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We introduce a growing network model, the copying model, in which a new node attaches to arandomly selected
target node and, in addition, independently to each of the neighbors of the target with copying probability p.
When p < %, this algorithm generates sparse networks, in which the average node degree is finite. A power-law
degree distribution also arises, with a nonuniversal exponent whose value is determined by a transcendental
equation in p. In the sparse regime, the network is “normal,” e.g., the relative fluctuations in the number of
links are asymptotically negligible. For p > % the emergent networks are dense (the average degree increases
with the number of nodes N), and they exhibit intriguing structural behaviors. In particular, the N dependence
of the number of m cliques (complete subgraphs of m nodes) undergoes m — 1 transitions from normal to
progressively more anomalous behavior at an m-dependent critical values of p. Different realizations of the
network, which start from the same initial state, exhibit macroscopic fluctuations in the thermodynamic limit:

absence of self-averaging. When linking to second neighbors of the target node can occur, the number of links

asymptotically grows as N2 as N — 00, so that the network is effectively complete as N — oo.
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I. INTRODUCTION AND MODEL

A wide variety of complex networks grow by copying
mechanisms. As examples, copying and redirection are key
ingredients in the growth of the World Wide Web, citation
networks, and other information networks [1-4]. In social
networks, copying corresponds to triadic closure, that is,
the formation of new social ties between two friends of a
given individual. This mechanism appears to be important in
driving social network dynamics [5,6]. Copying also occurs in
nature. For example, the process of gene duplication, which
is essentially the copying mechanism, plays a crucial role
in evolution [7,8]. Various models for protein interaction
networks are also based on duplication and divergence [9-19].

From a modeling viewpoint, the copying mechanism has
the advantage of being local [20-22], as the creation of new
links only depends on the nearest neighborhood of each node,
in contrast to global rules, such as preferential attachment.
Despite the simplicity of the copying rule and the formulation
of a number of models that are based on copying, most of their
properties have thus far been studied primarily by numerical
simulations and/or qualitative arguments. As of yet, there has
not been a rigorous mathematical analysis of networks that are
generated by copying mechanisms. The main purpose of this
paper is to fill this gap.

We investigate networks that grow by an elementary
implementation of the copying mechanism, which depends on
only a single parameter: the copying probability p (Fig. 1).
In our copying model, a network grows by adding nodes
sequentially. Each new node connects to a randomly chosen
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target node and, in addition, independently to each of the
neighbors of the target with probability p. The simplicity
of this growth mechanism allows us to develop an analytical
description of many of the rich network properties that emerge.
Perhaps the most crucial structural change is the transition
from sparse networks for p < %, where the number of links
Ly in a network of N nodes grows linearly with N, to
dense networks, where Ly grows superlinearly with N. In
the sparse regime, the network is “normal” in the sense that
a typical realization of the network is representative of the
average behavior. In contrast, in the dense regime, p > %,
network growth is not self-averaging; namely, sample-to-
sample fluctuations do not vanish even when the number
of nodes N is very large. In addition, the copying model
undergoes infinitely many transitions at p = % %, %, ... where
sudden changes arise in the growth laws of the number of
triangles and progressively higher-order cliques: complete
subgraphs of m nodes. Moreover, for intermediate values of p,
the resulting networks appear to be highly clustered (Fig. 2).
This article is organized as follows. In Sec. II we quantify
the simplest global network characteristic, the number of
links Ly. Specifically, we show that the N dependence of
the average number of links has a transition point at p = %,
while the variance of Ly has transition points at p = % and
at p = % We then analyze the degree distribution in Sec. III
and show that it has a power-law tail with a nonuniversal
exponent in the sparse regime. In the dense regime, nearly all
features of the degree distribution are anomalous. In Sec. IV
we determine the growth laws for the average number of
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FIG. 1. The copying model. A new node (filled circle) attaches to
arandom target (open circle) and independently to each of the friends
of the target (squares) with probability p.

triangles and higher-order m cliques. Cliques undergo a rich
sequence of structural transitions as p increases. In Sec. V we
analyze the clustering properties of the network as a function
of the copying probability p and argue that maximal cluster
occurs at an intermediate value of p. In Sec. VI we examine
the probability distributions for the number of links Ly and
triangles T. In Sec. VII we briefly discuss what happens if,
in addition to connecting to the neighbors of the target node,
connections to second neighbors are also allowed. In Sec. VIII
we conclude and discuss some possible open questions. A
short account of some of the results in Secs. II-IV and VII of
the present paper appeared in Ref. [23].

II. NUMBER OF LINKS

A basic global characteristic of a network of N nodes is the
number of links L y. In many models, the dependence of Ly
on N is trivial. For example, if each new node links to m nodes,
then Ly = m(N — 1). Hereinafter we assume that the network
starts with a single node, so that L; = 0. In the copying model,
however, L is arandom variable that takes different values in
different realizations. The exceptions are the extreme cases of
p = 0and p = 1 where the number of links is deterministic. In
the former case the copying mechanism produces a tree (more
precisely, a random recursive tree [24-26]), so Ly = N — 1.
When p = 1, the copying model leads to the complete graph,
which has Ly = N(N — 1)/2 links.
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A. The average L(N)

The simplest characterization of the random quantity L is
the average number of links L(N) = (Ly). When a new node
is added, the average number of links increases by 1 + p(k),
where (k) = 2L(N)/N is the average node degree. The factor
1 accounts for direct linking and the factor p(k) accounts
for copying events. Indeed, for a target node of degree k, pk
additional links are created on average by copying (Fig. 1).
Thus the average number of links grows as

2p
L(N+1) = (1 +F)L(N)+ 1. 1)

Since we assume that the network starts with a single node,
the initial condition is L(1) = 0.

The solution to the homogeneous version of recursion (1)
is elementary. Using this solution as a integrating factor, we
solve the inhomogeneous equation (see Appendix A), from
which the asymptotic behavior is

1 1
=2, V P <73
LI(N)={NInN p=1, (2a)
A(p) N?» %<p<1,
with
1
A(p) = (2b)

2p—-DIra+2p)

where I'(-) is the Euler gamma function.

Equation (2a) shows that as the copying probability p is
varied, there is a transition from sparse regimes arising when
p < % to a dense regime when p > % The average degree
remains finite as N — oo in the sparse regime and diverges
in the dense regime: logarithmically with N at the transition
point p = % and algebraically for p > % The change in the
dependence of L(/N) and many other network properties as a
function of p is a major feature of the copying model.

Parenthetically, we can obtain the asymptotics of (2a),
with the exception of the amplitude A(p), by considering the
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FIG. 2. Realizations of the copying model for p = 0.1, 0.4, 0.7, and 1 for N = 100, and a summary of the dense regimes. For simplicity,

only the last of the structural transitions is shown (see Sec. V).
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continuum limit of (1). In this limit, we treat N as a continuous
variable and recast the exact difference equation (1) into the
differential equation
dL(N) L(N)
aN _ TPTNT

3)

whose solution recovers the exact asymptotics given by (1) for
P < % In this range, the leading asymptotics are independent
of L(0); the initial condition plays no role. For p > %, the
continuum solution has the correct N dependence, L ~ N 2p,
but the amplitude depends on L(1). The replacement of (1)
by (3) is accurate only when N >> 1. The dependence on the
initial condition indicates that the behavior at small N affects
the outcome, and hence the continuum approach cannot be
trusted whenever there is the dependence on L(1).

Logarithmic and power-law densifications given in (2a)
have been observed in citation graphs, the autonomous systems
graph, software networks, and other social and information
networks [1-3,27]. Network densification also occurs in
models that are based on accelerated network growth [28—
31]. In these models, densification arises by introducing a
time-dependent attractiveness to the nodes. Our approach
is fundamentally distinct, as densification is an emergent
property of the dynamics.

B. The variance V(N)

We now study the variance V(N) = (Lzz\,) — (Ly)?, which
characterizes the fluctuations in the random variable L . This
variance exhibits a richer dependence on N than the average
number of links L(N), with a new transition at p = i, in
addition to the transition at p = % To determine the variance,
we need to consider the copying process in more detail. When
a new node attaches to a randomly selected target node of
degree k, it also attaches to a of its neighbors by copying,
where a is a random variable that can range from O to k. Thus
the number of links changes according to

Lyyi=Ly+1+4a. “4)

Since connections to each of the neighbors of the target occur
independently with probability p, the probability Q(alk) that
a additional links are made to the neighbors of a target of
degree k is

k
O(alk) = (a> P = p)e. )

Averaging (4) we obtain
LN +1)=L(N)+ 1+ (a). (6)

Here a denotes the average over all possible values of a for a
target node of degree k, and (. ..) denotes the average over all
target nodes and hence over all possible degrees. Using (5) we
compute

k
a=) aQlk) = pk, ™

a=0

and thus (6) reduces to (1), as it must.
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We now extend this approach to compute the variance.
Squaring Eq. (4) gives

Ly, =LY+ 1+a*+2Ly+2a+2Lya,
which, after averaging, becomes
<Li,+1) =

To compute (a (

(L3)+ 1+ (a?) + 2L(N) +2(@) + 2{Lya).

2y and 2(L ya), we use (5) to obtain

k
a> =Y a*Q(alk) = p’k* + p(1 — p)k. ®)
a=0
Therefore
(@2) = p*(k*) + p(1 — p)(k). 9)
Further

2ULna) = 2p(Lyk) = <LN Zk> (10)
where the sum is over all N nodes of the network. Since
>k = 2Ly we conclude that

2Lya) = 2P (£2). (11)

N
Using (9)—(11) and (k) = 2L(N)/N we find

(L3,) = (1 + 4p )(L%,)Jr 1+ p*(k?)
3p—p?
+2<1 + T) L(N).

Subtracting the square of (1) from this equation, we thereby
find that the variance evolves according to

4p L(N)
V(N+1) = (1 )V(N)+2p(] —p)—

4
152 LINY + p{i3). (12)

Equation (12) is exact but not closed as it contains (k?).
To close (12) we need to express (k%) as a function of L(N)
and V(N). We have not found such an expression, and its
existence seems doubtful. To make progress, we first estimate
the asymptotic behavior of (12) using arguments that should
apply asymptotically. As long as we are merely interested in
the dependence of V(N) on N and not on amplitudes, we can
replace (12) by the differential equation

dV(N)_4_p L)
N = V(N) +2p(1 p)—

41?
N2

The first term on the right leads to superlinear growth,

V ~ N*, when p > I and linear growth for p < }l. At
p= 4,Eq (13) becomes ZX, = % + const; hence the variance

acquires an additional logarithmic correction: V ~ N In N. To
summarize, we anticipate that the asymptotic behavior of the

L(N)* + p*(k?). (13)
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variance is given by

N p<i
V(N)~{N InN p=1, (14)
1
NP 7<p<L

To derive V(N) in the regime p > % in a more principled
way, we need (k?), as mentioned above. To derive (k?)
requires information about the degree distribution, which will
be discussed in Sec. III. Here we merely quote the pertinent
results that will be used to derive of V(N). In the range
p < p» = ~/2 — 1, the second moment is given by Eq. (20) in
the next section. Using this result in Eq. (13), the evolution of
the variance is given by

AVIN) _ 3Py ovy 4 B(p) (15)
AN N P
with
2p(1 =5p +2p?) 2p® 342p—p?
B(p)= 2P p+2p p PP )

(1—2p)? 1-2p 1-2p—p*

As long as p < p,, the rational function B(p) is finite and
positive. Solving (15) gives, for p < p,

(1—4p)y'B(p)N

p <
B(1/4)NInN p=
NN4P p >

’

V(N) = , a7

Blm B — S

These results improve on (14) because (17) gives the amplitude
in the range p < %. For p > }1, the amplitude cannot be
computed within a continuum approach.

While the behavior (17) has been established for p < p»,
we can extend the V(N)~ N*? asymptotic to the range
p > p» by noticing that the second, third, and fourth terms
on the right-hand side of (13) are of order max[1,N2/~1],
max[1,N*7~2], and N”"t2~!  respectively. [The last result
follows from Eq. (42).] These terms are all subdominant with
respect to the first term on the right, which is of order N*7~!.
Thus we conclude that V(N) ~ N*” forall p > 1.

The above results for the number of links and its variance

lead us to the following conclusions:
(1) When p < %, the variance V(N) grows linearly
with N. Fluctuations are asymptotically negligible because
JV(N)/L(N) — 0 as N — oo. Thus we anticipate that
the distribution P(L,N) of the number of links may be
asymptotically Gaussian when p < %.

(2) The variance scales as N*? when p > %, thereby

suggesting that the distribution P (L, N) is non-Gaussian when
p > %.

(3) In the dense phase (p > %) the magnitude of fluctua-
tions is the same as the average: «/V(N) ~ L(N).

The last point implies that the number of links does not
self-average. This feature leads to a wide diversity between
individual realizations of the network. In particular, the first
few steps of the network growth are crucial to shaping its
asymptotic evolution.
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III. DEGREE DISTRIBUTION

We now study the degree distribution, both because of
its fundamental nature in characterizing the network and
because the second moment of this distribution is an essential
ingredient in the variance V(N) from the previous section.
We will argue that the copying model leads to dramatically
different degree distributions in the sparse (p < %) and dense
(p > %) regimes. In the sparse regime, the degree distribution
has an algebraic tail, and we can also write the number of nodes
of degree k in the scaling form N; = Nny, which simplifies
the analysis. In the dense regime, the degree distribution
is anomalous in nearly all respects and thus far defies a
complete analytical description. Finally, we will use the second
moment of the degree distribution to provide a more complete
derivation of V(N).

In what follows, we assume that N is sufficiently large
that we can employ a continuum approach. Let Ny (V) be the
number of nodes of degree k in a network of N nodes. The
degree distribution evolves according to

dNy N1 — Ny (k — 1)Nk_1 — kN
AN = N P N
The first two terms on the right account for the contributions
due to attachment to a randomly selected target node, the next
two terms account for attachment to the neighbors of the target
node, and the last term

S
me= ) n <k_1)p""(1 — p) k!

s>k—1

+ my. (18a)

(18b)

is the probability that the new node acquires a degree k. Each
term in the above sum accounts for the contribution due to a
target node of degree s in which the new node attaches to the
k — 1 neighbors of this target. Here ny, = N;/N denotes the
fraction of nodes of degree s.

Notice that the rate equations (18a) satisfy two basic sum
rules: ), ny = 1, i.e., the network contains N nodes, and the
value of ), kny is consistent with the total number of links
growing according to (3). The first sum rule is verified by
summing Eq. (18a) over all k > 1. The first four terms on the
right trivially give zero. For the last term, we use } |, n; = 1
and the binomial identity, » o, (5)p*(1 — p)™* =1, to
conclude that »,_,m; =1, thus giving } , ny=1. In a
similar spirit, multiplying (18a) by k and summing over £ > 1
gives (3).

A. Sparse regime

In the sparse regime, we make the standard assumption [21]
that the fractions n, = N /N are independent of N for N > 1.
With this ansatz, we recast Eq. (18) as

[2+ pk + Dlngyr = [1 + pklng

+ D n (Z)”k” = p)' (19)

s>k

While this is not a recurrence, we can use this equation to
determine the behavior of low-order moments of the degree
distribution. For instance, multiplying (19) by k(k + 1) and
summing over all k > 0 gives, after some straightforward
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steps,

k) =Y Kny = 2 34%op
= 1-2p1—-2p—p?

Thus (k?) is finite for p < p,, where p, = /2 — 1 is the
positive root of the polynomial 1 — 2p — p? = 0. We used (20)
in deriving (15)—(16) and establishing (17) for p < %. We also
note that (20) reduces to (k%) = 6 for p = 0. This last result
can be verified by recalling that the copying model reduces to
random recursive trees when p = 0, and the degree distribution
for random recursive trees is n; = 2.

To extract the asymptotics of n; from Eq. (19), first notice
that for large k, the summand on the right is sharply peaked
around s ~ k/p and thus reduces to [12,15]

s o _
Nk/p Z <k>Pk(1 -’ =p ey,

s>k

where we use a binomial identity [32] to compute the sum.
Thus the equation for the degree distribution reduces to

[2+ plk + DIy = [1+ pklne + p~ gy 21

This is now a nonlocal recurrence, as the value of n;,; depends
both on n; and ny,,, where the index k/p is generally much
larger than k itself.

While we have not found a systematic way to solve such a
recurrence, we make the assumption (justifiable a posteriori)
that n; decays slower than exponentially in k. This allows us
to replace differences by derivatives in (21) to give

d
P [1+ pklng = p~" nyyp — ng. (22)

This ordinary differential equation is still nonlocal, but
it nevertheless admits the algebraic solution n; ~ k=7 for
k > 1. Substituting this ansatz in (22) gives the following
transcendental relation for the degree distribution exponent:

y=1+p'—p= (23)

Equation (23) has two solutions in the (y,p) plane.
One, y = 1, is unphysical because it violates the sum rule
Z,@l ny = 1. The other applies for 0 < p < % In this case,
the exponent y = y(p) is amonotonically decreasing function
of p, with y(0) = co and y(%) = 2. The feature that y is
always greater than 2 is consistent with the sparseness of the
network, in which (k) = >, ., kny is finite.

Numerical results for the degree distribution in the sparse
regime show that for small k, the n; quickly converge to a
stationary limit as a function of N (Fig. 3). For larger k, the
degree distribution slowly converges to a power-law asymp-
totic tail whose exponent is consistent with the prediction
given in (23). This convergence becomes progressively slower
as p approaches % This slow approach to the asymptotic
behavior was previously observed in a related model for
protein interaction networks [12] and seems to stem from the
nonlocality of the equation for the degree distribution.

B. Dense regime

The degree distribution has a very different nature in
the dense regime. Instead of a power-law tail, the degree
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FIG. 3. The scaled degree distributions in the sparse regime for
(@) p =0.1 and (b) p = 0.4, For each N, the number of realizations
is 10'°/N.

distribution has a well-defined peak (Fig. 4) whose location
is determined by the mean degree, which grows as N27~!; see
Eq. (2a). An important feature of the degree distribution in the
dense regime is that the fractions of nodes of degree k, n,
are no longer stationary. To show that the distribution is not
a power law as well as the lack of stationarity, let us assume
the converse and derive a contradiction. We thus assume that
ng ~ k=7 and that ny, is independent of N. Using this form for
ng, the number of links in a finite network is given by

max

k,
N N
L=—(k)=— kng~ Nk’ 24
5 (k) ZkE:l”k (24)

max ’

where kn,x denotes the largest expected degree in a network
of N nodes. We estimate this maximal degree by the standard
extremal condition (see, e.g., Ref. [33]) N Zk>kmax ng,=1;
namely, that there is of the order of a single node whose
degree is kyay or greater. This relation gives ke ~ NV/& =D,
so that (24) reduces to

L~ NkXV ~ NYo=D, (25)

On the other hand, Eq. (3) gives L ~ N?”. These two results
are consistent only when 2p(y — 1) = 1, and this consistency
condition agrees with (23) only at p = % Thus we conclude
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FIG. 4. The scaled degree distributions multiplied by (k) versus
scaled degree in the dense regime for (a) p = 0.6, (b) p = 0.75, and
(c) p = 0.9. For each N, the number of realizations is 10'°/N.

that for p > %, the degree densities n; must depend on N, and
further, that the degree distribution is not algebraic in k.
Because of the nonlocality of Eq. (18) and the nonstationary
nature of the solution, we have not found an analytical
solution for the degree distribution in the dense regime.
We therefore report on simulation results. Figure 4 shows
the degree distribution, averaged over many realizations, for
representative values of p, with N ranging between 10? and
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FIG. 5. The degree distributions for two representative realiza-
tions of the copying model for p = 0.75 for a network of N = 10°
nodes. The data are averaged over a 20-point range.

10°. For each N, the number of realizations is 10'°/N. These
data clearly show that the degree densities are not stationary
and that scaling the degree by the average degree (k) does not
collapse the data onto a single universal curve for networks
with 10° nodes or less. It is also worth noting that the degree
distributions all exhibit a single peak, so that nodes of small
degrees do not exist for N — oo. This behavior contrasts
sharply with the sparse regime where the degree distribution
is dominated by the smallest-degree nodes. Finally, the degree
distribution is non self-averaging in the dense regime, as there
is a wide disparity in the degree distributions of individual
network realizations (Fig. 5).

IV. CLIQUES AND OTHER MOTIFS

As p is increased, it becomes increasingly likely that
triangles are generated when each node is introduced. With
this increased frequency for triangles, there is a concomitant
increased propensity for the appearance of m cliques: complete
subgraphs of m nodes. To investigate this feature, we extend the
approach of Sec. II for the number of links, to first account for
the average number of triangles, and then the average number
of m cliques for general m.

A. Triangles

We begin by giving a (trivial) lower bound for the number of
triangles T in a network of N nodes. If there was no copying,
the number of links Ly would equal N — 1 in the resulting
tree network, so that no triangles would exist. For each copying
event, the number of links increases by 1 while the number of
nodes remains fixed, and at least one triangle is created. This
reasoning gives the bound

Iy > Ly —(N -1 (26)

Forp < %, this bound, together with (2a), gives, for the average
number of triangles:

2pN

T = () > 15
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FIG. 6. Counting triangles. The target node (open circle) has five
neighbors (squares), two of which are joined by “clustering” links
(heavy lines). When a new node (filled circle) is introduced, three
copying links (dashed) create three new triangles (one is hatched for
illustration) and one new triangle by induced linking (shaded).

We will see that the average number of triangles grows linearly
with N when p < %, while for p > %, the growth of T(N) is
superlinear in N.

In each successful copying event a triangle is generated
that consists of the new node, the target node and the neighbor
that receives a copied link. We term this triangle-generating
mechanism as direct linking. If links to two neighbors of the
target are created, then two triangles necessarily arise by direct
linking. Additional triangles may be created by a process that
we term induced linking: when links to two neighbors of the
target are created and these neighbors were previously linked,
then a third triangle is created (shaded in Fig. 6).

To determine T'(/N), we need to account for both of these
mechanisms. Suppose that the target node has degree k and that
its neighbors are connected via ¢ “clustering” links (Fig. 6). If
a links to the neighbors are made by copying, the number of
triangles increases on average by

a(a—1) c
2 k(k —1)/2°

The first term on the right accounts for direct linking and
the second for induced linking. For the latter, we count how
many of a(a — 1)/2 possible links between a neighbors of
the target, which also connect to the new node, are actually
present. We now average (27) with respect to the binomial
distribution (5) for a. This elementary calculation, together
with the already-known result a = pk from Eq. (7), gives

AT =a+ Q27)

k

ala—T) =) ala—D)Q(alk) = p*k(k — 1),

a=0
from which we obtain the compact result
AT = pk + p°c. (28)

The term p?c in Eq. (28) can be understood by noting that two
previously connected neighbors also get connected to the new
node with probability p? since linking to each node occurs
independently.

We now express the average degree (k) via L(N) and the
average number of clustering links (c) via T(N). The former
relation is known, while to determine the latter we note that
¢ equals the number of triangles that contain the target node.
Thus

2L(N)
N

_ 3T(N)
, (c) = N (29)

(k) =

PHYSICAL REVIEW E 94, 062302 (2016)

Using (29), we average the increment of the number of
triangles in (28) to obtain (AT) = 2pL/N +3p>T/N each
time a new node is added. Therefore the number of triangles
evolves according to

(3P L(N)
nN+4»_<«+77)Tmm+2p—N—. (30)

Solving this recurrence equation (see Appendix B) gives the
asymptotic behaviors

2 1
<1—2p>5—3p2> N pP=<3z
4N In N p= %,
T(N) = | 555 N* l<p<? (31a)
1A3)N**ImN  p=3,
C(p) N>’ <p<,
with A(p) given by (2b) and
2
Clp) = (31b)

Gp=2)Bp* = DHTEBp*+ 1)

Notice that for N > 1, the recursion (30) reduces to the
differential equation

whose solution coincides with (31a), except for the amplitude
in the regime p > %, which cannot be determined within the
continuum approach.

Equation (31a) exhibits several striking features. First, the
triangle density (the average number of triangles per node)
converges to a nonvanishing value for all 0 < p < 1, as
observed in many empirical complex networks. This linearity
arises because for any p > 0 a nonzero number of triangles
are typically created when each node is added. Second, the
average number of triangles 7' (N) undergoes phase transitions
at p :% and at p = % Although there is change in the
N dependence at p = %, the average number of triangles
continues to scale linearly with the number of links for any
p < % However, beyond p = %, the number of triangles grows
faster than the number of links.

B. Cliques

We can extend the above considerations to treat complete
subgraphs, or motifs, of arbitrary size m (with links and
triangles corresponding to motifs of size 2 and 3 respectively).
Let K,,,(N) be the average number of such motifs in a network
of N nodes, with K,(N) = L(N) and K3(N) = T(N).

To determine the number of quartets, cliques of size four,
we use similar reasoning that led to Eq. (28). We thus find
that adding a node gives, for the average increase A K, in the
number of quartets:

AKy = p’c+ pid. (32)

Here d is the number of triangles whose vertices are all
neighbors of the target node. Using the relations (c¢) = 3T /N
and (d) = 4K4/N, we find that in the large- N limit the average
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number of quartets evolves according to

dK4 ,T N
—:3 —+4 T 33
N Py Ty (33)
whose solution is
N 0<p<i,
N2P Lop<?
KWy~ s o )< 3 (34a)
3 4
N¥ 2o p<L

At the transition points p = %, %, and %, the corresponding
algebraic factor is multiplied by In N.

We can refine the above results by incorporating the exact
asymptotic behaviors about triangles from (31a), to obtain the
exact amplitudes in the range 0 < p < %:

6p° 1

=iy VP <o

6N In N p= %
3pA(p) 2 1 )
aspaan VY 3<P<3%

KW = {I2AGN N p =2,

Cp) ar3p? s s
=3 N 5<P<%
27 (3 N27/16 _ 3
#CEHNInN  p=13,
~N4P? % <p<i

(34b)

To obtain the amplitude in the range % < p < lrequires an
analysis of an exact recurrence for K4(N).
More generally, the average number of cliques of m nodes,
K,,(N), satisfies
dK,
dN
Solving (35) recursively gives

m—2 Km—l m—1 Km
=(m—1p — TP (35)

m—2 . i
N Dp’
Ky = T1-LEDE e
1 —mpm— i1 1-G+Dp/
in the sparse phase (p < %), while in the dense phase
- . 1
K,, ~ NUThr! for L <p< J'L, (36b)
Jj+1 +2

with j = 0,1,2,...,m — 1 (the last asymptotic for j = m — 1
holds when 1 —m~! < p < 1). The N dependence of the aver-
age number of cliques of size m therefore undergoes transitions
atp=1—1/nwithn = 2,...,m. Thus the dense regime of
the copying model can be partitioned into progressively finer
subintervals where there are distinct N dependences for the
number of m cliques.

C. Star subgraphs

Another simple motif within a complex network is a star
graph. Part of the reason to study star graphs is that they are
simply related to the degree distribution itself. Let S; denote
the number of star graphs with j leaves (nodes of degree 1).

PHYSICAL REVIEW E 94, 062302 (2016)

A node of degree k is thus a central node in (1;) subgraphs of
type S;. As a consequence, the number of star graphs and the
degree distribution in a given network are related by

k
NEDD (j)Nk. (37)
k>j

We denote by S;(N) the average number of subgraphs of type
S; in a network of N nodes. From (37), there is a simple
relation between the average number of stars and the falling
factorial moments of the degree distribution:

1
S;(N) = FNM]', wj=(ktk —1)---(k—j+1)). (38)

Using the evolution equation for the degree distribution

[Eq. (18a)], the falling factorial moment, which is a function

of p and N, evolves according to

N g jp— M+ —1 -1
Iy = @ Fip = D+ i+ G = Dp 4 p i

(39)

From (39), each factorial moment u; = u;(p,N) remains

finite, limy_, o 1 j(p,N) = u;(p), when p < p;, where p; is

the positive root of

pl+jp—1=0. (40)
When p < p;, Eq. (39) yields the recurrence

1+G=Dp+piT!
wi(p)=j - .
l—jp—p’

wi—1(p),

from which

wi(p)=j'r;(p), 41)

where we define the shorthand notation

j . i1
1+G—-Dp+p
ri(p) = | | .
i=1

1—ip—p
Generally
J'2i(p) p<pj
w;=13J'A;InN p = Dpj, (42)
~ Nipt+p'=1 pj<p<l1,

where Aj = [1+(j — Dp; + pi ' 1A;-1(p)). As a consis-
tency check, notice for the case j = 1, Eq. (42) reproduces
the average degree u; = (k) = 2L(N)/N.

Combining (38) and (42), the number of stars asymptoti-
cally behaves as

Aj(p)N P <Djs
Sj(N)={A;NInN P =7Dj 43)
~Nirtp! pi<p<l

Overall, the numbers of star subgraphs have a simpler N
dependence than cliques because the former undergo a single
transition for each j at an irrational value of p; whose first
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few values are

p=~v2-1,
p3=\7(~/§+1)/2—\"/(«/§—1)/2,

pa=\V2-1/N2-1/V2,

etc. From (40), the asymptotic behavior of the threshold values
are given by p; — 1/j — 1/j9! for j > 1. In contrast, the
phase transition points for complete-graph motifs K,,(N) are
all rational and at the same location for every m: only the
number of transition points is variable, with m — 1 transition
points.

V. CLUSTERING

For intermediate values of p, we have seen that the copying
model gives rise to nontrivial motifs, and we now investigate
whether their appearance corresponds to the emergence of
significant network clustering, as might be surmised visually in
Fig. 2. There are two popular measures of network clustering:
(1) the transitivity, or global clustering coefficient and (ii) the
local clustering coefficient (see e.g., Ref. [34]). The transitivity
7 for a connected, undirected, and simple (no multiple links
between two nodes) graph G is defined as

No.(triangles in G)

=3 . 44
fe x No.(twigs in G) “44)

Here a twig is a node with two neighbors and thus looks like
e—e—e. By definition, the transitivity is already averaged over
all network nodes.

To define the local clustering coefficient, first consider an
arbitrary node n of degree k in the network. The k neighbors
of n could potentially be connected by up to (1;) edges. The

clustering coefficient of node n is then defined as c(n)/(5),
where c(n) denotes the actual number of connections between
the neighbors of n. Finally, the local clustering coefficient
CC(N) is obtained by averaging the node clustering coefficient
over all nodes:

cCG) = — > . (45)

N neG (g)

If G is a tree, the above clustering coefficients vanish,
while if G is the complete graph, both clustering coefficients
equal one [which explains the choice of the numerical factor
in the definition (44)]. We now examine the dependence of
the clustering coefficients on the copying probability. Each
network realization leads to distinct values for the clustering
coefficients. In fact, the transitivity is non-self-averaging when
p > % In this dense region, however, the transitivity vanishes
as N — oo so that the lack of self averaging does not pose
any difficulties. Conversely, for sufficiently small p, where the
transitivity is nonzero in the N — oo limit, the transitivity is
self-averaging and is determined from

_ 3T(N)
S(N)’

where T(N) is the average number of triangles and S>(N) is
the average number of twigs.

(N) = (15) (46)
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FIG. 7. The transitivity 7(N) (solid symbols) and the local
clustering coefficient CC(N) (open symbols) versus the copying
probability p for networks of different sizes. The solid smooth curve
is the analytical expression (48). The dotted curves are guides to the
eye.

To determine the transitivity in the limit N — oo, we need
the average number of triangles T (N), which is given by
Eq. (31a) and the average number of twigs S»(N). The latter
is given by specializing (43) to j = 2:

2(1+2p)
(1-2,;)(1—21;;—,;2) N p<p
— 2
52(N) =12 tzii NInN p=p, 47)
~NPE p<p<L

With these results, the transitivity is (Fig. 7)

3p(1—=2p—p?)
(112,;)({)—3[;72) 0< p<p

7(00) =10 pp<p<l, (48)
1 p = 1’

where p, = +/2 — 1 is again the positive root of the quadratic
equation p> +2p — 1 =0.

A perplexing feature of the transitivity is its nonmonotonic
dependence on p, with a maximum deep in the sparse regime
(at p ~ 0.2181). We also emphasize that when p, < p < 1,
the transitivity vanishes in the thermodynamic limit N — oo.
However, the simulations show that even for large networks
the transitivity is nonzero and approaches zero very slowly
as N increases (Fig. 7). This features can be understood
theoretically. For instance, in the marginal case of p = p,,
Eq. (46), in conjunction with (31a) and (47), shows that
the transitivity exhibits a slow inverse logarithmic decay:
7(N) ~ (InN)~.

VI. DISTRIBUTION OF LINKS AND CLIQUES

Because a varying number of links are added to the network
each time a new node is introduced, the distributions of the
number of links and the number of cliques are nontrivial
quantities. Here we investigate the asymptotic properties of
these link and clique distributions by numerical simulations,
as well as basic probabilistic and extreme statistics arguments.
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FIG. 8. Semilogarithmic plot of the distribution P(L,N) versus
the scaled number of links for N = 10* and representative values of
p. Data are collected over 10° realizations for p up to 0.7 and 10°
realizations for p = 0.9.

A. Link distribution

Let P(L,N) be the probability that a network of N nodes
contains L links: P(L,N) = Prob(Ly = L). As a function of
P, this distribution exhibits a wide range of behaviors (Fig. 8).
For p « 1, the distribution P(L,N) is visually symmetric and
Gaussian in appearance. As p is increased, P(L,N) broadens
considerably and is enhanced at large argument. Visually,
P(L,N) is maximally broad for p ~ 0.7, while for larger
p, the distribution progressively narrows and develops an
enhancement at small argument.

Each time a new node is introduced, the number of links
increases by 1 4 a, where the random variable a is the number
of copying links that are created [Eq. (4)]. In the sparse phase,
where the degree distribution reaches a stationary limit with
the algebraic tail k=7 [Eq. (23)], the increment in the number
of links 1 4 a is also drawn from this same distribution. For
y > 3, which occurs when p < V2 — 1, the second moment
(a?) is finite. Because the first two moments of the link
increment are finite, one might anticipate that the Central Limit
Theorem applies, from which P(L,N) would asymptotically
be Gaussian.

However, the increments 1 + @ when each node is intro-
duced are not statistically independent. A particularly fruitful
copying event for a high-degree target node increases the
degrees of many neighboring nodes, which, in turn, affects the
increment in the number of links in later node additions. Thus
the growth in the number of links is governed by a correlated
random-walk process and the Central Limit Theorem is not
applicable to infer the asymptotic form of P(L,N).

From Eqgs. (2a) and (17), the ratio of the square root of
the variance to the average number of links, /V(N)/L(N)
decays as N~1/2 for p < % and slower than N~'/? for larger
p. This behavior suggests that p = % might be the point where
P(L,N) changes in character from Gaussian to non-Gaussian.
We also test the Gaussianity of P(L,N) by measuring its
skewness, j3/0° where u, is the n™ central moment and
o is the standard deviation of the probability distribution, and
excess kurtosis, /14/0* — 3. Both these quantities are zero for
the Gaussian distribution. Numerically, we find that for p < }1,
the skewness and excess kurtosis do approach zeroas N — oo,
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FIG. 9. Skewness (solid symbols) and excess kurtosis (open
symbols) of the link distribution as a function of N.

while for p > %, these quantities are both nonzero as N — oo

(Fig. 9). These results indicate that the distribution P(L,N) is
non-Gaussian for p > 1.
When p > %, the standard deviation in the number of links

V' V(N) grows as L, and this suggests that P(L, N ) approaches
the single-parameter scaling form,

1
P(L,N)~ —— (L ith L= L/L(N), 49
()L(N)()Wl /L(N) (49)
as confirmed in Fig. 10. In many processes that are generated
by a random-walk-like process, the scaling function ®(L) has
the limiting forms [35-37]

L3+ L> 1,
(1/L% L« 1.

We now give heuristic arguments for the tail exponents 51 by
considering the extreme cases where L is (i) as large as possible
and (ii) as small as possible, and matching the distribution
P(L,N) in these extreme cases to the hypothesized limiting
form of the full distribution.

The maximal number of links Ly,.x = N(N — 1)/2 corre-
sponds to generating a complete graph. The probability C(V)
to construct a complete graph is

—In®(L) ~ { (50

C(N):pp2p3-~-pN72:exp(%N21np). (51)
25
O
(0]
2 r A ]
Z sl ]
a 1.5
&
z 1 |
—
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L/L(N)

FIG. 10. The scaled distribution of the number of links for the
copying model with p = 0.7.
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Each factor p" gives the probability that the addition of a node
to a complete graph of n + 1 nodes leads to a complete graph
of n 4 2 nodes. In the dense regime L(N) = A(p)N?” [see
Eq. (2a)], so that the maximal value of the scaling variable is
Limax = Lmax/L(N) ~ N?1=P)_ Using this value of Ly, and
matching (50) with (51), we obtain [N?!=P]% ~ N2, from
which we extract the large-L tail exponent
5 1
+= 1 o

Conversely, the smallest possible L arises if no copying
connections are made, so that the resulting network is a
tree with L = L,;, = N — 1. The probability that no copying
connections are made when a new node attaches to a node
of degree k is (1 — p)*. Thus the probability to generate
a tree is (1 — p)=K, where the sum runs over the degrees
of all selected target nodes. The upper bound (1 — p)V~!
arises in the situation when only leaves (nodes of degree 1)
have been selected during the network creation. Generally
one still anticipates that >k ~ N and hence In ®(Ly;,) ~
N In(1 — p).Since Lypin = Lmin/L(N) ~ N'727 the matching
gives [N?P~11% ~ N leading to the left tail exponent

1
ST

To summarize, the tails of the distribution of the number of
links are given by

L1/(0=2p)
L1/(0=p)

L«1,

52
L> 1 (52)

In &(L) ~ —{

B. Triangle distribution

One can also investigate the distributions of other cliques.
For triangles, for example, the corresponding probability
distribution is P(T,N) = Prob(Ty = T). We make that ansatz
that in the dense phase the distribution P (7, N) approaches the
single-parameter scaling form:

1 .
P(T,N) ~ ) W(T) with T=T/T(N). (53)
As in the case of the link distribution, we postulate that the
large-argument tail of the scaled distribution has the form
InW(T) ~ —T®for T > 1, which we expect will be valid in the
dense phase p > % We now estimate the large-argument tail
of the triangle distribution by again considering the extreme
case where the number of triangles is as large as possible. The
largest possible value of T arises when a complete graph is
generated. In this case, T = Tpay = (g’ ), and using Eq. (31a)
the scaling variable T is given by

N3—2p
T~
N33 p > %

1o,
2 =P (54)

On the other hand, from Eq. (51), the probability to
construct a complete graph is given by exp(%N 21n p). This
form matches (53) if the T >> 1 tail of the triangle distribution
is given by

2/(3-2 1 2
T2/G-2p) 3<p<i,

T2/G-3p% (53)

InW(T) ~ —{

Wi

<p<l.
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FIG. 11. Numerical evaluation of the probability for network
completeness, C(N) from Eq. (57), for fixed p = % and representative
values of ¢. The saturation is obvious, C(co) > 0 for all ¢ > 0. The
ultimate values of C(co) can be very small for small g.

This same line of reasoning can be straightforwardly adapted to
obtain the large-argument tail of the distribution of m cliques.

VII. SECOND-NEIGHBOR CONNECTIONS

Suppose that in addition to connecting to the neighbors of
the target with probability p, a new node also connects to
the second neighbors of the target with probability ¢. Such a
mechanism naturally arises in social media, such as Facebook,
where we are sporadically encouraged to make connections to
friends of our friends. The surprising outcome of second-order
linking is that the probability that the network is complete is
nonzero, albeit very small, for any ¢ > 0.

To estimate this completeness probability, suppose that
the network is complete when it contains N nodes. Then
the probability that the network remains complete when the
(N + 1)-st node is introduced is

N

C(N) =Y BNk, p)l —(1 — g1V, (56)
k=0

where B(r,k,p) = (7) p*(1 — p)"~* is the binomial probabil-
ity. The factor B(r,k,p) gives the probability that there are

108

l06 L

£10

100 b= : : : :
10° 10! 10° 10° 10* 10°

N

FIG. 12. The N dependence of the number of links for second-
neighbor copying with g = p?.
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k first-neighbor connections from the new node, while the
remaining factor [1 — (1—q)k]N_k gives the probability that
the remaining N — k nodes are linked to the new node by
second-neighbor connections.

We now argue that C(N) approaches 1 sufficiently quickly
as N increases, so that the product of these factors converges
to a nonzero value. In the large-N limit, the binomial factor
becomes a Gaussian distribution that is sharply peaked about
k = Np, with a width that is of the order of \/N . Over this
range of k, the factor [1 — (1—¢)*1" " in Eq. (56) is nearly
constant. We therefore replace k by its most probable value
Np in the above expression. After doing so, this factor can be
written as

C(N) ~[1 — (1 — g)NP V=P
~exp{—N(1 — p)exp[NpIn(l — g)]}.

The probability that the network of N nodes is complete,
C(N), is then given by

cvy= [T ¢

J<N—1

N
= exp {—/ J(I = p)explj pIn(l — ¢)] dj}- (57)

Because the integral in the exponent converges as N — oo,
the completion probability is necessarily nonzero.

Numerical numerical evaluation of (57) shows that the
completion probability C(N) indeed converges to a nonzero,
albeit extremely small, value as N — oo. Figure 11 shows
this evaluation for the case of p = % and for various ¢g. A
more relevant criterion is not defect-free completeness, but
whether the number of links eventually scales as N2/2, as in
the complete graph. Simulations show that for representative
values of p and g, the average number of links L(N) initially
grows linearly with N but then crosses over to growing
as N?/2 (Fig. 12). Thus second-order copying generically
leads to networks that are effectively complete: eventually
each individual knows almost everybody. Moreover, Fig. 12
illustrates the macroscopic differences between individual
network realizations. Thus copying leads to non-self-averaging
in the dense regime: unpredictable outcomes when starting
from a fixed initial state. This intriguing feature also arises
in empirical networks and related systems [38—40], and
intellectually originates with the classic Pélya urn model [41-
43].

VIII. OUTLOOK

We introduced and investigated the properties of an ex-
ceedingly simple growing network model that is based on
the mechanism of node copying. Each new node that joins
the network attaches to a randomly selected target node and to
each of the neighbors of the target with an independent copying
probability p. In spite of its deceptive simplicity, the structure
of the network that results from this growth mechanism is
extremely rich. One of the fundamental outcomes of our
copying model is that a transition from a sparse to dense
regime occurs as the copying probability p increases beyond
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%. Dense networks are characterized by a mean degree that
increases with the number N of nodes in the network, a feature
that appears in a variety of empirical networks [3], as well as
by large fluctuations between individual network realizations.
For these reasons alone, it is important to understand this
densification process.

The bulk of our analysis focused on the analytical de-
scription of various global network quantities, such as the
N dependence of the average number of links L(/N) and the
number of m cliques, K,,(N). We found that L(N) ~ N for
p < %and L(N) ~ N??for p > % Analogously, for triangles,
we found that K3(N)~ N for p < %, K3(N) ~ N?P for

1 2
§<p<—

5, and K3(N) ~ N3 for p > % For general m,
there are m — 1 transitions points where the N dependence
of the m-clique density suddenly changes. Given the richness
of our predictions, it would be worthwhile to reanalyze the
densifying networks have have been observed empirically [3]
to test whether they can be accounted for within the framework
of the copying model.

Although a range of models based on the copying mecha-
nism have been proposed in the past and various empirical re-
sults have been obtained, our investigation offers a systematic
and relatively complete analytical derivation of their structural
properties. Our analytical treatment provides insights on how
to generate networks with controllable densities of specific
motifs. Such an initiative might aid in the design of controlled
environments to explore how the network topology affects the
diffusion of an innovation or the spread of a virus in a social
system.

The copying model could also serve as benchmark to test
the veracity and the robustness of various types of algorithms,
such as community detection [44,45], by generating more
realistic structural properties [46] than those of random
benchmarks [47]. For example, in stochastic block mod-
els [48], edges are, by construction, conditionally independent
random variables [49]. In contrast, in growing models like
the one presented here, the system evolves organically and
the presence of edges at one time may cause the creation of
edges at future times, as is the case in real-world systems.
Another basic unanswered question is: What are the spectral
properties of networks generated by the copying model?
This question is particular intriguing in the dense regime
where there are large fluctuations between individual network
realizations.
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APPENDIX A: EXACT BEHAVIOR OF L(N)

To determine the exact solution of Eq. (1), we first solve the
homogeneous version of this equation and use this solution as
an integrating factor. The homogeneous solution is

’ﬁ <1+2_p> _ T@p+N)

e j ) T Tep+nravy

We thus we seek a solution to Eq. (1) of the form
I'2p+ N)

Ir'2p+ DHIWN)

This ansatz allows us to recast Eq. (1) into the recurrence

rep+1HI'N+1)
TRp+N+1)

Solving Eq. (Al) subject to the initial condition U(1) =0
(recall that L; = 0), we find

L(N)=U(N)

UN+1D)=UN)+ (AD)

N

_I'Cp+N)
LN) = =15 ;

I'(j)
r@p+j)

(A2)

To determine asymptotic properties, we will often use the
well-known feature of the gamma function

T'2p + x)

p 1.
T(x) o x>

(A3)

When p < %, the sum on the right-hand side of (A2) diverges.
Thus we can use (A3) to give

N
1—-2p

L(N) — N?P Z 7
j<N

bl

leading to the result quoted in (2a). For p = % the exact
solution to (A2) is

L(N) = N(Hy — 1), (A4)

where Hy =3 oy J ~!is the Nth harmonic number. From
the asymptotics of the harmonic numbers [32] we obtain

| |
LINy=NInN+y — )+ - — —
(N)=NUnN+y=D+3 =55+ 5ons

(AS5)
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where y = 0.57721566. .. is the Euler-Masceroni constant.
Keeping only the leading term in Eq. (AS) gives the result
quoted in (2a). For p > %, the sum on the right-hand side of
Eq. (A2) converges. Hence

I'()

— = =A N2P
rep+ W

L(N) > N7 )" (A6)
j=2

with A(p) given by Eq. (2b). The sum on the right-hand side
of Eq. (A6) is found by specializing the identity [32]

o]

I'(a)

Zr(a+k) _
~ T(c+k) C(c—a—-DT—-1)

toa =2andc =2p +2.

(AT)

APPENDIX B: EXACT BEHAVIOR OF T(N)

To find the amplitude C(p) quoted in (31a), we need to
solve the recurrence (30). Following the same approach as that
used for the number of links, we first solve the homogeneous
version of (30) and use this the homogeneous solution as an
integrating factor

2
Ty = R(N) LCP TN (B1)
I'(N)
We use this substitution together with the exact solution (A2)
to recast (30) into recurrence

I'(j)

FQp+N) &
Z TQ2p+j)

R(N +1) = R(N) + 2pr(3p2 e

=2
which is solved to give

N-1

Z I'Cp+n)
FGp2+14n)

ROV) — 2p§ X0)
£ T2p+))

(B2)
n=j

When p > % both sums in (B2) are convergent. Hence (B1)
asymptotically becomes T(N) = R(co)N 39" where we addi-
tionally used (A3). Thus the amplitude C(p) in Eq. (31a) is
equal to R(00):

o0 . o0

I'(j) I'(2p+n)
C(p)=2 . B3
(=23, F(2p+j)ZF(3p2+l+n) ®3)

Jj=2 n=j

Using the identity (A7) twice, we compute the sums in (B3)
and arrive at the result for C(p) quoted in Eq. (31b).
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