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Perturbation-free prediction of resonance-assisted tunneling in mixed regular-chaotic systems
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For generic Hamiltonian systems we derive predictions for dynamical tunneling from regular to chaotic
phase-space regions. In contrast to previous approaches, we account for the resonance-assisted enhancement
of regular-to-chaotic tunneling in a nonperturbative way. This provides the foundation for future semiclassical
complex-path evaluations of resonance-assisted regular-to-chaotic tunneling. Our approach is based on a new
class of integrable approximations which mimic the regular phase-space region and its dominant nonlinear
resonance chain in a mixed regular-chaotic system. We illustrate the method for the standard map.
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I. INTRODUCTION

Tunneling is a fundamental effect in wave mechanics, which
allows for entering classically inaccessible regions. While text-
books focus on tunneling through potential barriers, tunneling
processes in nature often take place in the absence of such
energetic barriers. Instead, one observes dynamical tunneling
[1,2] between classically disjoint regions in phase space.

In generic Hamiltonian systems dynamical tunneling usu-
ally occurs between regions of regular and chaotic motion.
For a typical phase space of a mixed regular-chaotic system,
see Fig. 1(b). In particular, while a classical particle cannot
traverse from the regular to the chaotic region, a wave can
tunnel from the regular to the chaotic region. This regular-
to-chaotic tunneling process manifests itself impressively in
chaos-assisted tunneling [3,4].

Until today, the importance of regular-to-chaotic tunneling
has been demonstrated in numerous experiments, including
optical microcavities [5–10], microwave billiards [11–14],
and cold-atom systems [15,16]. A recent success being the
experimental verification [8,14] that tiny nonlinear resonance
chains within the regular region, as shown in Fig. 1(b), indeed
drastically enhance tunneling as predicted in Refs. [17–20].
Furthermore, regular-to-chaotic tunneling is expected to play
an important role for atoms and molecules in strong fields, as
discussed in Refs. [21–26].

Motivated by these applications regular-to-chaotic tunnel-
ing is also a field of intense theoretical research [12,25,27–42],
which is mainly focused on periodically driven model systems
with one degree of freedom. Here, a major achievement is the
combination of (i) direct [33,38] and (ii) resonance-assisted
[17–20] regular-to-chaotic tunneling in a single prediction
[39,43]. This prediction shows that as a function of decreasing
effective Planck’s constant h one has two corresponding
regimes: (i) Regular states localize on a single quantizing torus.
In this regime, tunneling is determined by direct transitions
from this regular torus into the chaotic region [33,38] which
can be evaluated semiclassically using complex paths [40].
(ii) For even smaller h a regular state, while still mostly
concentrated on the main quantizing torus, acquires resonance-
assisted contributions on further quantizing tori [17–20]
located more closely to the border of the regular region, see
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FIG. 1. (a) Regular-to-chaotic decay rate γ0 versus 1/h for the
standard map at κ = 3.4. The numerically determined rates (gray
dots) are compared to (the sum of incoherent terms of) the predictions
of Eq. (2) [(red) triangles] and Eq. (3) [(blue) squares]. (b) Phase
space with regular orbits (lines) and a chaotic orbit (dots) including
a 6:2 nonlinear resonance chain. (c) Like (b) with an integrable
approximation [(red) lines] on top.

Fig. 2(c) of Sec. IV for an illustration. This resonance-assisted
contribution dominates tunneling into the chaotic region
[31,39,43]. Thus, one observes a resonance-assisted enhance-
ment of regular-to-chaotic tunneling. For an example of this
enhancement, see Fig. 1(a). Note that for much smaller h there
is even a third regime for which regular states may localize
within the resonance chain. This regime is not considered here.

Despite the above achievements, a semiclassical evalua-
tion of resonance-assisted tunneling in mixed regular-chaotic
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systems remains an open problem. In particular, the state-
of-the-art predictions [39,43] defy a semiclassical evaluation
using the techniques developed for integrable systems [44,45].
More specifically, so far (i) an integrable approximation
of the regular region which ignores resonance chains is
used to predict the magnitude of direct tunneling transitions
from quantizing tori towards the chaotic region [33,38].
Subsequently, (ii) resonance-assisted contributions are taken
into account by perturbatively solving [20] an additional
pendulum Hamiltonian which models the relevant resonance
chain [39,43]. However, only a perturbation-free prediction,
based on a single integrable approximation which includes
the relevant resonance chain will allow for a semiclassical
evaluation of resonance-assisted regular-to-chaotic tunneling
in the spirit of Refs. [44,45].

In this paper we derive such perturbation-free predictions
of resonance-assisted regular-to-chaotic tunneling. They are
based on a new class of integrable approximations Hr:s [46]
which include the dominant r:s resonance, see Fig. 1(c). In
particular, the eigenvalue equation

Ĥr:s |mint〉 = Em|mint〉, (1)

of such integrable approximations Hr:s provides eigenstates
|mint〉 which model the localization of regular states on the
regular phase-space region, explicitly including the resonance-
assisted contributions on multiple quantizing tori, in a non-
perturbative way. Using such states allows for extending the
results of Refs. [33,38] to the case of resonance-assisted
tunneling.

In particular, the decay rates γm of metastable states which
localize on the regular phase-space region and decay via
regular-to-chaotic tunneling can be predicted according to

γm ≈ �m(t = 1) := ‖P̂LÛ |mint〉‖2. (2)

Here Û is the time evolution operator and P̂L is a projector
onto a leaky region L located in the chaotic part of the phase
space.

We further show that regular-to-chaotic decay rates can
be predicted with similar accuracy, when using a simplified
formula which no longer contains the time-evolution operator.
Instead, it evaluates only the probability of the state |mint〉 on
the leaky region L,

γm ≈ �m(t = 0) := ‖P̂L|mint〉‖2. (3)

Both perturbation-free predictions, Eqs. (2) and (3), give
good results for the standard map, see Fig. 1, in that both
predictions provide the foundation for future semiclassical
predictions of resonance-assisted regular-to-chaotic tunneling
[47]. We remark that the prediction of Eq. (2) has previously
been evaluated semiclassically for integrable approximations
without resonances [40], using the time-domain techniques
of Refs. [27,28,34–36] giving predictions for direct regular-
to-chaotic tunneling. However, we believe that a future semi-
classical prediction of resonance-assisted regular-to-chaotic
tunneling would be more easily obtained from Eq. (3), since
it does not involve any time evolution and thus allows for a
semiclassical evaluation using the simpler Wentzel-Kramer-
Brillouin-(WKB)-like techniques of Refs. [44,45].

The paper is organized as follows: In Sec. II we introduce
the standard map as a paradigmatic Hamiltonian example
system with a mixed phase space. We further present regular-
to-chaotic decay rates as a measure of regular-to-chaotic
tunneling and discuss their numerical evaluation. In Sec. III we
derive the predictions, Eqs. (2) and (3). In Sec. IV we illustrate
how these predictions are evaluated using the example of the
standard map. In Sec. V we present our results and compare
them to the perturbative predictions of Refs. [39,43]. In Sec. VI
we discuss the main approximations and limitations of our
approach. A summary and outlook is given in Sec. VII.

II. EXAMPLE SYSTEM

In this paper we focus on periodically driven Hamiltonian
systems with one degree of freedom, which exhibit all generic
features of a mixed phase space. Classically, the stroboscopic
map

U : (qn,pn) �→ (qn+1,pn+1), (4)

describes the evolution of positions and momenta, (q,p), in
phase space from time t = n to t = n + 1 over one period
of the external driving. Quantum-mechanically, the time
evolution is given by the corresponding unitary time-evolution
operator Û .

In Sec. II A we introduce the standard map as a paradig-
matic example of a periodically driven one-degree-of-freedom
system with a mixed phase space. In Sec. II B we introduce
regular-to-chaotic decay rates γ , as the central object of our
investigation. Furthermore, we discuss their numerical com-
putation. Particular attention is paid to nonlinear resonance
chains and their quantum manifestations.

A. Standard map

Classically, the standard map originates from a peri-
odically kicked Hamiltonian with one degree of freedom
H (q,p,t) = T (p) + V (q)

∑
n∈N δ(n − t). Here, δ(·) is the

Dirac δ function. For the standard map T (p) = p2/2 and
V (q) = κ/(2π )2 cos (2πq), where κ is the kicking strength. Its
stroboscopic map U [48], Eq. (4), in its symmetrized version
is given by

qn+1 = qn + pn + κ

4π
sin(2πqn), (5a)

pn+1 = pn + κ

4π
sin(2πqn) + κ

4π
sin(2πqn+1), (5b)

where (qn,pn) represents a phase-space point in the middle of
the nth kick. For convenience, the standard map is considered
on a torus (q,p) ∈ [0,1[×[−0.5,0.5[ with periodic boundary
conditions.

In this paper we mainly focus on kicking strength κ = 3.4.
Here the phase space exhibits a large regular region which
is centered around an elliptic fixed point, see Fig. 1(b). As
expected from the theorems by Kolmogorov, Arnold, and
Moser (KAM) [49–52], the regular region consists of one-
dimensional invariant tori. Along these tori orbits of regular
motion rotate around the fixed point. These tori are interspersed
by nonlinear resonance chains, wherever s rotations of a
regular orbit match r periods of the external driving [48,53,54].
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For example, the standard map at κ = 3.4 has a dominant
r:s = 6:2 resonance, leading to the six regular subregions in
Fig. 1(b). Note that we choose the numbers r and s in the ratio
r:s such that r is the number of subregions of the resonance.
The region of regular motion is embedded in a region of chaotic
motion.

The quantum-mechanical analog of the stroboscopic map
U is the unitary time-evolution operator [55–60]

Û = exp

[
−i

V (q̂)

2�

]
exp

[
−i

T (p̂)

�

]
exp

[
−i

V (q̂)

2�

]
. (6)

Here h = 2π� is the effective Planck constant and q̂ and p̂

are the operators of position and momentum, respectively.
Similarly to the classical case, we consider Û on a toric phase
space, which leads to grids in position and momentum space
[55–60],

qn = h(n + θp), with qn ∈ [0,1], (7a)

pn = h(n + θq), with pn ∈ [−0.5,0.5], (7b)

with n ∈ N. This implies that the inverse of the effective
Planck constant is a natural number 1/h = N ∈ N, giving
the dimension of the Hilbert space. For the standard map, we
choose the Bloch phase θp = 0, while θq = 0 if N is even
and θq = 0.5 if N is odd. This gives the finite-dimensional
time-evolution operator in position representation,

〈qn|Û |qk〉

= e−iπ/4

√
N

exp

{
i 2πN

[
− V (qn)

2
+ (qn − qk)2

2
− V (qk)

2

]}
,

(8)

with n,k = 0, . . . ,N − 1.
In the following, it is fundamental that eigenstates of a

mixed regular-chaotic system can be classified according to
their semiclassical localization on the regular or chaotic region,
respectively. More specifically, chaotic states spread across the
chaotic region [61–63], while regular states localize on a torus
τm of the regular region which has quantizing action [64–66]

Jm := 1

2π

∮
τm

p(q) dq = (m + 1/2)�, (9)

labeled by an index m ∈ N. In order to account for resonance-
assisted tunneling, it is further indispensable to consider
the finer structure of regular states. In particular, it will
be crucial that a regular state m localizes not only on a
dominant quantizing torus Jm. Instead, an r:s resonance
induces additional contributions on the tori Jm+kr with k ∈ Z,
see Refs. [17–20,67–69] and references therein.

B. Regular-to-chaotic decay rates in the standard map

In this section, we introduce regular-to-chaotic decay
rates γ of an open system for quantifying regular-to-chaotic
tunneling. Note that in closed systems chaos-assisted tunnel
splittings [4] are an often-used alternative [38].

Our general approach for defining regular-to-chaotic decay
rates proceeds in three steps: (a) We introduce a leaky region
L within the chaotic part of phase space, (b) we determine
the decay rates of its regular states, and (c) we classify the

corresponding decay rates as regular-to-chaotic decay rates.
Step (c) is justified because each regular state of the open
system decays by regular-to-chaotic tunneling towards the
chaotic region and subsequently enters the leaky region within
the chaotic part of phase space.

More specifically, we proceed by (a) introducing a projector
P̂L which absorbs probability on a phase-space regionLwithin
the chaotic part of phase space. Based on this projector and
the unitary time-evolution operator Û of the closed system, we
define the time-evolution operator of the open system as

Ûo = (1̂ − P̂L)Û (1̂ − P̂L). (10)

(b) We solve its eigenvalue equation,

Ûo|m〉 = exp
(
iφm − γm

2

)
|m〉. (11)

Here, |m〉 represents a metastable, right eigenvector of the
subunitary operator Ûo. The corresponding eigenvalue is
determined by an eigenphase φm and a decay rate γm. The
latter describes the exponential decay of |m〉 in time. (c) We
assign to each regular state |m〉 a label m according to its
dominant localization on the quantizing torus Jm and refer to
its decay rate γm as the regular-to-chaotic decay rate.

Specifically, for the standard map (a) we use

L := {(q,p) | q < ql or q > qr := 1 − ql} (12)

and define the projector

P̂L|q〉 = χ (q)|q〉 with χ (q) =
{

1 for (q,·) ∈ L
0 for (q,·) /∈ L .

(13)

Here we choose ql close to the regular-chaotic border. This
ensures that γm, which depends on the choice of the leaky
region L, is dominated by tunneling from the regular towards
the chaotic region. For a more detailed discussion, see
Sec. VI A. (b) We compute the finite-dimensional matrix
representation of Ûo for each value of 1/h ∈ N. To this end,
we set all those entries in Eq. (8) equal to zero, for which either
qn or qk are in the leaky region L. We diagonalize the resulting
Ûo numerically. (c) The regular-to-chaotic decay rates γm are
labeled according to the dominant localization of |m〉 on the
quantizing tori Jm = �(m + 1/2).

We present the numerically obtained regular-to-chaotic
decay rates γ0 of the standard map at κ = 3.4 as a function of
the inverse effective Planck constant [(gray) dots] in Fig. 1(a).
The numerical results are consistent with the expectations from
Refs. [39,43]: (i) For 1/h � 35 the state |0〉 localizes on the
torus J0 such that the direct tunneling from J0 to L dominates.
In this regime, γ0 decreases exponentially for decreasing h,
which is a characteristic feature of direct transitions, see
Ref. [33,38,40,70]. (ii) In the regime 1/h � 35 tunneling
is enhanced by the 6:2 resonance. For 35 � 1/h � 80 the
resonance contribution of the state |0〉 on J6 is significant such
that the direct tunneling transition from J6 to L dominates γm.
This leads to a peak at 1/h = 53, where the state |0〉 has half its
weight on J6. Finally, for 1/h � 80, the resonance contribution
of |0〉 on J12 is significant such that direct tunneling from J12

to L dominates the decay rate γm, with a peak at 1/h = 98. In
Figs. 3(a) and 3(c) of Sec. V we show similar numerical rates
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MERTIG, KULLIG, LÖBNER, BÄCKER, AND KETZMERICK PHYSICAL REVIEW E 94, 062220 (2016)

[(gray) dots] for the standard map at κ = 2.9 and κ = 3.5 with
dominating 10:3 and 6:2 resonances, respectively.

III. PERTURBATION-FREE PREDICTIONS
OF RESONANCE-ASSISTED

REGULAR-TO-CHAOTIC TUNNELING

In this section we derive the perturbation-free predic-
tions for resonance-assisted regular-to-chaotic decay rates. In
Sec. III A we derive Eq. (2), which uses the time-evolution
operator. In Sec. III B we derive Eq. (3), which does not use
the time-evolution operator.

A. Derivation of Eq. (2) with time evolution

The starting point for deriving Eq. (2) is the definition
of the regular-to-chaotic decay rate γm from the appropriate
eigenvalue problem. We use the same definitions as for the
numerical determination of regular-to-chaotic decay rates,
see Eqs. (10) and (11) of Sec. II B. They are repeated for
convenience, namely a general subunitary operator,

Ûo := (1̂ − P̂L)Û (1̂ − P̂L), (14)

and its eigenvalue equation,

Ûo|m〉 = exp
(
iφm − γm

2

)
|m〉. (15)

Here, the unitary operator Û describes the time evolution
of a mixed regular-chaotic system over one unit of time.
Furthermore, P̂L is a projection operator which absorbs
probability on the leaky region L within the chaotic part of
phase space.

For decay rates of such systems, it can be shown that the
following formula applies, see Appendix A for details,

γm = − log(1 − ‖P̂LÛ|m〉‖2)
γm
1≈ ‖P̂LÛ|m〉‖2, (16)

i.e., a regular-to-chaotic decay rate γm (for which γm 
 1) is
given by the probability transfer from the regular state |m〉
into the leaky region L via the unitary time-evolution operator
Û . Equation (16) is as such not useful, since it still contains
the unknown eigenvector |m〉. In particular, it would require
to solve Eq. (15), which defines γm in the first place. Hence,
we proceed in the spirit of Refs. [33,38], i.e., we approximate
|m〉 using the eigenstates |mint〉 of an integrable approximation
Hr:s , leading to our prediction of Eq. (2).

The key point of this paper is the use of an integrable ap-
proximation Hr:s , which includes the dominant r:s resonance.
This ensures that |mint〉 models not only the localization of
|m〉 on the main quantizing torus Jm but also accounts for the
resonance-assisted contributions on the tori Jm+kr . Precisely
this extends Eq. (2), as previously used in Refs. [33,38] for
direct tunneling, to the regime of resonance-assisted regular-
to-chaotic tunneling in a nonperturbative way.

B. Derivation of Eq. (3) without time evolution

In this section we derive Eq. (3). It predicts regular-to-
chaotic decay rates from the localization of the mode |mint〉
on the leaky region L. In contrast to Eq. (2), it does not use
the time-evolution operator, in that, Eq. (3) is an ideal starting

point for future semiclassical predictions of regular-to-chaotic
decay rates [47] in the spirit of Refs. [44,45]. In particular,
it avoids the complications which arise in a semiclassical
evaluation of Eq. (2) due to the time-evolution operator. We
further remark that predictions like Eq. (3) are common for
open systems. For regular-to-chaotic decay rates they have
heuristically been used, e.g., in Refs. [20,29,30,43]. Here the
main purpose of deriving Eq. (3) is to explicitly point out the
involved approximations.

The derivation starts from an alternative definition of the
subunitary time-evolution operator

Û ′
o := Û (1̂ − P̂L), (17)

which satisfies the eigenvalue equation

Û ′
o|m′〉 = exp

(
iφm − γm

2

)
|m′〉. (18)

Compare with Eqs. (14) and (15). As shown in Appendix B,
the operators Ûo and Û ′

o are isospectral. Therefore, they exhibit
the same eigenvalues, which give rise to the same regular-
to-chaotic decay rates γm. Furthermore, the corresponding
normalized right eigenvectors can be transformed into each
other, see Appendix B. We find

|m〉 = 1

exp
(
iφm − γm

2

) (1̂ − P̂L)|m′〉, (19)

which implies that |m〉 and |m′〉 localize on the quantizing
tori Jm+kr of the regular region with equal probability (for
γm 
 1). On the other hand, |m′〉 is the time-evolved mode
|m〉 according to

|m′〉 = Û |m〉. (20)

Inserting Eq. (20) into Eq. (16) gives

γm = − log(1 − ‖P̂L|m′〉‖2)
γm
1≈ ‖P̂L|m′〉‖2, (21)

which shows that a regular-to-chaotic decay rate γm (for which
γm 
 1) is equivalent to the probability to find |m′〉 on the
leaky region L. Similarly to Eq. (16), Eq. (21) is as such
not helpful, because it still contains the eigenvector |m′〉. In
particular, it would require to solve Eq. (18), which defines
γm in the first place. Hence, we approximate the mode |m′〉
using the more accessible eigenstates |mint〉 of an integrable
approximation Hr:s , leading to our prediction of Eq. (3).

Here the key point is again the use of integrable ap-
proximations Hr:s which includes the relevant r:s resonance.
Therefore, |mint〉 models not only the localization of |m′〉 on
the main quantizing torus Jm but also its resonance-assisted
contributions on the tori Jm+kr . Precisely, this allows for
predicting resonance enhanced regular-to-chaotic decay rates
from Eq. (3) in a nonperturbative way.

An application of the predictions, Eqs. (2) and (3), for
the standard map is demonstrated in Sec. IV. The key
approximation, i.e., modeling metastable regular states |m〉
(or |m′〉) in terms of eigenstates |mint〉 of an integrable
approximation Hr:s , is discussed in Sec. VI B. Moreover, a
comparison of the nonperturbative predictions, Eqs. (2) and
(3), to the perturbative predictions of Refs. [39,43] is given in
Sec. V B.
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IV. PERTURBATION-FREE PREDICTION OF TUNNELING
IN THE STANDARD MAP

In this section we illustrate our approach by applying it
to the standard map. In Sec. IV A, we determine the r:s
resonance which dominates tunneling. In Sec. IV B, we set up
an integrable approximation including the nonlinear resonance
chain using the iterative canonical transformation method
[46,71] as presented in Ref. [46]. In Sec. IV C, we quantize the
integrable approximation and determine its eigenstates |mint〉
from Eq. (1). Finally, the results will be discussed in Sec. V.

A. Choosing the relevant resonance

In order to apply our prediction it is crucial to first identify
the r:s resonance which dominates the tunneling process. A
detailed discussion as to which resonance dominates tunneling
in which regime can be found in Ref. [39]. Here we focus
on the r:s resonance of lowest order r , which dominates the
numerically and experimentally relevant regime where γ >

10−15.
The area covered by the subregions of such a resonance

can be very small; see the inset of Fig. 3(a). Therefore, it
is necessary to search for resonances systematically. To this
end, we determine the frequencies of orbits within the regular
region, as described in Ref. [46]. We then identify the r:s
resonance of lowest order r by searching for the rational
frequencies 2πs/r with smallest possible denominator.

Specifically, for the standard map, parity implies that r has
to be an even number in order to reflect the correct number of
subregions forming the resonance chain. For the examples we
consider in this paper, we find a dominant 10:3 resonance for
κ = 2.9 and a dominant 6:2 resonance for both κ = 3.4 and
κ = 3.5.

B. Integrable approximation of a regular region including
a resonance chain

In order to determine an integrable approximation of the
regular region which includes the dominant r:s resonance,
we use the method introduced in Ref. [46]. Here we briefly
summarize the key points.

The integrable approximation Hr:s(q,p) of Ref. [46] is
generated in two steps. First, the normal-form Hamiltonian
is defined as

Hr:s(θ,I ) = H0(I ) + 2Vr:s

(
I

Ir:s

)r/2

cos(rθ + φ0), (22a)

H0(I ) = (I − Ir:s)2

2Mr:s
+

Ndisp∑
n=3

hn(I − Ir:s)
n. (22b)

It contains the essential information on the regular region
in the corotating frame of the resonance. This Hamiltonian
is precisely the effective pendulum Hamiltonian used in
Ref. [39,43]. Here, H0(I ) is a polynomial of low order Ndisp,
chosen such that its derivative fits the actions and frequencies
of the regular region in the corotating frame of the resonance.
The action of the resonant torus is Ir:s . The parameters Mr:s

and Vr:s are determined from the size of the resonance regions
in the mixed system as well as the stability of its central orbit

[31]. Finally, φ0 is used to control the fixed-point locations of
the resonance chain.

In a second step, a canonical transformation

T : (θ,I ) �→ (q,p) (23)

is used to adapt the tori of the effective pendulum Hamiltonian
to the shape of the regular region in (q,p) space, giving the
Hamilton function

Hr:s(q,p) = Hr:s(T −1(q,p)). (24)

The transformation T is composed of (i) a harmonic oscillator
transformation to the fixed point of the regular region T 0,
Eq. (C1), which provides a rough integrable approximation
and (ii) a series of canonical near-identity transformations
T 1, . . . ,T NT , Eq. (C2), which improve the agreement between
the shape of tori of the mixed system and the integrable
approximation.

Note that a successful prediction of decay rates requires an
integrable approximation which provides a smooth extrapola-
tion of tori into the chaotic region [33,38]; see insets of Fig. 3.
This is ensured by using simple near-identity transformations
T 1, . . . ,T NT , i.e., low orders Nq,Np in Eq. (C2). For further
details the reader is referred to Ref. [46] and Appendix C,
where it is described how the integrable Hamiltonians for the
standard map at κ = 2.9, κ = 3.4, and κ = 3.5, see insets of
Fig. 3, are generated.

C. Quantization of the integrable approximation

In the following, we summarize the quantization procedure
for the integrable approximation. The details are discussed in
Appendix C 2. In its final form, this quantization procedure
is almost identical to the approach presented in Ref. [39].
It consists of two steps: (Q1) The integrable approximation
without resonance is used to construct states which localize
along a single quantizing torus of the regular region. (Q2)
The mixing of states, localizing along a single quantizing
torus, is described by solving the quantization of the effective
pendulum Hamiltonian, Eq. (22), introduced in Ref. [43].
Combining (Q1) and (Q2) gives the sought-after eigenstate
|mint〉 of the integrable approximation which includes the
resonance.

More specifically: (Q1) We use the canonical transfor-
mation, Eq. (23), in order to define the function I (q,p).
Its contours approximate the tori of the regular phase-space
region, ignoring the resonance chain. It thus resembles the
role of the integrable approximation, previously used in
Refs. [33,38,39]. The Weyl quantization of this function on
a phase-space torus gives a Hermitian matrix,

〈qn|Î |qm〉

= 1

2N

2N−1∑
l=0

exp

(
i

�
(qn− qm) p l

2

)

×
[
I

(
qn + qm

2
,p l

2

)
+ (−1)lI

(
qn + qm + Mq

2
,p l

2

)]
.

(25)
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FIG. 2. [(a) and (b)] Husimi representation of |In〉 for the standard
map at κ = 3.4 for (a) n = 0 and (b) n = 6 at 1/h = 53. Regular tori
(gray lines) and chaotic orbits (dots) illustrate the phase space. The
quantizing tori of Hr:s for Vr:s = 0 are shown by a thick (white) line.
(c) Approximate mode |mint〉 for m = 0.

Solving its eigenvalue equation gives states 〈ql|In〉 which
localize along a single contour of I (q,p) with quantizing action
In = �(n + 1/2). These states model the localization of states
along the tori of quantizing action Jn in the mixed system. For
an illustration, see Figs. 2(a) and 2(b).

(Q2) In the second step, we model the mixing of states
〈ql|In〉 due to the nonlinear resonance chain. To this end,
we follow Refs. [39,43] and consider the quantization of the

effective pendulum Hamiltonian, Eq. (22), given by

〈Im|Ĥr:s |In〉

= H0(In) δm,n + Vr:s

(
�

Ir:s

)r/2

×
(

e−iφ0

√
n!

(n − r)!
δm,n−r + eiφ0

√
(n + r)!

n!
δm,n+r

)
.

(26)

Solving this eigenvalue problem gives the sought-after state in
the basis of quantizing actions 〈In|mint〉. Note that the matrix
in Eq. (26) couples basis states |In〉 and |In′ 〉 only if |n′ −
n| = kr . Thus, the coefficients 〈In|mint〉 are nonzero only if
n = m + kr . This is called the selection rule of resonance-
assisted tunneling. Combining (Q1) and (Q2) results in the
mode expansion

〈ql|mint〉 =
∑

k

〈ql|Im+kr〉〈Im+kr |mint〉. (27)

For an illustration of a state |mint〉, see Fig. 2(c). Note that its
Husimi function exhibits exactly the morphology discussed in
Ref. [68].

We now make a couple of remarks: (a) We use the above
quantization procedure, rather than directly applying the Weyl
rule to Hr:s(q,p), Eq. (24), in order to explicitly enforce the
selection rule of resonance-assisted tunneling. (b) The ad hoc
two-step quantization scheme avoids the problem of defining
the quantum counterpart for the canonical transformations
T 1, . . . ,T NT , Eq. (C2), used in the classical construction of
the integrable approximation, see Sec. C 2 in the Appendix
for details. (c) The above quantization is almost identical to
the procedure used in Refs. [39,43]. This allows for a direct
comparison to the results of Refs. [39,43], see Sec. V B. (d) The
quantization procedure cannot determine the relative phase
between the terms in the mode expansion of Eq. (27).

In order to understand the relative phase recall: (i) The
coefficient vector 〈Im+kr |mint〉 is determined by solving the
eigenvalue problem of Eq. (26). Hence, it is determined up
to a global phase ξm. (ii) The coefficient vectors 〈ql|Im+kr〉
are determined by solving the eigenvalue problem of Eq. (25).
Hence, each coefficient vector is determined up to a global
phase ϕm+kr . Therefore, (i) changing the phase of the co-
efficient vector 〈Im+kr |mint〉 in Eq. (27) changes the global
phase of 〈ql|mint〉. This has no consequences for predicting
decay rates. However, (ii) changing the phases ϕm+kr of
each coefficient vector 〈ql|Im+kr〉 changes the relative phase
of contributions in Eq. (27). This changes the interference
between the contributions to the sum in Eq. (27) and affects
the predicted decay rates.

So far the phase issue was avoided by neglecting inter-
ference terms in the tunneling predictions [39,43]. For the
symmetrized standard map, we propose to define the phases
as follows: (i) Equation (26) gives a real symmetric matrix.
This allows for choosing real coefficients 〈In|mint〉 such that
〈Im|mint〉 > 0. (ii) Equation (25) also gives a real symmetric
matrix. This allows for choosing real coefficients 〈ql|In〉.
Choosing the sign of these coefficients is discussed in Sec. C 2
in the Appendix. The main idea is to exploit the eigenstates of
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the harmonic oscillator which approximates the central fixed
point of the regular region. For these harmonic oscillator states
the relative phase is well defined. Then we choose the sign of
〈ql|In〉 such that its overlap with the corresponding eigenstate
of the harmonic oscillator is positive, Eq. (C29).

V. RESULTS

We now apply the above procedure to the standard map
at κ = 2.9, 3.4, and 3.5. This gives eigenstates |mint〉 which
we insert into our predictions, Eqs. (2) and (3). The necessary
time-evolution operator, used in Eq. (2), is given by Eq. (8).
The projector is defined by Eq. (13) using ql = 0.27,0.26,0.25,
respectively. The results are shown in Fig. 3. The numerically
determined rates and the predicted rates are overall in good
qualitative agreement. In both cases, they deviate from the
exact numerical rates by at most two orders of magnitude, in
that the accuracy of the perturbation-free predictions, Eq. (2)
and Eq. (3), is equivalent to perturbative predictions from
Refs. [39,43]. This establishes Eqs. (2) and (3) as state-
of-the-art perturbation-free predictions of resonance-assisted
regular-to-chaotic tunneling. See Sec. V B for a detailed
comparison.

A. Incoherent predictions and quantum phase

As discussed in Sec. IV C, our quantization scheme cannot
determine the relative phases between the contributions of
Eq. (27) for a system without time-reversal symmetry. In
the following, we discuss the consequences of such an
undetermined phase for the prediction of decay rates. To this
end, we summarize our predictions, Eqs. (2) and (3), in the
following compact form:

�m(t) := ‖P̂LÛ t |mint〉‖2, (28)

where t = 1 denotes the prediction based on time evolution
and t = 0 denotes the prediction without time evolution. Now
we insert the mode expansion, Eq. (27), and average over
the undetermined phases ϕm+kr of the coefficient vectors
〈ql|Im+kr〉. This gives the incoherent prediction

�inc
m (t) :=

∑
k

�
diag
m,m+kr (t), (29)

where the diagonal term �
diag
m,n (t) is the contribution of the state

|In〉 to the incoherent prediction as

�diag
m,n (t) := |〈In|mint〉|2�d

n (t) (30)

and

�d
n (t) := ‖P̂LÛ t |In〉‖2 (31)

is the rate of direct regular-to-chaotic tunneling as previously
introduced in Refs. [33,38].

The results based on Eq. (29) are shown in Fig. 4. As
expected, the incoherent predictions, Eq. (29), and the full
predictions, Eq. (28), agree very well in the regime where
a single diagonal contribution dominates, i.e., in the regime
of direct tunneling as well as the peak region. However,
in between these regions there are always two diagonal
contributions of similar magnitude, which can interfere. It is in
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FIG. 3. Decay rates for the standard map at (a) κ = 2.9, (b) κ =
3.4, and (c) κ = 3.5 versus the inverse effective Planck constant 1/h.
Numerically determined rates (dots) are compared to predicted rates,
using Eq. (2) [(red) triangles] and Eq. (3) [(blue) squares]. The insets
show the corresponding phase space with regular tori [(gray) lines]
and chaotic orbits (dots) with tori of the integrable approximation
[(red) lines].

these regions that we expect deviations between the predictions
of Eq. (28) and the incoherent predictions of Eq. (29).

An example where this deviation is particularly large is the
case of κ = 3.4 and κ = 3.5, see Figs. 4(b) and 4(c). Here
Eq. (28) predicts destructive interference, which leads to a
drastic suppression of the predicted decay rate. On the other
hand, the phase-averaged, incoherent prediction, Eq. (29), does
not predict such a drastic suppression. This leads to the coun-
terintuitive situation that the incoherent prediction, Eq. (29),
which was obtained from Eq. (28) by applying an additional
approximation, describes the numerically determined decay
rates better.
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FIG. 4. Decay rates for the standard map at (a) κ = 2.9, (b) κ =
3.4, and κ = 3.5 versus the inverse effective Planck constant 1/h.
Numerically determined rates (dots) are compared to rates, predicted
from incoherent terms according to Eq. (29), with �inc

m (1) [(red)
pluses] and �inc

m (0) [(blue) crosses]. We further show predictions
according to Eq. (2) [(gray) triangles] and Eq. (3) [(gray) squares].

This paradox can be explained as follows: A drastic
suppression of decay rates can only be expected for exact
destructive interference between the dominant contributions.
On the other hand, any slight detuning of the dominant modes
lifts the effect of destructive interference and restores the decay
rate to the full magnitude of its contributions. In particular,
it leads to a prediction much closer to the phase-averaged
result, Eq. (29). Precisely this happens in our system, i.e.,
Eq. (28), based on |mint〉, predicts destructive interference.
However, the contributions of the original eigenstate |m〉,
approximated via |mint〉 in prediction (28), are slightly detuned
from destructive interference, see Fig. 9(d) in Sec. VI C. This
lifts the drastic suppression of decay rates and explains why

the phase-averaged prediction, Eq. (29), is much closer to the
exact, numerically determined rates.

These results highlight the relevance of the phase factor
ϕm+kr for obtaining an accurate description of decay rates even
between the resonance-assisted tunneling peaks. In previous
studies of resonance-assisted tunneling in systems with a
mixed phase space [39] this phase factor has been ignored
by directly employing the incoherent predictions. Hence, a
satisfactory theoretical treatment of the phase factor ϕm+kr

so far does not exist. Clearly, our current approach is also
insufficient. The precise reason is not clear to us. We expect
that exploiting the symmetry of the integrable approximation
in order to find a real representation of the approximate mode
〈ql|mint〉 is too naive, in particular, because it is used for
approximating the metastable state 〈ql|m〉 of the open standard
map, which can never admit an entirely real representation.
For a detailed discussion of this point see Sec. VI C. Another
possibility is that the phase factor in a nonintegrable system is
beyond an integrable approximation.

B. Perturbative predictions

In this section, we compare our results to the perturbative
predictions of Refs. [39,43]. This perturbative prediction
is obtained by approximating the coefficient 〈Im+kr |mint〉
in the incoherent prediction Eq. (29) by solving Eq. (26)
perturbatively [43],

〈Im+kr |mint〉 ≈ A(r:s)
m,m+kr :=

k∏
l=1

〈Im+lr |Ĥr:s |Im+(l−1)r〉
H0(Im) − H0(Im+kr )

. (32)

Note that H0(I ) is considered in the corotating frame. This
leads to

�per
m (t) :=

∑
k

∣∣A(r:s)
m,m+kr

∣∣2
�d

m(t). (33)

A slight difference of the above expression as compared to
Ref. [39,43] is the use of the projector P̂L rather than a
projector on the whole chaotic region. Thus our prediction
eliminates a free parameter from the perturbative predictions
of Refs. [39,43]. The results of the perturbative predictions are
presented in Fig. 5. They agree with the prediction obtained
from Eq. (29), with the slight difference that the perturbative
results deviate around the peak region.

We conclude this section with a short list of advantages
and disadvantages of the perturbation-free and perturbative
predictions as follows:

(i) The perturbation-free framework, Eqs. (2) and (3), as
well as their incoherent version, Eq. (29), predict numerical
rates with similar accuracy as the perturbative framework of
Refs. [39,43].

(ii) One advantage of the perturbative prediction is the pos-
sibility to evaluate the terms 〈Im|mint〉 analytically, Eq. (32).
Yet, for practical use, even the perturbative approach requires
an integrable approximation for predicting the direct rates
�d

m. Hence, both predictions are equally challenging in their
implementation.

(iii) Another advantage of the perturbative prediction is
the possibility to include multiple resonances into Eq. (33),
which is not yet possible for the perturbation-free predictions
presented in this paper. Note that this restriction is not
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FIG. 5. Decay rates for the standard map at (a) κ = 2.9, (b) κ =
3.4, and (c) κ = 3.5 versus the inverse effective Planck constant 1/h.
Numerically determined rates (dots) are compared to rates, predicted
perturbatively according to Eq. (33) with �per

m (1) [(red) pluses] and
�per

m (0) [(blue) crosses]. We further show the prediction based on
incoherent terms, according to Eq. (29) with �inc

m (1) [(gray) pluses]
and �inc

m (0) [(gray) crosses].

too severe, because decay rates in the experimentally and
numerically accessible regimes (γ > 10−15) are typically
affected by a single resonance only. Nevertheless, an extension
of the perturbation-free results to the multiresonance regime is
of theoretical interest and requires normal-form Hamiltonians
Hr:s which include multiple resonances.

(iv) The main advantage of the perturbation-free framework
is that it provides the foundation for deriving a future semi-
classical prediction of resonance-assisted regular-to-chaotic
tunneling [47].
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FIG. 6. Numerically determined decay rates γ0 of the stan-
dard map at κ = 3.4 versus the inverse effective Planck constant
1/h for ql = 0.26 [(gray) dots] and ql = 0.1 [(magenta) squares].
[(b) and (c)] Phase space with shaded areas showing the leaky regions
corresponding to ql .

VI. DISCUSSION

In this section, we discuss several aspects of our results in
detail. In Sec. VI A we discuss the dependence of decay rates
on the choice of the leaky region. In Sec. VI B we compare
the metastable states |m〉 and |m′〉 to the eigenstate |mint〉
of an integrable approximation. In Sec. VI C we analyze the
approximation of |m〉 and |m′〉 via |mint〉 more systematically.
In Sec. VI D we comment on the predictability of peaks.

A. Dependence of decay rates on the leaky region

This paper focuses entirely on situations where the leaky
region L is chosen close to the regular-chaotic border region.
However, in generic Hamiltonian systems like the standard
map, the chaotic region is interspersed with partial barriers
[72,73]. This leads to sticky motion in a hierarchical region
surrounding the regular region. Furthermore, the chaotic
component might be inhomogeneous and exhibit slow classical
transport.

In view of these classical phenomena, it is not surprising
that the numerical decay rates of the standard map, defined
via Eqs. (15), depend on the choice of the leaky region via
the parameter ql . In order to illustrate this phenomenon, we
show the numerically determined decay rate γ0 of the standard
map for two choices of the leaky region and two different κ

parameters in Figs. 6 and 7, respectively.
In Fig. 6 we show results for the standard map at κ =

3.4. Here we compare (i) the regular-to-chaotic decay rates
obtained for ql = 0.26 [parameter used in this paper, (gray)
dots] to (ii) decay rates obtained for ql = 0.1 [(magenta)
squares]. While the decay rates for ql = 0.26 exhibit a rather
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FIG. 7. Same as Fig. 6 for κ = 2.9 with ql = 0.27 [(gray) dots]
and ql = 0.1 [(magenta) squares].

smooth behavior, the decay rates for ql = 0.1 clearly exhibit
additional oscillations and some overall suppression.

An even stronger deviation between regular-to-chaotic
decay rates with varying leaky regions is observed in Fig. 7
for the standard map at κ = 2.9. Here (i) the decay rates as
obtained for ql = 0.27 [parameter used in this paper, (gray)
dots] are compared to (ii) the decay rates obtained for ql = 0.1
[(magenta) squares]. In addition to oscillations, the decay rates
for ql = 0.1 exhibit a clear suppression of their average value.

The origin of these deviations is unclear. The suppression
of decay rates for leaky regions far from the regular-chaotic
border could be due to slow transport through an inhomoge-
neous chaotic region from the regular-chaotic border towards
the leaky region.

So far, a quantitative prediction of decay rates with leaky
regions far from the regular-chaotic border remains an open
problem. While varying the leaky region L close to the
regular-chaotic border can be accounted for by our approach,
predicting decay rates with leaky regions far from the regular-
chaotic border is beyond our framework. In particular, while
we observe that the numerical decay rates stabilize when
pushing the leaky region away from the regular-chaotic border,
the predicted rates continue to decrease exponentially.

So far, the best approach for dealing with this problem is to
use an effective prediction [39,43]. To this end one argues that
the numerical decay rate would not change much on pushing
the boundary of the leaky region L beyond some effectively
enlarged regular region Reff. See Ref. [43] for a discussion of
Reff. Successively, one would approximate the projector onto
the leaky region L in our predictions by the projector onto
the complement of the effectively enlarged regular region Leff.
This would result in an effective prediction �eff

m .
Yet, there are several problems with such effective pre-

dictions: (a) Even though there are semiclassical arguments

to define the effectively enlarged regular region in terms of
partial barriers [43], replacing the leaky region L with some
effective region Leff introduces an effective parameter to the
prediction. (b) Throughout this paper, we used leaky regions
L which were almost tangential to the effectively enlarged
regular regions discussed in Ref. [43]. Hence, replacing the
region L with the effective region Leff would not give results
which are too far from the predictions discussed in this paper,
i.e., even the effective predictions �eff

m clearly deviates from
numerically determined decay rates with leaky regions far
from the regular region. (c) Even when using Leff as a free
fit parameter the effective prediction �eff

m can at most capture
the average behavior of numerical decay rates with a leaky
region far from the regular-chaotic border. In particular, the
oscillations observed for the numerical rates in Figs. 6 and 7
which span up to four orders of magnitude cannot be accounted
for even by an effective theory.

Note that accurately predicting decay rates based on Eqs. (2)
and (3), even for leaky regions far from the regular region,
requires modes |mint〉 which model the localization of |m〉 and
|m′〉 even in the chaotic region. We expect that this is beyond
the framework of an integrable approximation.

B. Metastable states and integrable eigenstates

We now discuss the key approximation of our predictions.
To this end we compare the metastable states |m〉 and |m′〉 to
the corresponding approximate state |mint〉, which originates
from an integrable approximation Hr:s including the relevant
resonance. We focus on a typical example using the states
m = m′ = mint = 0 of the standard map at κ = 3.4 with
1/h = 55 close to the first resonance peak in Fig. 1(a). The
absolute squared values of the states in position representation
are shown in Fig. 8. Here we compare (a) |m〉 to |mint〉, (b)
|m′〉 to |mint〉, and (c) |m′〉 = Û |m〉 to Û |mint〉, depicting them
with (gray) dots and (magenta) squares, respectively.

As a first conclusion, we see that the metastable states
are well approximated by their integrable partners within the
nonleaky region, i.e., the region between the dashed lines in
Figs. 8(a)–8(c). In particular, both the metastable states and
their integrable approximations exhibit the generic structure
which is determined by the regular region and the dominant 6:2
resonance [19,20]: (i) A main Gaussian-like hump at q = 0.5
marks the main localization of the modes on the torus J0. (ii)
The decrease of the hump is interrupted at two side humps,
which correspond to the resonance-assisted contribution of
each mode on the torus J6. From there, the Gaussian-like
exponential decrease continues towards the leaky region,
which is outside the dashed lines in Figs. 8(a)–8(c).

As a second conclusion from Fig. 8, we infer that beyond
the regular-chaotic border, i.e., within the leaky region the
metastable states deviate from their integrable counterparts.
Here the integrable states continue to decrease exponentially.
In contrast, the state |m〉 vanishes, see Fig. 8(a), while the state
|m′〉 = Û |m〉, Eq. (20), decreases much slower, see Figs. 8(b)
and 8(c).

Finally, we emphasize that |m′〉 and |mint〉 agree for
positions close to the regular-chaotic border. Furthermore,
these contributions dominate the probability of |m′〉 and |mint〉
on the leaky region. Precisely, this ensures that replacing
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FIG. 8. For the standard map at κ = 3.4 with 1/h = 55 we
compare the position representation of (a) |〈q|m〉|2 to |〈q|mint〉|2,
(b) |〈q|m′〉|2 to |〈q|mint〉|2, and (c) |〈q|Û |m〉|2 to |〈q|Û |mint〉|2,
depicting them with (gray) dots and (magenta) squares, respectively,
for m = m′ = mint = 0. The dashed lines mark the positions ql and
1 − ql of the leaky region, as given in the text.

|m′〉 in the exact prediction, Eq. (21), by |mint〉 results in a
meaningful prediction according to Eq. (3). An analogous
argument explains why replacing Û |m〉 in the exact result,
Eq. (16), by Û |mint〉 gives meaningful predictions according
to Eq. (2).

C. Error analysis

In this section, we investigate the approximation of the
metastable states |m〉 in the exact result Eq. (16) via the
mode |mint〉 in Eq. (2) from the perspective of Eq. (27), i.e.,
(i) we investigate the basis states |In〉 and (ii) the expansion
coefficients 〈In|mint〉. We focus on the standard map at κ = 3.4.

(i) In order to investigate our basis set |In〉, we expand the
metastable state |m〉 in this basis and insert this expansion into
the exact result (16). This gives

γm =
∑

n

|〈In|m〉|2‖P̂LÛ |In〉‖2

+
∑
n,n′

〈m|In′ 〉〈In′ |Û †P̂ 2
LÛ |In〉〈In|m〉. (34)

Since the diagonal terms

γ diag
m,n := |〈In|m〉|2‖P̂LÛ |In〉‖2 = |〈In|m〉|2�d

n (1) (35)

provide a bound to the off-diagonal terms according to
Cauchy’s inequality,

|〈m|In′ 〉〈In′ |Û †P̂ 2
LÛ |In〉〈In|m〉| �

√
γ

diag
m,n γ

diag
m,n′ , (36)

we can interpret them as a way to quantify the contribution
of the nth basis state |In〉 to the decay rate γm, in that γ

diag
m,n

takes a similar role as the contribution spectrum, discussed in
Ref. [41].

In Fig. 9(a), we consider all contributions γ
diag
0,n (lines) in

comparison with the decay rate γ0 (dots) for the standard map
at κ = 3.4. While most contributions are two to three orders of
magnitude smaller than γ0, we find that the contributions γ

diag
0,0 ,

γ
diag
0,6 , and γ

diag
0,12 dominate. In order to further test whether the

modes |In〉 with n = 0,6,12 are sufficient for describing γ0, we
sum the contributions n,n′ ∈ {0,6,12} of the dominant terms
in Eq. (34). This gives the red triangles of Fig. 9(b). From
these numerical observations we conclude that a reasonable
description of γ0 can be extracted using an approximate mode
exclusively composed of states |In〉 with n = 0,6,12, . . . , as
used in Eq. (27). However, it should be noted that the difference
between γ0 and its reduced version, based on contributions
n,n′ ∈ {0,6,12} in Eq. (34), is already of the order of γ0 itself.
See the region 70 < 1/h < 100 of Fig. 9(b) in particular.
Hence, reducing the metastable state |m〉 to an approximate
mode |mint〉 using only basis states |Im+kr〉 as in Eq. (27)
can at best provide a reasonable backbone for describing the
structure of γ0. On the other hand, for our example a prediction
of γ0 where the remainder is smaller than the decay rate based
on a reduced set of basis states |In〉 is only possible when
summing over many additional contributions, even including
n �= m + kr . The precise origin of such contributions γ

diag
m,n

with n �= m + kr is currently under debate [41]: From the
framework of resonance-assisted tunneling [19,20,39,43], we
expect that the overlap 〈In|m〉 vanishes for n �= m + kr .
Hence, one might argue that the contributions γ

diag
m,n with

n �= m + kr arise in our example only because our basis |In〉
is insufficiently accurate to decompose |m〉 according to the
theoretical expectation of resonance-assisted tunneling. On the
other hand, the authors of Ref. [41] observe nonvanishing
contributions 〈In|m〉 also for n �= m + kr even for a near-
integrable situation, where an excellent integrable approxi-
mation exists. They argue that nonvanishing 〈In|m〉 should
always occur and claim their treatment is beyond the current
framework of resonance-assisted tunneling. Independent of the
origin of the nonzero contributions γ

diag
m,n for n �= m + kr , their

theoretical description is beyond the scope of this paper. In
our examples the irrelevance of these contributions is ensured
by choosing leaky regions close to the regular-chaotic border.
However, for leaky regions far from the regular-chaotic border
the contributions γ

diag
m,n with n �= m + kr become relevant.

(ii) In the next step we evaluate the errors introduced by
replacing the expansion coefficients 〈Im+kr |m〉 by 〈Im+kr |mint〉
in Eq. (34). We focus on the corresponding diagonal contribu-
tions γ

diag
m,m+kr and �

diag
m,m+kr , which represent the squared norm

of the expansion coefficients 〈Im+kr |m〉 and 〈Im+kr |mint〉 up
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FIG. 9. Error analysis for the standard map at κ = 3.4. [(a)–
(c)] The numerically determined rates [(gray) dots] and (d) the
numerically determined phases Arg(〈In|0〉) for n = 0,1,2 (lines) are
shown versus the inverse effective Planck constant 1/h. (a) The
contributions γ

diag
0,n , Eq. (35), are shown by lines. (b) The reduced

prediction, Eq. (34) with n,n′ ∈ {0,6,12} is shown by (red) triangles.
(c) The contributions γ

diag
0,n of Eq. (35) (lines) are compared to �

diag
0,n (1)

of Eq. (30) (markers) for n = 0,6,12. (d) The phases Arg(〈In|0〉)
(lines) and Arg(〈In|0int〉) (markers) are compared for n = 0,6,12.
(Phases close to zero are slightly shifted for n = 6,12 for visibility.)

to a multiplication by the direct rate �d
m+kr (1). See the lines

and symbols in Fig. 9(c), respectively. From these data we
conclude that the norm of 〈Im+kr |mint〉 provides a reasonable
approximations for the norm of the expansion coefficients
〈Im+kr |m〉. The deviations before each peak could be due to
neglecting the higher-order action dependencies discussed in
Ref. [43] in the Hamilton function of Eq. (22). Furthermore,

we expect that the slightly broader peaks in the numerical rates
γ

diag
0,kr as compared to the sharper peaks of �

diag
0,kr (1) observed

for the integrable approximation are related to the openness of
the mixed system.

Finally, in Fig. 9(d) we compare the phases Arg(〈Im+kr |m〉)
and Arg(〈Im+kr |mint〉) for m = 0 and k = 0,1,2, respectively.
Here Arg(·) ∈ (−π,π ] is the principal value of the complex
argument function. Note that the global phase of |m〉 is fixed
by setting Arg(〈Im|m〉) = 0. The phases Arg(〈Im+kr |mint〉) are
fixed as described in Sec. C 2 in the Appendix. While the
phases of Arg(〈Im+kr |mint〉) jump from π to zero on traversing
the peak for decreasing 1/h (change from destructive to con-
structive interference), their counterparts for Arg(〈Im+kr |m〉)
seem to follow this jump in a smoothed-out way. Compare
symbols and lines in Fig. 9(d).

We attribute this phase detuning to the openness of the
system, i.e., (a) the symmetries of the integrable approx-
imation allow for choosing a real representation of the
coefficient 〈Im+kr |mint〉. Its phase can thus only take values
Arg(〈Im+kr |mint〉) ∈ {0,π}. In contrast, (b) the mode |m〉
originates from an open system and thus the coefficient
〈Im+kr |m〉 is usually complex such that Arg(〈Im+kr |m〉) might
take any value.

While the deviation between the numerically determined
phases Arg(〈Im+kr |m〉) and the theoretically predicted phases
Arg(〈Im+kr |mint〉) are seemingly small in Fig. 9(d), their
deviation has huge effects on the predicted decay rate, i.e., (a)
Eq. (2) predicts destructive interference of the diagonal terms
in the region before each peak. This leads to strong deviations
from the numerical decay rate, see Fig. 3(b). On the other hand,
(b) already the minimal detuning of Arg(〈Im+kr |m〉) from our
prediction Arg(〈Im+kr |mint〉) is sufficient to lift the destructive
interference. We assume that this explains why the incoherent
prediction, Eq. (29), as illustrated in Fig. 4, describes the
numerical rates much better than predictions according to,
Eq. (2), see Fig. 4.

D. Predictability of peak positions

Finally, we discuss the predictability of peak positions. To
this end we recall that H0(I ) in Eq. (22b) is determined by
fitting its derivative to the numerically determined actions and
frequencies (ω̄,J̄ ) of the regular phase-space region in the
corotating frame. For an illustration, see Fig. 10. In particular,
the data of the mixed system have a maximal action J̄max,
see the (black) dashed line in Fig. 10. Hence, H0 can be well
controlled in the regular region I < J̄max. However, for I >

J̄max, the function H0 is only an extrapolation to the chaotic
region. Furthermore, the integrable approximation predicts a
peak for γm [19,20,39,43] if

H0(Im) = H0(Im+kr ), (37)

where Im = �(m + 1/2) and Im+kr = �(m + kr + 1/2). This
resonance conditions follows from Eq. (32).

However, for all examples presented in this paper the
resonant torus Im+kr is always located outside of the regular
region, where H0(I ) is only given by an extrapolation. See
Fig. 2(c) for an example of this situation. The (black) dots
in Fig. 10(b) show the corresponding situation for H0(I ). In
such a situation our approach cannot guarantee an accurate
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FIG. 10. For the standard map at κ = 3.4 we show (a) the fit of
H′

0(I ) (line) to the actions and frequencies of the regular region (J̄ ,ω̄)
(crosses). (b) The function H0(I ) is shown as a (red) line. The two
(black) dots show (Im,H0(Im)) and (Im+kr ,H0(Im+kr )) at 1/h = 53.
[(a) and (b)] The dashed line shows the position of J̄max.

prediction of the peak position. Usually, this problem is not
too severe and the extrapolation is good enough. An example
where this problem appears can be seen in the second peak of
Fig. 3(a) where the peak of the numerical decay rates and the
predicted rates is shifted by 1/h = 1.

VII. SUMMARY AND OUTLOOK

In this paper we present two perturbation-free predictions of
resonance-assisted regular-to-chaotic decay rates, Eqs. (2) and
(3). Both predictions are based on eigenstates |mint〉 of an inte-
grable approximation Hr:s , Eq. (1). The key point is the use of
an integrable approximation Hr:s of the mixed regular-chaotic
system which includes the relevant nonlinear resonance chain.
Therefore |mint〉 models the localization of regular modes on
the regular region, including resonance-assisted contributions
in a nonperturbative way. This allows for extending the
validity of Eq. (2), previously used for direct tunneling in
Refs. [33,38], to the regime of resonance-assisted tunneling.
Furthermore, we introduce a second prediction, Eq. (3), which
no longer requires the time-evolution operator. Instead, it
allows for predicting decay rates using the localization of
the approximate mode on the leaky region, in that Eq. (3)
provides an excellent foundation for a future semiclassical
prediction of resonance-assisted regular-to-chaotic decay rates
[47] in the spirit of Refs. [44,45]. The validity of the presented
approach is verified for the standard map, where predicted and
numerically determined regular-to-chaotic decay rates show
good agreement.

Finally, we list future challenges: (a) The presented
approach is so far limited to periodically driven systems
with one degree of freedom. An extension to autonomous
or periodically driven systems with two or more degrees of
freedom is an interesting open problem. (b) The perturbation-

free approach applies to the experimentally and numerically
relevant regime, where a single resonance dominates regular-
to-chaotic tunneling. Its extension to the semiclassical regime
where multiple resonances affect tunneling is of theoretical
interest. (c) The suppression of decay rates due to partial
barriers is so far treated by choosing leaky regions close to
the regular-chaotic region. Explicitly predicting the additional
suppression of decay rates due to slow chaotic transport
through inhomogeneous chaotic regions remains an open
question.
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APPENDIX A: DERIVATION OF EQ. (16)

In this Appendix we derive Eq. (16) starting from Eqs. (14)
and (15). Taking the norm of the eigenvalue equation (15) for
a normalized state |m〉 one finds

exp (−γm) = ‖Ûo|m〉‖2 = 〈m|Û †
o Ûo|m〉

= 〈m|(1̂−P̂L)†Û †(1̂−P̂L)†(1̂−P̂L)Û (1̂−P̂L)|m〉,
(A1)

where in the last step the definition of Ûo, Eq. (14), is used.
We simplify this expression using

(1̂ − P̂L)|m〉 = |m〉, (A2)

which follows from Eqs. (14) and (15), giving

exp (−γm) = 〈m|Û †(1̂ − P̂L)†(1̂ − P̂L)Û |m〉. (A3)

Finally, exploiting the idempotence and hermiticity of the
projector P̂L gives

exp (−γm) = 〈m|Û †Û |m〉 − 〈m|Û †P̂LÛ |m〉
= 1 − ‖P̂LÛ |m〉‖2, (A4)

where in the last step the unitarity of Û is used. From this
follows the expression for regular-to-chaotic tunneling rates,
Eq. (16).

APPENDIX B: ISOSPECTRALITY

In this Appendix, we demonstrate the isospectrality of the
subunitary operators Ûo and Û ′

o as defined by Eqs. (14) and
(17), respectively. Furthermore, we discuss the transformation
relating their eigenmodes. For convenience, we repeat the
corresponding eigenvalue equations (15) and (18),

Ûo|m〉 = λm|m〉, (B1)

Û ′
o|m′〉 = λ′

m|m′〉, (B2)
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where the eigenvalues have been denoted by λm and λ′
m.

We now demonstrate the isospectrality of Ûo and Û ′
o. To

this end we show:
(a) For each eigenstate |m〉 of Ûo with eigenvalue λm, Û |m〉

is an eigenstate of Û ′
o with the same eigenvalue λm,

Û ′
oÛ |m〉 (17)= Û (1̂ − P̂L)Û |m〉, (B3)

(A2)= Û (1̂ − P̂L)Û (1̂ − P̂L)|m〉, (B4)

(14)= Û Ûo|m〉, (B5)

(B1)= λmÛ |m〉. (B6)

This further shows that the normalized eigenmode |m〉 of Ûo

with eigenvalue λm gives a normalized eigenmode |m′〉 of Û ′
o

with eigenvalue λm according to Eq. (20).
(b) For each eigenstate |m′〉 of Û ′

o with eigenvalue λ′
m,

the state (1̂ − P̂L)|m′〉 is an eigenstate of Ûo with the same
eigenvalue λ′

m,

Ûo(1̂ − P̂L)|m′〉 (14)= (1̂ − P̂L)Û (1̂ − P̂L)2|m′〉, (B7)

= (1̂ − P̂L)Û (1̂ − P̂L)|m′〉, (B8)

(17)= (1̂ − P̂L)Û ′
o|m′〉, (B9)

(B2)= λ′
m(1̂ − P̂L)|m′〉. (B10)

This further shows that for nonzero eigenvalue λ′
m the normal-

ized eigenmode |m′〉 of Û ′
o gives a normalized eigenmode |m〉

of Ûo according to Eq. (19).

APPENDIX C: DETAILS OF THE INTEGRABLE
APPROXIMATION

In this Appendix we summarize some technical aspects
on the integrable approximation. Computational details of the
classical integrable approximation as well as slight changes
as compared to Ref. [46] are given in Sec. C 1. Details of the
quantization are discussed in Sec. C 2 in the Appendix.

1. Details of the classical integrable approximation

We now summarize the modifications of the algorithm
described in Ref. [46] in order to account for the symmetries
of our system. Then we give a list of relevant computational
parameters.

a. Symmetrization

In agreement with Ref. [46], the canonical transformation
T , Eq. (23), is composed of (i) an initial canonical transfor-
mation,

T 0 : (θ,I ) �→ (Q,P ), (C1)

which provides a rough integrable approximation of the regular
phase-space region and (ii) a series of canonical near-identity
transformations,

T ′ ≡ T NT ◦ . . . ◦ T 1 : (Q,P ) �→ (q,p), (C2)

which improve the agreement between the shape of the tori of
the mixed system and the integrable approximation.

In contrast to Ref. [46], we use the symmetrized standard
map in this paper. In order to account for this symmetry, we
specify the canonical transformation, Eq. (C1), as

T 0 :

(
θ

I

)
�→

(
Q

P

)
=

[
q� + √

2I/σ cos(θ )
p� − √

2Iσ sin(θ )

]
. (C3)

Here (q�,p�) = (0.5,0.0) are the coordinates of the central
fixed point in the standard map. The parameter σ is determined
from the stability matrix of the standard map at (q�,p�),

M =
(

1 − κ
2 1

−κ
(
1 − κ

4

)
1 − κ

2

)
(C4)

as [71]

σ 2 =
∣∣1 + κ

2

∣∣ − ∣∣1 − κ
2

∣∣∣∣1 + κ
2

∣∣ + ∣∣1 − κ
2

∣∣ . (C5)

Furthermore, the symmetry of the systems is imposed on
the transformations T 1, . . . ,T NT , Eq. (C2), by specifying their
generating function as

Fa(q,p′) = qp′ +
Nq∑
n=1

Np∑
m=1

am,n

× sin(2πn[q − q�]) sin(2πm[p′ − p�]), (C6)

rather than using the more general form of Ref. [46, Eq. (31)].

b. Algorithmic overview

(i) We determine the parameters Ir:s , Mr:s , Vr:s , φ0, Eq. (22),
as described in Ref. [31].

(ii) We determine H0(I ), Eq. (22b), by fitting it to Ntori, disp

tuples of action and frequency (J̄ ,ω̄) describing the tori of the
regular region in the corotating frame of the resonance.

(iii) We determine the near-identity transformations of
Eq. (C2). Initially, this requires sampling of the regular region
using Nang points along Ntori tori. The invertibility of the
near-identity transformations in a certain phase-space region is
ensured by rescaling the coefficients am,n �→ ηam,n in Eq. (C6)
using a damping factor η. If Nq , Np in Eq. (C6) are too large,
then the tori of the integrable approximation form curls and
tendrils in the chaotic region. In that case, the integrable
approximation cannot predict decay rates. We control this
problem by choosing the largest possible parameters Nq , Np

for which the tori of the integrable approximation provide a
smooth extrapolation into the chaotic phase-space region. Af-
ter a finite amount of steps NT , the canonical transformations
do not improve the agreement between the regular region and
the integrable approximation. At this point, we terminate the
algorithm.

c. Computational parameters

In the following we list the important parameters of the
integrable approximation.

For κ = 2.9 we use Ir:s = 0.009223, Mr:s = 0.06243,
Vr:s = −1.655 × 10−7, and φ0 = π . For H0 in Eq. (22b) we
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FIG. 11. Decay rates γ0 for the standard map at κ = 3.4 versus
the inverse effective Planck constant. Numerically determined rates
[(gray) circles] are compared to predicted rates according to Eq. (2)
[(colored) symbols] based on three slightly different integrable
approximations.

used Ndisp = 4 and fit its derivative to Ntori, disp = 120 tori of
noble frequency. We use NT = 40 near-identity transforma-
tions, Eq. (C2), generated from Eq. (C6) with Nq = Np = 2
and coefficients rescaled by η = 0.05. The regular region
was sampled using Nang = 200 points along Ntori = 120 tori,
equidistantly distributed in action.

For κ = 3.4 we use Ir:s = 0.01026, Mr:s = −0.047, Vr:s =
−1.612 × 10−5, and φ0 = 0. For H0 in Eq. (22b) we use
Ndisp = 6 and fit its derivative to Ntori, disp = 120 tori, equidis-
tantly distributed in action. We use NT = 15 near-identity
transformations, Eq. (C2), generated from Eq. (C6) with Nq =
Np = 2 and coefficients rescaled by η = 0.25. The regular
region is sampled using Nang = 300 points along Ntori = 120
tori, equidistantly distributed in action.

For κ = 3.5 we use Ir:s = 0.01244, Mr:s = −0.048, Vr:s =
−2.98 × 10−5, and φ0 = 0. ForH0 in Eq. (22b) we use Ndisp =
4 and fit its derivate to Ntori, disp = 120 tori, equidistantly
distributed in action. We use NT = 15 near-identity transfor-
mations, Eq. (C2), generated from Eq. (C6) with Nq = Np = 2
and coefficients rescaled by η = 0.25. The regular region
is sampled using Nang = 300 points along Ntori = 120 tori,
equidistantly distributed in action.

d. Robustness

After fixing all parameters as described above, the final
integrable approximation might differ, depending on the
sampling of the regular region. In order to show that this
does not affect the final prediction, we evaluate Eq. (2) for
three integrable approximations which are based on slightly
different sets of sample points. The result is illustrated in
Fig. 11. It shows that the prediction is clearly robust.

2. Derivation of quantization

In the following, we sketch the basic ideas leading to the
quantization procedure presented in Sec. IV C. To this end we
first present the quantization of the Hamilton function obtained
after the transformation T 0, Eqs. (C1) and (C3), in Sec. C 2 a.
In Sec. C 2 b we present how we extend these results to the full
transformation T .

a. Quantization after T 0

To quantize the Hamilton function H (0)
r:s (Q,P ) obtained

after the canonical transformation T 0, Eqs. (C1) and (C3), we
follow Ref. [43] by starting with the transformed Hamilton-
function

H (0)
r:s (Q,P ) = H0

(
Q2 + P 2

2

)
+ Vr:s

(2Ir:s)r/2

×
[

exp(iφ0)

(
σ 1/2[Q − q�] − i

P

σ 1/2

)r

+ exp(−iφ0)

(
σ 1/2[Q − q�] + i

P

σ 1/2

)r]
.

(C7)

In order to quantize this function, we replace the coordinates
(Q,P ) by operators

Q �→ Q̂, (C8a)

P �→ P̂ , (C8b)

and demand the usual commutation relation

[Q̂,P̂ ] = i�. (C9)

This allows for introducing the corresponding ladder operators
as

â := 1

(2�)1/2

(
σ 1/2[Q̂ − q�] + i

P̂

σ 1/2

)
, (C10a)

â† := 1

(2�)1/2

(
σ 1/2[Q̂ − q�] − i

P̂

σ 1/2

)
, (C10b)

which admit the commutator

[̂a,̂a†] = 1, (C11)

such that we get the number operator

n̂ := â†â. (C12)

Based on these operators, the quantization of H (0)
r:s takes the

form [43]

Ĥ (0)
r:s = H0(Î ) + Vr:s

(
�

Ir:s

) r
2

[̂a†r

exp(iφ0) + âr exp(−iφ0)],

(C13)

where

Î := �(̂n + 1/2) (C14)

is the operator replacing the unperturbed action I . Finally,
in order to define the basis states, we identify them with the
eigenstates of the number operator leading to

Î
∣∣I (0)

n

〉 = In

∣∣I (0)
n

〉
, (C15)
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where the eigenvalues become quantizing actions In = �(n +
1/2) and the basis states |I (0)

n 〉 fulfill

â
∣∣I (0)

0

〉 = 0, (C16a)∣∣I (0)
n

〉 = 1√
n!

â†n ∣∣I (0)
0

〉
. (C16b)

With respect to this position basis |I (0)
n 〉 become the

eigenstates of the harmonic oscillator

〈
Q

∣∣I (0)
n

〉 =
( σ

π�

) 1
4 1√

2nn!
Hn

(
Q√
�/σ

)
exp

(
−σQ2

2�

)
, (C17)

where Hn(·) are the Hermite polynomials.

b. Quantization after T
Our final goal is of course to obtain the quantization

of the Hamilton function Hr:s(q,p), which is related to
H (0)

r:s (Q,P ) via the canonical transformation T ′, Eq. (C2). In
order to obtain its quantization, we assume that T ′ quantum-
mechanically corresponds to a unitary operator ÛT ′ which has
the following properties:

Û−1
T ′ = ÛT ′−1 , (C18a)

Q̂′ = ÛT ′Q̂Û−1
T ′ , (C18b)

P̂ ′ = ÛT ′ P̂ Û−1
T ′ . (C18c)

Such an operator exists at least within a semiclassical approx-
imation [74]. Note that Q̂′,P̂ ′ represent the operators Q̂,P̂

within the final coordinate frame (q,p). However, they must
not be confused with the operators q̂,p̂ which give rise to the
position and momentum basis in the final coordinate frame
(q,p). In particular, while q̂|q〉 = q|q〉, Q̂|q〉 �= q|q〉.

Under the above assumption the transformed operators
preserve the commutation relation

[Q̂′,P̂ ′] = i�. (C19)

Furthermore, we get the transformed ladder operators as

â′ := ÛT ′ âÛ−1
T ′ , (C20a)

â′† := ÛT ′ â†Û−1
T ′ , (C20b)

which admit the same commutator

[̂a′,̂a′†] = 1, (C21)

such that we get the transformed number operator

n̂′ = ÛT ′ n̂Û−1
T ′ , (C22)

and the transformed action operator

Î ′ := �(̂n′ + 1/2). (C23)

Based on these operators, we can define the trans-
formation of the quantization of H (0)

r:s (Q,P ) which we
identify with the quantization of Hr:s(q,p). It takes the

form [43]

Ĥr:s = H0(Î ′) + Vr:s

(
�

Ir:s

) r
2

[̂a′†r

exp(iφ0) + â′r exp(−iφ0)].

(C24)

Finally, in order to define the basis states |In〉, we identify them
with the eigenstates of the number operator n̂′, such that

Î ′|In〉 = In|In〉 (C25)

with the basis states |In〉 which admit the property

â′|I0〉 = 0, (C26a)

|In〉 = 1√
n!

â′†n |I0〉. (C26b)

Evaluating Ĥr:s , Eq. (C24), in the basis of |In〉, based on
Eqs. (C26) gives the matrix representation of Eq. (26).

Finally, for connecting Ĥr:s and Û we require the basis
states with respect to the basis |q〉. To this end, one can show
from the above equations that

|In〉 = ÛT ′
∣∣I (0)

n

〉
, (C27)

such that

〈q|In〉 =
∫

dQ〈q|ÛT ′ |Q〉〈Q∣∣I (0)
n

〉
. (C28)

In principle, the operator 〈q|ÛT ′ |Q〉 can be evaluated semiclas-
sically, using the techniques described in Ref. [74]. However,
this does not give an analytical closed form result and its
evaluation is numerically extremely tedious. Furthermore, ÛT ′

is usually so close to an identity transformation such that
a semiclassical evaluation of 〈q|ÛT ′ |Q〉 contains too many
turning points.

Hence, we take an alternative approach, which is numer-
ically feasible: (i) We recognize that the states |In〉 are the
eigenstates of the operator Î , originating from the phase-space
coordinate I . (ii) We define the function I (q,p) which is
obtained after the full canonical transformation T . (iii) We
define the Weyl quantization of this function on a phase-
space torus giving the Hermitian matrix of Eq. (25). (iv) We
diagonalize this matrix numerically, yielding the states 〈ql|In〉.

Finally, obtaining the modes 〈ql|In〉 from an eigenvalue
equation comes at the cost that their relative phase [usually
ensured via Eq. (C26) or, alternatively, via Eqs. (C16) and
(C27)] is lost. For the standard map we try to restore this
phase by exploiting the symmetry of Eq. (25), which for our
system becomes a real symmetric matrix, in that we can ensure
that the coefficient vector 〈ql|In〉 can be chosen real. Finally,
we fix the sign of this coefficient vector by aligning it with
the mode 〈Q|I (0)

n 〉 defined via Eq. (C17). This means that we
choose the sign of the coefficient vector 〈ql|In〉 such that the
following relation is fulfilled:∑

n

〈In|ql〉
[〈
Q

∣∣I (0)
n

〉]∣∣
Q=ql

> 0. (C29)

This assumes that the unitary operator representing the
quantum canonical transformation in Eq. (C28) is sufficiently
close to an identity transformation ÛT ′ ≈ 1.
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