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Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators
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In a recent study about chaos synchronization in complex networks [Nat. Commun. 5, 4079 (2014)], it is shown
that a stable synchronous cluster may coexist with vast asynchronous nodes, resembling the phenomenon of a
chimera state observed in a regular network of coupled periodic oscillators. Although of practical significance,
this new type of state, namely, the isolated-desynchronization state, is hardly observed in practice due to its strict
requirements on the network topology. Here, by the strategy of pinning coupling, we propose an effective method
for inducing isolated-desynchronization states in symmetric networks of coupled chaotic oscillators. Theoretical
analysis based on eigenvalue analysis shows that, by pinning a group of symmetric nodes in the network, there
exists a critical pinning strength beyond which the group of pinned nodes can completely be synchronized while
the unpinned nodes remain asynchronous. The feasibility and efficiency of the control method are verified by
numerical simulations of both artificial and real-world complex networks with the numerical results in good
agreement with the theoretical predictions.
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I. INTRODUCTION

An intriguing dynamical pattern observed in spatiotemporal
systems of coupled oscillators is the coexistence of coherent
and incoherent behaviors in spatially separated domains,
namely, the chimera state. This peculiar pattern was first
observed and analyzed by Kuramoto and Battogtokh in sim-
ulating the complex Ginzburg-Landau equation with nonlocal
couplings [1] and the later revisited and named chimera
state by Abrams and Strogatz [2]. For its implications to the
functioning and operation of some realistic systems, e.g., the
unihemispheric sleep of dolphins and birds [3], chimera and
chimeralike states have been studied extensively in the past
years [4–11]. By a ring of phase oscillators coupled with a
cosine kernel, an exact solution of the chimera state has been
given [2], and, by a minimal model consisting of two interact-
ing populations of oscillators, the stability and bifurcations of
the chimera state have been analyzed [5]. Besides the original
model of regularly coupled phase oscillators, chimera states
have also been reported in other types of systems, including
employing different oscillating dynamics (e.g., the periodic
and chaotic maps, the Stuart-Landau oscillator, and the
Hindmarsh-Rose oscillator [12–15]), different coupling func-
tions (e.g., the time-delay and multichannel couplings [6,16]),
and different network structures (e.g., the two-dimensional
lattices and even the complex networks [11,17]). Meanwhile,
in characterizing chimera states, many new properties have
been revealed, e.g., the Brownian motion of the coherent
region [7], the transient feature of the chimera pattern [18],
the existence of multiple coherent regions [9,19], and the
coherence-resonance chimeras [20]. Experimentally, chimera
states have successfully been generated in chemical, elec-
tronic, and optical systems [21–23]. Recently, the control of
chimera states has also attracted certain attention [24–26].
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In exploring the collective behaviors of coupled oscillators,
another interesting phenomenon is that under certain circum-
stances the oscillators can be self-organized into different
synchronous clusters, e.g., the state of cluster (group) syn-
chronization [27–30]. In cluster synchronization, the motions
of the oscillators within the same cluster are highly correlated,
whereas they are weakly or not correlated if the oscillators
belong to different clusters [29]. Recently, the study of
cluster synchronization has been extended to networks of
complex structures in which some new phenomena have been
reported [31–35]. In particular, Pecora et al. studied cluster
synchronization in symmetric complex networks and found the
interesting phenomenon of isolated desynchronization. Differ-
ent from cluster synchronization where nodes are synchronized
into different clusters, in isolated desynchronization a syn-
chronous cluster emerges on the background of a large number
of desynchronized nodes [35]. That is, the synchronous cluster
is coexisting with the asynchronous nodes. This phenomenon
is analogous to the chimera state observed in regular networks
of coupled phase oscillators and, as pointed out in Ref. [35],
has important implications for the functioning and security
of many realistic systems, e.g., the security of the power-grid
network. Yet, comparing to cluster synchronization, isolated
desynchronization is much more difficult to be generated due
to its strict requirements on the network topology [36]. Con-
sidering the importance of isolated desynchronization for the
functioning of realistic systems, a natural question therefore
is whether isolated desynchronization can be induced from an
asynchronous complex network by some control methods.

In the present paper, we propose an effective control
method for inducing isolated desynchronization in complex
networks of coupled chaotic oscillators. Specifically, pinning
a set of symmetric nodes in the network by an external
controller, we are able to make only the set of pinned
nodes synchronized while keeping the remaining nodes still
asynchronous. We will present our control method in Sec. II,
together with a theoretical analysis on the stability of the
isolated-desynchronization state. In particular, based on the
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method of eigenvalue analysis, we will derive the necessary
conditions for generating isolated desynchronization and give
explicitly the formula of the critical pinning strength. In
Sec. III, we will test the proposed method on different network
models, including a small-size artificial network, the Nepal
power-grid network, and a large-size complex network. For
all the tested models, isolated-desynchronization states can
successfully be induced, and the critical pinning strengths
obtained in numerical simulations are in good agreement
with the theoretical predications. Finally, we will give our
discussions and conclusion in Sec. IV.

II. CONTROL METHOD AND THEORETICAL ANALYSIS

Our model of the complex network of coupled chaotic
oscillators reads

ẋi = F(xi) + ε

N∑
j=1

wij H(xj ), (1)

with i,j = 1,2, . . . ,N as the oscillator (node) indices, xi as
the state vector associated with the ith oscillator, and ε as
the uniform coupling strength. ẋ = F(x) describes the local
dynamics of the oscillators, which presents the chaotic motion
and, for the sake of simplicity, is set as identical over the
network. H(x) represents the coupling function. The structural
connectivity of the network is captured by the coupling matrix
W = {wij } with wij > 0 as the coupling strength that node
i receives from node j . If nodes i and j are not directly
connected, we set wij = wji = 0. The diagonal elements of
W are set as wii = −∑

j,j �=i wij so as to make W a Laplacian
matrix [making the synchronization state a solution of Eq. (1)].
This model of linearly coupled chaotic oscillators has widely
been adopted in literature for exploring the collective behaviors
of networked systems. In particular, the stability of the global
synchronization state can be analyzed well by the method of
master stability function (MSF) [37–39], which indicates that
the synchronizability of a network is jointly determined by
factors, such as the network structure, the nodal dynamics,
and the coupling function.

We first describe how to identify the set of nodes supporting
potentially a synchronous cluster, based on the information
of network symmetries [35,40–42]. Let i and j be a pair
of nodes in the network whose permutation (exchange) does
not change the system dynamics [i.e., the set of equations
described by Eq. (1)], we call (i,j ) a symmetric pair and
characterize it by the permutation symmetry gij . Scanning
over all the node pairs in the network, we are able to identify
the whole set of permutation symmetries {gij }, which forms
the symmetry group G. Each symmetry g can further be
characterized by a permutation matrix Rg with rij = rji = 1
if i and j form a symmetric pair and rij = rji = 0 otherwise.
(For the asymmetric nodes rii = 1 and rij = 0 for i �= j .) Rg

is commutative with the coupling matrix, i.e., RgW = WRg ,
and, after operating on W, it only exchanges the indices
of nodes i and j . The set of permutation symmetries for
a complex network in general is huge but can be obtained
from W by the technique of computational group theory [43].
Having obtained the symmetry group G, we then can partition
the network nodes into different clusters according to their

permutation orbits, i.e., the subset of nodes permuting among
one another through the permutation operations in group G are
grouped into the same cluster. In such a way, the network nodes
will be grouped into M clusters. Assuming that the network
is initially staying on the fully desynchronized state (i.e., no
synchronization is established between any pair of the nodes),
our main objective in the present paper is to make one of the
M clusters synchronized, whereas, in the meantime, keeping
the remaining nodes still asynchronous.

Our method for inducing isolated desynchronization is the
following. First, we select from M clusters the one we want
to induce synchronization, e.g., the lth cluster which contains
n nodes. We denote the set of nodes in cluster l as Vl , and by
reordering the network nodes, label them with the new index
i ∈ [N − n + 1,N ]. Then, we pin all oscillators in cluster
l by an external controller. The controller has exactly the
same nodal dynamics and coupling function as oscillators
in the network but is coupled to the oscillators in cluster l

unidirectionally (i.e., the states of the oscillators in cluster l

are affected by the controller but not vice versa). Finally, we
increase the pinning strength and check whether and when
the desired isolated-desynchronization state will be generated.
Under the pinning control, the dynamics of the oscillators reads

ẋi = F(xi) + ε

N∑
j=1

wij H(xj ) + εηδi[H(xT ) − H(xi)], (2)

with η as the normalized pinning strength, xT as the state of
the controller, and δ as the δ function: δi = 1 if i ∈ Vl and
δi = 0 otherwise (i.e., only oscillators in cluster l are pinned).
Equation (2) describes the general scheme of pinning control,
which has extensively been used in literature for controlling the
collective behaviors of coupled complex systems [44–47]. The
specific questions we are interested in and going to address in
the following are as follows: Can isolated desynchronization
be induced by such a control method? And, if yes, what is the
necessary pinning strength?

As nodes within cluster l are commutative with each
other (either directly or through a permutation orbit), the
isolated-desynchronization state is naturally a solution of
Eq. (1). That is, if we set the initial conditions of all oscillators
inside cluster l to be identical (the initial conditions of the other
oscillators are still randomly chosen), then during the process
of network evolution, the states of these oscillators will be
always identical since they are receiving the same coupling
signals from other oscillators in the network. This artificially
created isolated-desynchronization state, however, is unstable
due to the asynchronous nature of the network. When pinnings
are added, the system dynamics will be governed by Eq. (2),
and the unstable isolated-desynchronization state (which is
still a solution of the system dynamics) could be stabilized
when the pinning strength is larger for some threshold value.
In what follows, we will conduct a theoretical analysis on this
critical pinning strength, based on the method of eigenvalue
analysis. Assume that the network is initially staying at the
isolated-desynchronization state X = Xdsy ⊕

Xsy with Xdsy =
[x1,x2, . . . ,xN−n]T and Xsy = [xN−n+1,xN−n+2, . . . ,xN ]T as
the state vectors of the asynchronous and synchronous
oscillators, respectively. According to the definition of the
isolated-desynchronization state, we have xi = xs for i ∈ Vl

062303-2



INDUCING ISOLATED-DESYNCHRONIZATION STATES IN . . . PHYSICAL REVIEW E 94, 062303 (2016)

(xs is the synchronous state of the oscillators in cluster l) and
xj �= xj ′ �= xs for j,j ′ /∈ Vl . To investigate the stability of this
state under pinning, we add infinitesimal perturbations �X =
[δx1,δx2, . . . ,δxN ]T on X and then check the evolution of these
perturbations. In the linearized form, the evolutions of the
perturbations are governed by the set of variational equations,

δẋi = DF(xi)δxi + ε

N∑
j=1

cij DH(xj )δxj , (3)

with DF(xi) and DH(xi) as the Jacobian matrices evaluated on
the state of the ith oscillator and C as the controlling matrix:
cii = wii − η for i ∈ Vl (i.e., the set of nodes inside cluster l)
and cij = wij otherwise. Please note that Eq. (3) is obtained
by linearizing Eq. (2) around the isolated desynchronization
state X instead of the global synchronization manifold used in
the traditional MSF method. That is, the reference states of the
oscillators inside cluster l are identical, whereas they are dif-
ferent from each other for oscillators not belonging to cluster l.

Let R be the permutation matrix associated with the nodes in
cluster l (rij = rji = 1 if i and j belong to Vl, rkk = 1 for k /∈
Vl and r = 0 for other elements) and T be the transformation
matrix of R (i.e., T−1RT = R′ with R′ as the diagonal matrix),
then, transforming Eq. (3) into the mode space spanned by the
eigenvectors of R, we have the new variational equation,

δẏi =
N∑

j=1

φij (X)δyi + ε

N∑
j=1

c′
ij

N∑
k=1

ψjk(X)δyk, (4)

where �Y = {δyi} = T−1�X is the system state in the new
space, C′ = {c′

ij } = T−1CT is the new coupling matrix, � =
{φij } = T−1	T [	 is a diagonal matrix with the elements γii =
DF(xi)], and � = {ψjk} = T−1	′T [	′ is another diagonal
matrix with the elements γ ′

ii = DH(xi)]. By transforming
the variational equations into the mode space, a significant
advantage is that the transverse space of the pinned cluster can
successfully be decoupled from the others, making the stability
analysis largely simplified. Specifically, in the mode space the
matrix C′ has the blocked form

C′ =
(

B 0

0 D

)
, (5)

with B and D as the (n − 1)- and (N − n + 1)-dimensional
matrices, respectively. The matrix B characterizes the per-
turbations transverse to the synchronous manifold of cluster
l, we thus name the space it spans the transverse subspace.
(Please note that as C′ and C are similar matrices, they
have the same set of eigenvalues. By the transformation
operation, the eigenvalues are divided into two different
groups: one for matrix B and the other one for matrix D.)
As the transverse modes are decoupled from the other modes,
the synchronizability of the pinned cluster therefore can be
analyzed separately. Focusing on only the transverse modes of
cluster l, we have the variational equations,

δẏi ′ = DF(xs)δyi ′ + ε

n−1∑
j ′=1

bi ′j ′DH(xs)δyj ′ , (6)

with i ′,j ′ = 1,2, . . . ,n − 1 as the transverse modes, B =
{bi ′j ′ }, and xs as the synchronous manifold of the pinned

cluster. Comparing to Eq. (6), Eq. (4) is significantly sim-
plified, not only for the reduced dimension, but also because
all the variational equations have the same reference state, i.e.,
the synchronous manifold xs .

To make the pinned cluster synchronizable, it is necessary
that δyi should be damping to 0 with time for all the
transverse modes—a question that can be addressed by the
MSF method [37–39]. To be specific, transforming Eq. (6)
into the mode space spanned by the eigenvectors of matrix B,
the variational equations of Eq. (6) can further be decoupled
as

δżi ′ = [DF(xs) + ελi ′DH(xs)]δzi ′ , (7)

where 0 > λ1 � λ2 � · · · � λn−1 are the eigenvalues of B and
δzi ′ is the i ′th perturbation mode in this new space. To make the
cluster synchronizable, the necessary conditions now become
that δzi ′ should approach 0 with time. Let 
i ′ be the largest
Lyapunov exponent calculated from Eq. (7), then whether δzi ′

is damping with time can be determined by the sign of 
i ′ : The
mode is stable if 
i ′ � 0 and is unstable if 
i ′ > 0. Defining
σ ≡ −ελ by solving Eq. (7) numerically, we can obtain the
function 
 = 
(σ ), i.e., the MSF curve. Previous studies of
the MSF have shown that, for the typical nonlinear oscillators,

 is negative when σ is larger than some critical threshold σc

with σc > 0 as a parameter dependent on both the oscillator
dynamics and the coupling function [37–39]. Hence, to keep
the pinned cluster synchronizable, it is necessary that σi ′ > σc

for all the transverse modes. Since λ1 � λ2 · · · � λn−1, this
requirement thus can be simplified as

ε|λ1| > σc. (8)

Since B is derived from C while C is dependent on both
the network coupling matrix W and the pinning strength η, λ1

thus is determined jointly by W and η. To have the formula
for the critical pinning strength, we need to express λ1 as a
function of η explicitly. Noticing that C is constructed from W
by replacing wii with wii − η for only the pinned oscillators,
W therefore can also be transformed into the blocked form
depicted in Eq. (5) by the same transformation matrix T, i.e.,
W′ = T−1WT with W′ as the diagonal matrix. Denoting Bw

as the transverse subspace of W′ and letting 0 > λw
1 � λw

2 �
· · · � λw

n−1 be the eigenvalues of Bw, it is straightforward to
find that λi ′ = λw

i ′ − η for i ′ = 1,2, . . . ,n − 1. In particular,
we have λ1 = λw

1 − η for the first transverse mode, which,
inserting into Eq. (8), gives

ηc = σc/ε − ∣∣λw
1

∣∣. (9)

Equation (9) is our main theoretical result, which predicts the
critical pinning strength necessary for inducing synchroniza-
tion for any cluster in an asynchronous network, based on only
the information of the network topology, i.e., the matrix W.

III. APPLICATIONS

We next check the feasibility and efficiency of the proposed
control method by applying it to different complex network
models, including a small-size network, the Nepal power grid,
and a large-size random network.
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FIG. 1. Inducing isolated desynchronization from a six-node asynchronous network of coupled chaotic Lorenz oscillators. (a) The network
structure. Nodes are grouped into two clusters according to their symmetries: V1 = {1–4} (rotation symmetry) and V2 = {5,6} (reflection
symmetry). (b) By the coupling strength ε = 0.7 the time evolution of the cluster-synchronization errors δx1,2 in the absence of the pinning
control. Both clusters are asynchronous. (c) With the pinning strength η = 8.0 the time evolutions of δx1,2. Cluster 2 is synchronized at about
t = 15, whereas cluster 1 remains asynchronous throughout the process. (d) The variation of the time-averaged cluster-synchronization errors
〈δx1,2〉 as a function of η. 〈δx2〉 ≈ 0 at ηc ≈ 7.8. 〈δxc〉 is the time-averaged synchronization error between oscillator 5 and the controller;
〈δx〉min is the smallest synchronization error between oscillator 5 and oscillators in cluster 1.

A. Small-size network

We first demonstrate how to induce the isolated-
desynchronization state in a small-size network. The struc-
ture of the network is presented in Fig. 1(a), which is
constructed by deleting one link (e.g., w56 = 0) from a
globally connected network of N = 6 nodes. For the sake
of simplicity, we treat the network links as nonweighted and
nondirected, e.g., wij = wji = 1 for the existing links. In
simulations, we adopt the chaotic Lorenz oscillator as the
nodal dynamics, which in the isolated form is described by
the equation (dx/dt,dy/dt,dz/dt)T = [α(y − x),rx − y −
xz,xy − bz]T . The parameters of the Lorenz oscillator are as
follows: α = 10, r = 35, and b = 8/3 with which the isolated
oscillator shows chaotic motion with the largest Lyapunov
exponent of about 1.05. The coupling function is chosen as
H([x,y,z]T ) = [0,x,0]T . Having fixed the nodal dynamics
and coupling function, we then can obtain the MSF curve

 = 
(σ ) by solving Eq. (7) numerically, which shows that

 < 0 for σ > σc ≈ 8.3 [39].

For this simple network, the network symmetries can be
discerned by visual inspection: The group of nodes (1–4)
is of rotation symmetry, and the pair of nodes (5,6) is of
reflection symmetry. Accordingly, the nodes can be divided
into two clusters: V1 = {1–4} and V2 = {5,6}. To measure
the synchronization degree of the clusters, we introduce the
cluster-synchronization error δxl = ∑nl

i=1 |xi − x̄l|/nl with
i ∈ Vl, nl as the number of nodes in cluster l and x̄l =∑

i xi/nl as the cluster-averaged state. Clearly, the smaller the
δxl , the better the oscillators within cluster l are synchronized.
Setting ε = 0.7, we plot in Fig. 1(b) the evolutions of δx1

and δx2 as a function of time. It is shown that neither of the
clusters is synchronized. To implement the control method, we
pin oscillators 5 and 6 by an external controller according to
Eq. (2) so as to induce synchronization solely for oscillators
in cluster 2. (It is worth noting that, due to the network

topology, this cluster cannot be synchronized by varying the
coupling strength, i.e., it is topologically unstable. In contrast,
the first cluster could be synchronized when the coupling
strength is larger for some critical value, i.e., it is dynamically
unstable [36].) By the pinning strength η = 8.0, in Fig. 1(c)
we plot again the time evolutions of δx1 and δx2. It is seen
that, after a transient period of about t = 15, we have δx2 ≈ 0,
whereas δx1 is still of large values. Indeed, with the pinning
control, the desired isolated-desynchronization state can be
induced from the asynchronous network.

To identify the critical pinning strength ηc for inducing the
desired isolated-desynchronization state, we plot in Fig. 1(d)
the variation of the time-averaged cluster-synchronization
error (which is averaged over a period of length t = 50
after discarding a transient period of length t = 100) 〈δxl〉
as a function of η. It is seen that 〈δx2〉 reaches 0 about
7.8, whereas 〈δx1〉 remains at large values. We thus have
ηc ≈ 7.8 numerically. To check whether synchronization is
achieved between the controller and the pinned oscillators too,
we also plot in Fig. 1(d) the variation of the time-averaged
synchronization error between oscillator 5 and the controller
〈δxc〉 = 〈|x5 − xT |〉 as a function of η. It is seen that 〈δxc〉
remains large for η > ηc, indicating that the synchronous
cluster is induced but not controlled by the external controller.
(In our simulations, we have increased η up to 30 and
found that the value of 〈δxc〉 is still large.) Meanwhile, to
check whether there are other synchronous clusters formed
in the network, we also plot in Fig. 1(d) the variation of the
smallest synchronization error between oscillators in cluster
1 and oscillator 5 〈δx〉min = min{〈|x5 − xj |〉} with j ∈ V1. As
〈δx〉min > 0 in the region η > ηc, the possibility of forming
other synchronous clusters thus is excluded.

The critical pinning strength for inducing the isolated-
desynchronization state ηc can be analyzed by the method
of eigenvalue analysis presented in Sec. II as follows. As
nodes 5 and 6 satisfy the reflection symmetry, their permutation
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does not change the system dynamics. We therefore have the
permutation matrix,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

from which we can obtain the transformation matrix (con-
structed by the eigenvectors of R),

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−√
2/2 0 0 0 0

√
2/2√

2/2 0 0 0 0
√

2/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

As nodes 5 and 6 and pinned by the controller, we have the
controlling matrix,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5 1 1 1 1 1

1 −5 1 1 1 1

1 1 −5 1 1 1

1 1 1 −5 1 1

1 1 1 1 −4 − η 0

1 1 1 1 0 −4 − η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

which, after the transformation operation C′ = T−1CT, has
the blocked form shown in Eq. (5) with

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

−5 1 1 1
√

2

1 −5 1 1
√

2

1 1 −5 1
√

2

1 1 1 −5
√

2√
2

√
2

√
2

√
2 −4 − η

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

and

B = −4 − η. (14)

We thus have λ1 = λw
1 − η = −4 − η, which, according to

Eq. (8), gives ηc = σc/ε − |λw
1 | = 8.3/0.7 − 4 ≈ 7.86. This

theoretical prediction is in good agreement with the numerical
result presented in Fig. 1(d) (numerically we have ηc ≈ 7.8).

B. Power-grid network

We next demonstrate how to induce isolated desynchro-
nization in a power-grid complex network. The network model
employed here is the Nepal power grid [48], which contains
N = 15 nodes (power stations) and 62 links (power lines). For
the sake of simplicity, we still treat the links as nonweighted
and nondirected, e.g., w = 1 for the existing links. By the
technique of computational group theory [35,43], we are able
to figure out all the network permutation symmetries (totally
86 400) and, according to the permutation orbits, partition
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FIG. 2. Inducing isolated desynchronization in the network of
the Nepal power grid. The nodal dynamics and coupling function
are the same as in Fig. 1. The coupling strength is fixed as ε = 0.32
with which no synchronization is established between any pair of the
oscillators. Pinning control is added on oscillators in cluster 1. (a) The
variation of the time-averaged synchronization error of cluster 1 〈δx1〉
as a function of the pinning strength η. Isolated desynchronization
is induced when η > ηc ≈ 16. The spatiotemporal evolution of the
oscillators under the pinning strengths (b) η = 14 and (c) η = 18.

the nodes into five clusters: V1 = {1–5}, V2 = {6–8}, V3 =
{9–13}, V4 = {14}, and V5 = {15} [35]. Among them, the
fourth and fifth clusters are trivial as each contains only a
single node. Still, we adopt the chaotic Lorenz oscillator as
the nodal dynamics and use H([x,y,z]T ) = [0,x,0]T as the
coupling function. The coupling strength is fixed as ε = 0.32
with which no synchronization is established between any pair
of oscillators in the network.

For illustration purposes, we pin oscillators in cluster 1
according to Eq. (2). Based on numerical simulations, we plot
in Fig. 2(a) the variation of the time-averaged synchronization
error for cluster 1 〈δx1〉 as a function of the pinning strength
η. It is seen that 〈δx1〉 decreases gradually as η increases
and reaches 0 at about ηc ≈ 16. To take a closer look at
the transition of the system dynamics from the asynchronous
to isolated-desynchronization states around ηc, we plot in
Figs. 2(b) and 2(c) the spatiotemporal evolution of the
network for different values of η. For the case of η = 14 < ηc

[Fig. 2(b)], it is seen that the evolution is random and irregular
through the process. For the case of η = 18 > ηc [Fig. 2(c)],
it is shown that, after a transient period of about t ≈ 18, the
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oscillators in cluster 1 are well synchronized, whereas the other
oscillators in the network remain asynchronous.

Still, the critical pinning strength ηc, obtained in numerical
simulations [Fig. 2(a)] can be analyzed by the method of
eigenvalue analysis presented in Sec. II. To save space, here
we omit the detailed deductions but present only the main
results. In constructing the permutation matrix R, we set
rij = rji = 1 for i,j ∈ V1, rkk = 1 for k /∈ V1 and r = 0 for the
remaining elements. By the eigenvectors of R, we construct the
transformation matrix T and then use it to transform the
control matrix C into the blocked matrix C′ [which has
the blocked form shown in Eq. (5)]. From C′, we finally
obtain the transverse matrix B, which is four dimensional and
has the degenerated eigenvalues λ1–4 = λw

1 − η = −8 − η.
According to Eq. (8), we thus have theoretically ηc = σc/ε −
|λw

1 | = 8.3/0.32 − 8 ≈ 18. As shown in Fig. 2, this theoretical
predication is in good agreement with the numerical result
(numerically we have ηc ≈ 16).

C. Large-size complex network

We finally demonstrate how to induce isolated desynchro-
nization in a large-size complex network. Recently, a new type
of chimera state consisting of two or more coherent regions,
namely, the multiple-cluster chimera state has been reported
in regular networks of coupled periodic oscillators [9,19]. As
an isolated-desynchronization state is analogous to a chimera
state, it is intriguing to see whether it is possible to induce
two synchronous clusters out of the asynchronous states by
the proposed method. To investigate, we generate a random
network of N = 100 nodes and 4931 links (constructed by
randomly removing 19 links from the globally connected
network). Again, we adopt the chaotic Lorenz oscillator as
the nodal dynamics and use H([x,y,z]T ) = [0,x,0]T as the
coupling function. This time, to avoid the overflow in numeri-
cal simulations, we adopt the normalized coupling scheme:
wij = aij /ki for the nondiagonal elements and wii = −1
for the diagonal elements [49,50]. Here A = {aij } is the
adjacency matrix (aij = 1 if nodes i and j are connected,
otherwise aij = 0), and ki = ∑

j aij is the degree of node
i (the number of links attached to node i). In general, we
have wij �= wji , i.e., the couplings are weighted and directed.
By the technique of computational group theory, we can find
out all the network symmetries for this network, based on
which the network nodes can be grouped into four clusters.
In particular, the largest cluster contains 66 nodes (V1 =
{1,2, . . . ,66}), and the second largest cluster contains 22
nodes (V2 = {79,80, . . . ,100}). We fix the coupling strength
as ε = 4.4 with which no synchronization is observed between
any pair of oscillators in the absence of pinning control.

To implement the control, we introduce two independent
external controllers xT 1 and xT 2 with controllers 1 and 2
pinning the oscillators in clusters 1 and 2, respectively. The two
controllers have the same dynamics and pinning strength but
are evolving independently (i.e., they are not coupled to each
other). Based on numerical simulations, we plot in Fig. 3(a) the
variation of the time-averaged cluster-synchronization errors
〈δx1,2〉 as a function of η. It is seen that 〈δx1〉 and 〈δx2〉
reach 0 at about ηc1 ≈ 0.86 and ηc2 ≈ 0.91, respectively.
Therefore, in the region η ∈ (ηc1,ηc2) the network is staying

0.5 0.7 0.9 1.1
0

1

2

3

η

<
δx

>

 

 

<δx
1
>

<δx
2
>

20 40 60 80 100
0

10

20

30

Node

t

Node

 

 

20 40 60 80 100
0 

10

20

30

−20

−10

0

10

20

0 50 100
−10

−5

0

5

10

Node

Δx
i

0 50 100

−5

0

5

10

15

Node

(d) (e)V
1

V
2

V
1

V
2

η
c1 η

c2

(a)

(c)(b)

V
2

V
1

V
2

V
1

FIG. 3. Inducing the isolated-desynchronization state of two
synchronous clusters in a random network of N = 100 chaotic Lorenz
oscillators. The coupling strength is fixed as ε = 4.4 with which
the network is asynchronous. (a) The variation of the time-averaged
cluster-synchronization errors 〈δx1,2〉 as a function of the pinning
strength η. 〈δx1〉 and 〈δx2〉 reach 0 at ηc1 ≈ 0.86 and ηc2 ≈ 0.91,
respectively. The spatiotemporal evolution of the network under
the pinning strengths (b) η = 0.8 and (c) η = 0.95. The snapshots
of the network taken at t = 20 for (d)η = 0.8 and (e) η = 0.95.
�xi = xi − x with x = ∑

i xi/N as the network-averaged state.

on a one-cluster isolated-desynchronization state (only cluster
1 is synchronized), and in the region η > ηc2 the network is
staying on a two-cluster isolated-desynchronization state (both
clusters 1 and 2 are synchronized).

For more details on the formation of the two-cluster
isolated-desynchronization state, we plot in Figs. 3(b) and 3(c)
the spatiotemporal evolution of the network under different
pinning strengths. For a weak pinning strength η = 0.8 <

ηc1 [Fig. 3(b)], it is seen that the oscillators are evolving
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independently without any sign of synchronization for
both clusters. For a strong pinning strength η = 0.95 > ηc2

[Fig. 3(c)], it is seen clearly that the motions of the oscillators in
each cluster V1,2 are highly correlated. To characterize further
the formation of the two-cluster isolated-desynchronization
state, we plot in Figs. 3(d) and 3(e) the snapshots of the network
at the moment t = 20 of the system evolutions presented in
Figs. 3(b) and 3(c). For the case of η = 0.8 [Fig. 3(d)], it is
seen that the states of the oscillators are scattered randomly
over a wide range, indicating the absence of synchronous
cluster; whereas for the case of η = 0.95 [Fig. 3(e)], the
states of the oscillators in V1 (V2) are identical, indicating the
synchronization of cluster 1 (cluster 2) is achieved.

Despite the weighted coupling matrix and the pinning for
two clusters, the critical pinning strengths ηc1 and ηc2 can still
be analyzed by the method of eigenvalue analysis proposed in
Sec. II. In constructing the permutation matrix R, we set rij =
rji = 1 if nodes i and j belong to V1 (V2) and rkk = 1 for other
nodes. Transformed into the mode space of R, the controlling
matrix has the blocked form of Eq. (5). Different from the
one-cluster case, here there are two transverse subspaces
B1 and B2. B1 is 65 dimensional, which characterizes the
transverse subspace of cluster 1. The largest eigenvalues of
B1 is λ1 = λw

1 − η = −1.01 − η, which, according to Eq. (8),
gives ηc1 = σc/ε − |λw

1 | = 8.3/4.4 − 1.01 ≈ 0.88. B2 is 21
dimensional, which characterizes the transverse subspace of
cluster 2. The largest eigenvalue of B2 is λ1 = λw

1 − η =
−1.0 − η, which, according to Eq. (8), gives ηc2 = σc/ε −
|λw

1 | = 8.3/4.4 − 1.0 ≈ 0.89. The theoretical predictions are
in good agreement with the numerical results shown in Fig. 3
(numerically we have ηc1 ≈ 0.86 and ηc2 ≈ 0.91).

IV. DISCUSSIONS AND CONCLUSION

The proposed method of inducing isolated desynchro-
nization could be applied to the general complex networks
of coupled nonlinear oscillators. In our simulations, we
have applied this method to a variety of complex networks
(including all the network models studied in Ref. [35]) and
found that, given the network contains a symmetric cluster,
there always exists a critical pinning strength beyond which
the desired isolated-desynchronization state can stably be
generated. Meanwhile, as the underlying mechanism for
generating isolated desynchronization is governed by cluster
synchronization, the proposed control method might poten-
tially be applied to a complex network of the general nodal
dynamics and coupling functions. For instance, replacing
the coupling function with H[x,y,z]T = [x,0,0]T (different
from the one demonstrated above, this coupling function
generates a bounded stable region in the MSF curve), we
have observed the similar isolated-desynchronization states
shown in Figs. 1–3. Besides the chaotic Lorenz oscillators,
we have also tested the other nodal dynamics, including the
chaotic Rössler and Hindmarsh-Rose oscillators where the
similar isolated-desynchronization states have successfully
been induced by the proposed pinning method (results to be
presented elsewhere).

It should be emphasized that the proposed pinning method
is able to induce, but not control, the synchronous cluster. This

property is rooted in the symmetry of the enlarged pinning
network, i.e., considering the controller as an additional node
to the original network. In this enlarged network, the oscillators
in the pinned cluster are still satisfying the permutation
symmetry, but they are not exchangeable with the controller.
As the pinned oscillators are perturbed by the desynchronized
oscillators while the controller is not, it is therefore impossible
to make the pinned oscillators synchronize with the controller.
However, if the whole network is synchronized (instead of
a few of the clusters), it would be possible to control the
whole network for the manifold defined by the controller. In
such a case, the whole network, the original network, and
the controller, will reach the state of global synchronization
instead of isolated desynchronization [46,47].

The inducing of isolated synchronization in asynchronous
complex networks might have implications for the functioning
and operation for some real-world systems. One example could
be the functioning of the brain network where neurons are
clustered into functional areas that are organized in a hierar-
chical fashion [51]. In realizing the high-level brain functions,
such as memory and cognition, it is normally observed that,
coordinated by the signals sent out from neurons at the upper
level of the hierarchy, a fraction of the neurons at the lower
level could be synchronized into dynamical clusters while the
other neurons remain asynchronous, forming the function-
related dynamical patterns (e.g., the mechanism of binding
synchronization [51]). For instance, the dopamine complex in
the midbrain is constituted by several functional sectors with
each sector being used to coordinate the synchronous behavior
of a collection of neurons in a specific functional-anatomical
macrosystem of the basal forebrain [52]. Another example
where isolated desynchronization is of important concern is
the operating of the international (global) power grid [53,54]
where the power generators of a fraction of the nations are
synchronized in both frequency and phase, whereas the other
nations are asynchronous. Also, from the security point of
view, when a large-scale blackout occurs, and many of the
power generators fail to operate synchronously, it would be
desirable if the synchronization of some important generators
can be reestablished by some control technique [53,54].

To summarize, we have proposed a pinning method
which is able to induce synchronization for only the desired
clusters, i.e., the isolated-desynchronization states, in sym-
metric complex networks of coupled chaotic oscillators. We
have found that, given that the network contains a group
of symmetric nodes, there always exists a critical pinning
strength beyond which a stable synchronous cluster can be
generated on the background of vast desynchronized nodes.
We have conducted a detailed analysis on the stability of
the isolated-desynchronization state and obtained explicitly
the formula for the critical pinning strength. The feasibility
and efficiency of the control method have been verified by
numerical simulations of various network models with the
numerical results in good agreement with the theoretical
predictions. Our paper shed light on the collective dynamics of
complex networks and might be helpful for our understanding
on the functioning of neuronal systems as well as for the design
of modern control techniques for infrastructure networks, such
as the power grid.
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