (t) − ψ0
j (t)

]
. (2)

III. PHASE DYNAMICS

Phase dynamics in ac electricity grids has been modeled
by active power balance equations with additional terms
describing the dynamics of rotating machines [5–7,11–14].
One term describes the inertia to changes in the kinetic energy
of a synchronous rotating generator or motor with rotor angle
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FIG. 1. Left: square grid of generators (red) and consumers
(blue). Arrows: direction of active power transmission F . Right:
topology of German transmission [380 kV (red), 220 kV (blue)], and
high voltage distribution grid [110 kV (black)] [16]. A propagating
disturbance is sketched as red circles.

ϕi with inertia J when we assume that all loads are either
synchronous or induction motors, whose dynamics can be
modeled that way [3]. Another term describes the damping
with coefficient γ . Adding these terms to the active power
balance equations, the real part of Eq. (1) yields for purely
inductive transmission lines [5,6,11–14],

Pi =
(

J

2

d

dt
+ γ

)(
dϕi

dt

)2

+
∑

j

Kij sin(ϕi − ϕj ). (3)

We note that for fixed voltage V there are no dynamic terms
in the reactive power balance equation, which appear only in
higher order when voltage dynamics in addition to the phase
dynamics are considered [15].

IV. DYNAMICS OF DISTURBANCES IN THE GRID

In order to study the propagation of disturbances, such as
fluctuations in power supply δP (t) or in power capacitance
δKij , we set ϕi(t) = ωt + θ0

i + αi(t) with steady state phases
θ0
i , the solutions of Eq. (2). We study the dynamics of phase

disturbances αi(t) which are governed by

∂2
t αi + 2
 ∂tαi = Pi

Jω
−

∑
j

Kij

Jω
sin

(
θ0
i − θ0

j + αi − αj

)
,

(4)
where 
 = γ /J . Considering small perturbations from the
stationary state ψ0

i , we expand Eq. (4) in αi − αj , yielding
linear wave equations on the grid,

∂2
t αi + 2
 ∂tαi = −

∑
j

tij (αi − αj ), (5)

with hopping amplitude tij = Kij cos(θ0
i − θ0

j )/(Jω). Note
that tij depends both on power capacitance Kij and thereby
the grid topology as well as on the initial distribution of
power Pi through the stationary phases θ0

i . With αi(t) =∑
n cni exp(−iωnt) we get for 
 = 0 the spectral represen-

tation of the linear wave equation,

ω2
ncni =

∑
j

tij (cni − cnj ), (6)

with eigenfrequencies ωn and eigenmodes cn. c0 = 0, ω0 = 0
correspond to the stationary solution. For 
 �= 0 we get from
Eq. (5) the same eigenmodes cn with complex eigenfrequen-
cies �n = −i
 + i

√

2 − ω2

n. Equation (6) can be solved for
arbitrary electricity grids, such as the German transmission

grid shown in Fig. 1 (right) where the hopping matrix elements
tij with stationary phases θ0

i are obtained from the solution of
Eq. (2).

V. SQUARE GRID

As an example, let us first consider a grid where all
transmission lines have equal length a. We start with a periodic
arrangement of generators and consumers as shown for a
square grid in Fig. 1 (left). Assuming that all generators
on sublattice G generate power Px = +P, x ∈ G while all
consumers on sublattice C consume power Px = −P, x ∈ C,
we find the solution by making the Bloch ansatz for the
stationary solution,

ψk(x ∈ G,t) = ψGke
ik·x exp(−iωt),

(7)
ψk(x ∈ C,t) = ψCke

ik·x exp(−iωt),

where k is a wave number. For periodic boundary conditions
on the grid of linear size L in all d directions with unit vectors
ên, n = 1, . . . ,d, ψk(x + Lên) = ψk(x), for all n = 1, . . . ,d,
the wave number is k = 2πn/L where the components of the
vector n, nn,n = 1, . . . ,d are integers. For each wave number
k we find a solution of the form Eq. (7) where the phase factors
ψGk,ψCk are given by

ψCk = exp(iδk)ψGk, with sin δk = P/(fkK), (8)

where fk = 2
∑d

n=1 cos(kna) depends on wave number com-
ponents kn. For given reactive power Q, which is for this
arrangement of consumers and generators constrained by
Eq. (2) to be the same at all nodes, the wave vector k is
determined by the equation,

f 2
k = (Q/K − 2d)2 + P 2/K2. (9)

The transmitted power between sites i and j is Fij =
iKij [ψi(t) − ψj (t)]ψi(t)∗. For the homogenous state k = 0
the active power transmitted between neighbored sites i ∈ G

and sites j ∈ C is Re Fij = P/(2d) as shown in Fig. 1
(left) on a square lattice where arrows indicate the direction
of active power transmitted from generators to neighbored
consumers. The reactive power in the transmission lines is
Im F = K(1 −√

1− P 2

4 d2K2 ), which is for P � K much smaller
than the transmitted active power. For finite wave vector k the
active power transmitted between i ∈ G and j ∈ C for k = kên

is Re Fij = K sin(δk ± kna) with a unit vector between i and
j, êij = ±ên. In all other directions Re Fij = K sin δk .

VI. STABILITY

Disregarding the dependence of αi on the perturbation at
neighbored sites αj reduces Eq. (4) to the one of a damped
driven nonlinear pendulum. For long times t � 0 it has
two stable solutions: (1) Stationary solution ∂tαi = 0, αi =
n2π, n integer, to which small deviations decay exponentially.
(2) Overswinging pendulum solution when the driving force
and damping are in balance. The phase velocity converges then
to

∂tαi(t) = �i −
∑

j

Kij sin
(
�it + θ0

i − θ0
j + ηi

)
Jω

√
�2

i + 4
2
, (10)
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FIG. 2. Phase curves of Eq. (4) for αi , setting αj = 0. Flow
directions are indicated by arrows. Stable fixed points are αi =
n2π, ∂tαi = 0. Separatrices are αil = 2δk + (2l + 1)π, ∂tαi = 0.
The blue shaded areas are basins of attraction. All other phase points
converge to Eq. (10) (red curve).

with frequency �i = Pi/(2
Jω) and phase shift ηi =
arctan(2
/�i). In Fig. 2 phase curves are shown for the
square lattice with θ0

i − θ0
j = ±δk + kna. Regions of stability

are shaded in blue, outside which all phase points converge to
open orbit solution Eq. (10) (red). A condition for phase points
to lie inside the stability region is obtained by approximating
its irregular shape by an ellipse whose vertex on the α

axis is given by the saddle point αil = 2δk − π . Its vertex
on the ∂tα axis is given by a linear interpolation of stable
trajectory on the separatrix ∂tα = −(π − 2δk)
λ, where λ =
−1 −

√
1 + 2dK cos(δk)

Jω
2 . Thus, phase points are inside the basin
of attraction if they satisfy

α2
i + (∂tαi)2


2λ2
� (π − 2δk)2. (11)

VII. PROPAGATION OF LOCAL DISTURBANCES

Now, we can study the propagation of disturbances in a
square grid by inserting the analytical steady state solutions
Eqs. (7)–(9) into the dynamical equations Eq. (4). If we perturb
the phase at node i = n, αn(t = 0) = α0 �= 0, whereas αi(0) =
0 at all other nodes i �= n, that disturbance excites nodes
i �= n at later times t > 0. For a small perturbation, satisfying
Eq. (11), we can use linearized wave equations Eq. (5)
with tij = Kij cos δk/(Jω). Using the spectral representation
αi(t) = ∑

q cqe
iq·ri e−iεq t , insertion into Eq. (5) gives the

complex frequency,

εq = −i


[
1 ±

√
1 − 2 dK cos δk

Jω
2

(
1 − fq

2d

)]
. (12)

For finite 
 and small q the dispersion is quadratic εq =
−i Ka2 cos δk

Jω

q2. For large momenta q, the ballistic limit,

FIG. 3. Phase curves at initial site rl and other sites ri′ ,ri′′ .
Time progresses as indicated on the color bar in units of τ = 1/
.
Delocalization causes slow decay of the perturbation at the initial site
and an initial increase, followed by a slow decay at other sites (upper
curves). Localization causes an exponentially fast decay at all sites
(lower curve).

the dispersion is linear εq |
=0 = vkq with velocity vk =√
K cos δk/(Jω)a. An initially localized perturbation, cq =

const. becomes for times t > τ = 1/
 and distances exceed-
ing the mean free path l = vτ, |ri − rl| > l,

αi(t) = α0

(4πDkt/a)d/2
exp

(
− (ri − rl)2

4Dkt

)
. (13)

Thus, the initially localized perturbation spreads diffusively
with diffusion constant,

Dk = Ka2 cos δk

ωγ
= v2

k τ

2
, (14)

as shown in Fig. 3 where ∂αi is plotted versus phase perturba-
tion αi at initial site i = l and other sites i ′,i ′′ for diffusive times
t > τ = 1/
 using Eq. (13). Time is progressing as indicated
on the color bar in units of τ . Diffusion causes slow decay of the
perturbation at the initial site and an initial increase, followed
by a slow decay at other sites. The area At where nodes
become perturbed at time t , increases diffusively with time
as At = Dkt . In order to quantify the stability with Eq. (11)
we calculate the spatial average δα =√

1
N

∑
i α2

i = α0
(8πDk t/a)d/4 , δω=√

1
N

∑
i ( dαi

dt
)
2=

√
d(2+d)

4t
δα, decaying with a power law in time.

For power capacity K = 0.5 GW, d = 2, grid frequency
ω = 2π50/s, power P = 1.9 GW, inertia J = 105 kg m2, and
damping 
 = 1/s the perturbation spreads initially with veloc-
ity v = 2.22a/s. Beyond mean free path l = 2.22a it spreads
diffusively with diffusion constant D0 = 2.46a2/s. The time
to diffuse a length L = 10a is tD = L2/D0 = 40.64 s. The
closer power P is to capacity limit Kc = 2 dK , the smaller is
diffusion constant D, the longer survives the disturbance.

The propagation of any type of disturbance can be studied
with Eq. (4). For example, a change in power δP at t0 = 0 at
neighbored nodes i,j, δPi = −δPj = δP changes transmitted
power between nodes k,l at time t ,

δFkl(t) = ±δP Akl

π2a2

ω0Dkt2
exp

(
− (ri − rl)2

4Dkt

)
, (15)

with + when k is a generator and l is a consumer and −
vice versa. Similarly, the change in power flow due to a static
perturbation δPi = −δPj = δP is given by

δFkl = ±δP Akl2πa2/(ri − rl)
2. (16)
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An instantaneous change in power capacitance δK Aij causes
a change in power Eqs. (15) and (16) for a static perturbation,
replacing δP by δK, respectively.

VIII. LOCALIZATION OF DISTURBANCES

Equation (6) can be applied to study the propagation of
disturbances in ac grids of arbitrary distribution of power Pi,

arbitrary grid topology, and power capacity Kij by calculating
the hopping amplitude tij = Kij cos(θ0

i − θ0
j )/(Jω) from the

steady state solutions θ0
i as found by solving Eq. (2). In a

first attempt to model the complexity of a real grid, we take
a random distribution of tij caused by the wide distribution
of power Pi and the real grid topology with its complex
network structure. Equation (6) first appeared in the problem
of randomly coupled atoms in harmonic approximation. For
chains it has been solved for various random distributions of tij
[17–20]. If tij is taken from a box distribution, the density of
eigenmodes is constant ρ(�n) = 1/ω for 0 < �n < ω. For
nonzero �n the eigenstates are localized with localization
length ξ (�n) ∼ 1/�n [17–20]. The localization length of the
lowest eigenfrequency �1 ∼ ωa/L is long, on the order of
the system size ξ1 ∼ L. The highest eigenfrequency �n → ω

has a localization length ξ → 2a, twice the length a of a
transmission line. In dimension d = 2, which is the situation
most relevant for real grids, all eigenstates remain localized
for nonzero �n, but the localization length can be for small
�n exponentially large so that it typically is larger than
the system size for realistic grid extensions L. This might
explain that in Ref. [21] we found in square grids a long
range power law decay with power q = 2 as in Eq. (16),
even when taking a random distribution of Pi . Also in a real
grid topology we found long range decay [21]. Typically,
the localization length is smallest in treelike grids, while
it becomes longer, the more meshed the grid becomes. In
dimensions d > 2, there is a critical value ωc such that for
ωn > ωc all modes are localized, whereas they are extended
for ωn < ωc [20,22]. If the phase perturbation is initially in
a state localized around site r0 with localization length ξn, it
decays in time t as αi(t) = α0 exp (−|ri−r0|

ξn
) exp(−
̃nt), where


̃n = Re[
 − √

2 − ω2

n]. The typical phase and frequency
shifts are found to decay exponentially fast as

δα = α0

√
ξn/a exp(−
̃nt), δω = 
̃nδα. (17)

Thus, localization causes exponentially fast decay of phase
perturbations at all nodes i as shown in Fig. 3 where it is
compared with a delocalized phase perturbation decaying with
a power in time t Eq. (13).

IX. CONCLUSIONS

Local perturbations, arising, for example, from power
fluctuations, are found to spread diffusively in a periodic grid,
decaying slowly with a power law in time and space. The closer
the generator power P comes to the capacity limit Kc, the
smaller the diffusion constant D, the longer the perturbation
takes to decay. Modeling the complexity of a realistic grid
with a random distribution of generators and consumers and/or
random transmission power capacity the phase perturbation
is found to become localized in one- and two-dimensional
grids. Localization leads to an exponentially fast decay of
phase perturbations at all sites, whereas delocalization results
in diffusive slow decay, Fig. 3. Initially small perturbations
may then add up at some nodes to large perturbations and
push the system outside of the region of stability. We conclude
that it is favorable for stable grid operation to ensure that
phase perturbations remain localized, decaying exponentially
fast at all sites. The consequences of these results for real
electricity grid topologies will be studied by solving Eqs. (2)
and (6) numerically in a future publication. We also plan to
study how the spreading of perturbations is modified when
including voltage fluctuations using, for example, the third
order model [1,3,7]. Although we assumed here a network of
synchronous generators and motors, modern wind turbines are
rather induction generators, the most modern ones being the
doubly fed induction generator, converting the power from ac
to dc and then to ac with the grid frequency [3]. Thus, the
energy transition towards an increased supply of decentralized
renewable energy necessitates getting a better understanding
of how the dynamic equations are modified and understanding
the resulting consequences for the grid dynamics.
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