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Coupled-mode-theory framework for nonlinear resonators comprising graphene
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A general framework combining perturbation theory and coupled-mode theory is developed for analyzing
nonlinear resonant structures comprising dispersive bulk and sheet materials. To allow for conductive sheet
materials, a nonlinear current term is introduced in the formulation in addition to the more common nonlinear
polarization. The framework is applied to model bistability in a graphene-based traveling-wave resonator system
exhibiting third-order nonlinearity. We show that the complex conductivity of graphene disturbs the equality of
electric and magnetic energies on resonance (a condition typically taken for granted), due to the reactive power
associated with the imaginary part of graphene’s surface conductivity. Furthermore, we demonstrate that the
dispersive nature of conductive materials must always be taken into account, since it significantly impacts the
nonlinear response. This is explained in terms of the energy stored in the surface current, which is zeroed-out when
linear dispersion is neglected. The results obtained with the proposed framework are compared with full-wave
nonlinear finite-element simulations with excellent agreement. Very low characteristic power for bistability is
obtained, indicating the potential of graphene for nonlinear applications.
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I. INTRODUCTION

Nonlinear resonators are indispensable components for
building functional photonic circuits. For example, resonant
structures combining optical feedback with third-order non-
linearities give rise to a multitude of interesting phenomena,
namely optical bistability (leading to memory [1], switching
[2,3], and logic gate [4,5] functions), self-pulsation [6] (optical
clock applications), and excitability [7] (neural network
computing).

To date, mainly bulk materials (semiconductors, nonlinear
polymers, chalcogenide glasses, etc.) are being incorporated
in resonant structures to introduce nonlinearity. However,
interest has recently shifted to sheet [two-dimensional (2D)]
materials. In particular, graphene is already being employed
in resonators [8–10] to provide nonlinearity and tunability.
A robust framework for efficiently and accurately modeling
nonlinear effects in resonators comprising graphene is thus
in order. In this work, we address this need by developing
a formulation combining perturbation theory and temporal
coupled-mode theory (CMT). Unlike previous approaches
[11–13], we allow for both bulk and sheet nonlinear materials
by introducing a nonlinear current term in the formulation
in addition to the more common nonlinear polarization. This
way, graphene can be naturally modeled as an infinitesimally
thin material, avoiding erroneous results and excessive com-
putational burden [14]. Importantly, we also allow for material
dispersion (in the linear properties) since graphene is highly
dispersive, something that is shown to significantly affect the
nonlinear response.

Besides being very efficient compared to nonlinear full-
wave simulations, the proposed framework allows for ob-
taining robust design rules and gaining physical insight. We
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test its performance by considering optical bistability with a
2D resonator-waveguide system consisting of a graphene (or
carbon) tube resonator coupled to a graphene sheet waveguide.
Excellent agreement with full-wave simulations is obtained.
In addition, high-quality bistable response with low input
power is demonstrated, indicating the potential of graphene
for nonlinear applications.

In our graphene-based example, the nonlinear current term
is used to model the third-order nonlinearity originating
from the nonlinear response of free electrons [15], which
is analogous to the Kerr nonlinearity originating from the
nonlinear motion of bound electrons in dielectric media
[16]. In general, the presence of the nonlinear current
term in the formulation can allow for studying any sur-
face or bulk nonlinearity in conductive materials, whose
nonlinear response is less examined compared to dielectric
ones.

II. THEORETICAL FRAMEWORK

To derive a closed-form expression for the nonlinear
frequency shift, we begin from Maxwell’s equations in the
frequency domain (spatial dependance is suppressed) for the
unperturbed [Eqs. (1a) and (1b)] and perturbed [Eqs. (1c) and
(1d)] case,

∇ × E0 = −jω0μ0H0, (1a)

∇ × H0 = jω0ε0εr (ω0)E0 + σ (1)(ω0)E0, (1b)

∇ × E = −jωμ0H, (1c)

∇ × H = jωε0εr (ω)E + σ (1)(ω)E + jωPNL + JNL, (1d)

where we have adopted an exp{+jωt} harmonic con-
vention and allowed for the general case of diagonally
anisotropic materials. Following the conjugated form of the
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reciprocity theorem [17,18], we calculate the divergence of
Fc = E∗

0 × H + E × H∗
0:

∇ · Fc = −j (ω − ω0)μ0H · H∗
0

− j [ωεr (ω) − ω0ε
∗
r (ω0)]ε0E · E∗

0

− [σ (1)(ω) + σ (1)∗(ω0)]E · E∗
0

− jωPNL · E∗
0 − JNL · E∗

0. (2)

Since we are interested in specifying the nonlinear frequency
shift (and not potential effects on the linewidth of the resonance
[19]), we set εr,Im = 0 (henceforth, εr denotes the real part of
the permittivity tensor) and σ

(1)
Re = 0 in Eq. (2), momentarily

disregarding linear losses. Note that the effect of any nonlinear
loss mechanism (e.g., two-photon absorption), rendering
the frequency shift complex can be accounted for through
complex nonlinear susceptibilities/conductivities. We next
expand both relative permittivity and electrical conductivity
tensors in Taylor series keeping only the first two terms,
yielding ωεr (ω) = ω0εr (ω0) + (ω − ω0)∂{ωεr}/∂ω|ω=ω0

and

σ
(1)
Im(ω) = σ

(1)
Im(ω0) + (ω − ω0)∂{σ (1)

Im}/∂ω|
ω=ω0

. Using, fi-
nally, Gauss’s divergence theorem in an appropriately selected
d-dimensional domain � (d = {2,3}), enclosed by the (d − 1)-
dimensional boundary � with a normal outward vector n,
such that

∫
�

∇ · Fc ddr = ∮
�

Fc · n dd−1r = 0 [20], Eq. (2)
becomes

0 = −j�ω

∫
μ0H · H∗

0d
dr − j�ω

∫
ε0

∂{ωεr}
∂ω

E · E∗
0d

dr

− j�ω

∫
∂σ (1)

im

∂ω
E · E∗

0d
dr

− jω

∫
PNL · E∗

0d
dr −

∫
JNL · E∗

0d
dr, (3)

where �ω = ω − ω0 is the resonance frequency shift due to all
possible nonlinearities. All derivatives involved are calculated
at ω = ω0 with the notation suppressed for brevity. Equation
(3) can be solved for �ω yielding

�ω

ω0
= −

∫
PNL · E∗

0d
dr−j

1

ω0

∫
JNL · E∗

0d
dr

∫
∂
{
ε0ωεr + σ

(1)
Im

}
∂ω

E0 · E∗
0d

dr+μ0

∫
H0 · H∗

0d
dr

,

(4)

where we have assumed that E ≈ E0, H ≈ H0, and ω ≈ ω0,
as first-order perturbation theory implies [12]. Equation (4)
is general, describing the nonlinear frequency shift arising
from polarization and/or current density nonlinearities. It
additionally incorporates the dispersion of linear properties
(electrical permittivity and conductivity).

Note that Eq. (4) reduces to the expressions derived in
Refs. [11,21] when resonators comprising nondispersive bulk
materials with isotropic χ (3) susceptibilities are considered.
Then

�ωb = −1

4

(
ω0

c0

)d

c0ω0κbn
max
2 W, (5)

where W = (ε0/2)
∫

εr |E0|2ddr is the total stored energy
in the cavity, nmax

2 is the maximum value of n2 in the

entire structure, and κb is a dimensionless nonlinear feed-
back parameter measuring the overlap between the reso-
nant mode and the bulk nonlinear material [11] defined
through

κb =
(

c0

ω0

)d

1

3

∫
εrn2[2|E0|4 + |E0 · E0|2]ddr[

1

2

∫
εr |E0|2ddr

]2

nmax
2

. (6)

Importantly, it was possible to eliminate the magnetic field in
the denominator of Eq. (4) by using W = We + Wm = 2We,
stating that electric and magnetic energies are equal on
resonance. This does not always hold, as will be shown in
what follows.

It is the second term in the numerator of Eq. (4) that can
be used to incorporate nonlinear conductive sheet materials
expanding the existing framework. Specifically, graphene
exhibits a surface electrical conductivity consisting of a linear
σ (1)

s and a third-order nonlinear σ (3)
s contribution, measured

in S and S(m/V)2, respectively. Linear conductivity induces
a surface current density Js = σ1E0,‖, where σ1 is the only
independent component of the σ (1)

s tensor, and E0,‖ are the
tangential to the graphene sheet components of E0. The
nonlinear conductivity tensor σ (3)

s has, in its simplest form,
eight nonzero elements, all interacting exclusively with the
tangential to the graphene sheet components of the electric
field; only one of them is independent and is denoted
with σ3. Thus, the nonlinear current density in graphene
is [14]

JNL = σ3

4
[2(E0,‖ · E∗

0,‖)E0,‖ + (E0,‖ · E0,‖)E∗
0,‖]δs(r), (7)

where δs(r) is a (d − 1)-dimensional surface Dirac function.
For the THz regime we will be considering, the linear

conductivity of graphene is dominated by the intraband term,
exhibiting a strong Drude dispersion [14,22,23],

σ1 = −j
e2μc

π�2(ω − j/τ1)

2kBT

μc

ln

[
2 cosh

(
μc

2kBT

)]
, (8)

where e is the electron charge, � is the reduced Planck’s
constant, kB is Boltzmann’s constant, T = 300 K is the
absolute temperature, τ1 = 40 ps is the relaxation time for
intraband absorption in the THz regime, and μc is the chemical
potential. σ1 = σ1,Re + jσ1,Im is complex, with σ1,Im < 0. The
nonlinear conductivity is purely imaginary, meaning that no
nonlinear loss mechanism (e.g., two-photon absorption) is
present, and is given by [14,15]

σ3 = j
3e4υ2

F

32ω3�2μc

, (9)

where υF ≈ c0/300 is the Fermi velocity in graphene. Note
that σ3,Im is always positive when μc > 0.
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Plugging Eq. (7) into Eq. (4) and neglecting both the polarization term and the permittivity dispersion, we reach

�ωs = j

1

4

∫
σ3(2|E0,‖|4+|E0,‖ · E0,‖|2)dd−1r∫

(ε0εr |E0|2+μ0|H0|2)ddr+
∫

∂σ1,Im

∂ω
|E0,‖|2dd−1r

. (10)

The integral in the numerator and the second integral in the denominator of Eq. (10) are reduced by one order since graphene is
a sheet material as denoted by the δs(r) function. In direct analogy with the bulk case, a surface nonlinear feedback parameter κs

can be defined as

κs =
(

c0

ω0

)d+1

∫
σ3(2|E0,‖|4 + |E0,‖ · E0,‖|2)dd−1r[ ∫ (

εr |E0|2 + η2
0|H0|2

)
ddr + 1

ε0

∫
∂σ1,Im

∂ω
|E0,‖|2dd−1r

]2

σ max
3

, (11)

where η0 ≈ 120π� is the free-space impedance and σ max
3

is the maximum value of σ3 everywhere. The definition
of κs is directly analogous to Eq. (6) for κb with one
noteworthy difference: the denominator contains both electric
and magnetic fields. We must retain the magnetic field in
the denominator of κs since the presence of the complex
conductivity disturbs the equality of electric and magnetic
energies on resonance. Note also that the (c0/ω0) scaling
factor is in the d + 1 power, keeping κs dimensionless. Using
Eq. (11), we can write Eq. (10) as

�ωs = j

(
ω0

c0

)d+1

κs
σ max

3

ε2
0

W. (12)

�ωs has the same form as �ωb. The presence of the imaginary
unit j combined with a purely imaginary σ3 leads to a negative
frequency shift (σ3,Im > 0) proportional to the stored energy
in the cavity, as would be the case for a self-focusing (n2 > 0)
bulk material [cf. Eq. (5)].

It is now important to demonstrate that the last integral
in the denominator of Eq. (10) is indeed proportional to
the energy stored in the current density (i.e., in graphene),
meaning that the entire denominator corresponds to the
total stored energy. This can be shown by resorting to
the time-domain Poynting theorem and carefully calculating
the J · E term. In the case of purely real conductivity,
this term would account for resistive losses; however, the
surface conductivity of graphene is complex with a large
imaginary part. Following Ref. [24], we assume a slowly vary-
ing envelope approximation: E = Re{E0(t) exp (+jω0t)} =
(E + E∗)/2, J = Re{J0(t) exp (+jω0t)} = (J + J∗)/2, and
we calculate the product 〈J · E〉 = (E∗ · J + E · J∗)/4, with
〈 · 〉 denoting time averaging within a period of T0 = 2π/ω0.
Fourier-transforming the envelope J0(t), using Ohm’s law,
expanding the conductivity in Taylor series, and applying the
inverse Fourier transform in the result, we find

〈J · E〉 = 1

2
σ

(1)
ReE · E∗ + 1

4

∂

∂t

{
∂σ

(1)
Im

∂ω
E · E∗

}
. (13)

A detailed derivation of Eq. (13) can be found in Appendix A.
Clearly, the first term on the right-hand side of Eq. (13)
expresses power loss density. The second term, on the other
hand, describes the rate of change of the energy density stored
by the current distribution due to the imaginary part of the

electrical conductivity tensor. It thus allows us to define the
total surface energy stored in an infinitesimally thin graphene
sheet as

Wj = 1

4

∫
∂σ1,Im

∂ω
|E0,‖|2dd−1r. (14)

Note that when σ1,Im is constant with frequency (disper-
sionless) this term vanishes, i.e., Wj = 0 (on the contrary,
losses exist regardless of dispersion). However, reactive power
consumed in graphene is always nonzero, as can be seen from
the Poynting theorem [S = (1/2)E0 × H∗

0] in the frequency
domain,

−
∫

∇ · S ddr = j
1

2
ω0

∫
μ0|H0|2ddr

− j
1

2
ω0

∫
ε0εr |E0|2ddr

+ j
1

2

∫
|σ1,Im||E0,‖|2dd−1r

+ 1

2

∫
σ1,Re|E0,‖|2dd−1r

= j (QH − QE + QJ ) + Ploss. (15)

On resonance, the total reactive power must be zero, i.e., QE =
QH + QJ (note that irrespective of the harmonic convention,
QH and QJ are always of the same sign, which is, moreover,
opposite to that of QE). Given that Wm = QH/2ω0 and We =
QE/2ω0 (when permittivity dispersion is neglected), it follows
that We �= Wm when a material with complex conductivity is
present and thus the total energy should be evaluated as the
sum of its three counterparts.

III. NUMERICAL VALIDATION

The nonlinear frequency shift �ωs of Eq. (12) can be readily
incorporated in a CMT framework to study the response of
a nonlinear resonant structure. Here we focus on a coupled
resonator-waveguide system and study its bistable behavior.
More specifically, we examine a carbon tube traveling-wave
(TW) resonator with a radius R, side-coupled to a graphene
sheet waveguide through coupling gap g; see Fig. 1(a).
Due to the uniformity along the z axis, the dimensionality
of the problem drops to d = 2. The CMT equation describing
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FIG. 1. (a) Infinite carbon tube (TW resonator), side-coupled
to an infinite graphene sheet (waveguide). The profile of the TM
plasmonic mode supported by the graphene sheet at 10 THz is
included. (b) Azimuthal component of the E-field, Eϕ , when two
degenerate counterpropagating modes are combined with equal
weights, resulting in a standing-wave pattern (eigenvalue problem
solution). (c) Eϕ distribution when a single traveling mode is excited
by feeding the bus waveguide.

the resonator-waveguide system at hand is [21,25]

da

dt
= j (ω0 + �ωs)a −

(
1

τi

+ 1

τe

)
a + j

√
2

τe

si, (16)

where τi,τe are cavity photon lifetimes corresponding to intrin-
sic (resistive and radiation) and external (coupling) losses. The
respective quality factors are Q = ω0τ/2. Cavity amplitude a

is normalized so that |a|2 is the stored energy in the cavity,
W = We + Wm + Wj , while incident and transmitted wave
amplitudes si and st (connected through st = si + j

√
2/τea)

are normalized so that |s|2 expresses guided power.
For the continuous-wave (CW) case, Eq. (16) can be cast

in a readily solvable closed-form expression [21], allowing
for determining the effect of each system parameter on
the nonlinear response gaining physical insight, deriving
robust design rules, and specifying the detuning threshold for
bistability [13,26]. In short, when the detuning δ = (ω − ω0)τi

is beneath the detuning threshold δth = −(1 + rQ)
√

3, with
rQ = Qi/Qe, optical bistability arises: for an appropriate input
power, three output states are obtained, with two of them
being stable [21]. Input power per unit length for observing
bistability is of the order of the characteristic power

P0 = ε2
0c

3
0

2ω0σ
max
3,ImκsQ

2
i

, (17)

which must be minimized. Since P0 is inversely proportional
to κsQ

2
i , we seek the parameters maximizing the product.

In Fig. 2 we plot κs , Qi , and P0 as a function of resonator
radius, calculated from linear vectorial finite-element method
(VFEM) eigenvalue simulations conducted with COMSOL
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FIG. 2. (a) Nonlinear feedback parameter vs resonator radius R.
(b) Intrinsic quality factor and characteristic power vs R. Opposite
trends in κs and Qi result in a minimum P0 = 1.32 W/m for R =
2 μm. Solid (dashed) lines represent dispersionless (dispersive) cases.
P0 is the same in both cases.

calculating κs in TW resonators through an eigenvalue
simulation; details can be found in Appendix B. Two cases
are considered, one with constant conductivity σ1 = 0.26 −
j560 μS (solid lines) and one with dispersive conductivity
(dashed lines) calculated using Eq. (8) with μc = 0.3 eV.
In both cases, κs decreases with radius because modes with
higher azimuthal order m are accompanied by higher effective
mode areas, resulting in lower power densities (for a given
input power level) and thus weaker electric field amplitudes
on graphene. On the other hand, Qi increases with radius due
to the reduced radiation (bending) losses until reaching an
upper limit set by resistive losses. To better illustrate this, we
distinguish between resistive and radiation losses and compile
the corresponding quality factors, Qres and Qrad, in Tables I
and II for the dispersive and nondispersive case, respectively.

TABLE I. Uncoupled resonant frequencies along with intrinsic,
resistive, and radiation quality factors for the dispersive case. Qrad

increases for higher-radial-order modes (larger radius). For m � 4
(R � 2 μm) radiation losses are negligible. Qres is constant with R

and limits Qi .

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

R (μm) 1 1.5 2 2.5 3 3.5
f0 (THz) 10.011 10.018 10.020 10.020 10.021 10.021
Qi 855 1791 2082 2140 2157 2162
Qres 2167 2167 2167 2166 2166 2166
Qrad 1411 10 302 53 136 >105 >105 >105
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TABLE II. Uncoupled resonant frequencies along with intrinsic,
resistive, and radiation quality factors for the nondispersive case.
Q-factors exhibit an approximately twofold reduction since Wj = 0.
The behavior with m is the same as in Table I. The different resonance
frequency compared with the dispersive case originates from the
constant conductivity considered here (calculated at 10 THz).

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

R (μm) 1 1.5 2 2.5 3 3.5
f0 (THz) 9.990 10.003 10.006 10.008 10.009 10.009
Qi 431 901 1047 1076 1084 1087
Qres 1094 1091 1090 1089 1089 1089
Qrad 711 5183 26 726 87 563 >105 >105

Note that the three quality factors (Qi , Qres, and Qrad) satisfy

Qi =
(

1

Qres
+ 1

Qrad

)−1

. (18)

Qrad monotonically increases with R as anticipated. For R �
2 μm (m � 4), radiation losses are practically negligible. On
the other hand, Qres is constant with R and sets the upper limit
in the maximum achievable Qi .

Given the opposite trends between κs and Qi , minimum
characteristic power is obtained for the m = 4 mode (res-
onator radius R = 2 μm, and unloaded resonance frequency
f

disp
0 = 10.020 THz or f non

0 = 10.006 THz for the dispersive
and the nondispersive case, respectively), resulting in P0 =
1.32 W/m. For a three-dimensional component with a λ/2
length along the direction of invariance, the characteristic
power is only 20 μW, indicating the potential of graphene
for nonlinear applications. To obtain P0, a value of σ3 =
j4.66 × 10−19 S(m/V)2, calculated through Eq. (9), is used
[27]. Importantly, when dispersion is taken into account,
κs exhibits an approximately fourfold reduction since now
Wj �= 0 [Eq. (14)] and the stored energy almost doubles.
Accordingly, the quality factor (as evident from its definition
Qi = ω0W/Ploss) increases by a factor of ∼ 2 (loss remains
constant). This is also true for Qres and Qrad. Notably,
P −1

0 ∝ κsQ
2
i remains unaffected. However, as will be shown

in the next paragraph, the impact on the bistability loop when
dispersion is neglected is significant.

To complete the design process, we specify that g =
1.74 μm is required for critical coupling (rQ = 1). This holds
even when dispersion is considered, since both Qe and Qi

experience an approximately twofold increase and thus rQ

remains constant. Note that critical coupling is essential for
achieving high extinction ratios in the bistable loop [21]. The
bistability curves, as calculated with the proposed framework
for both dispersive and nondispersive graphene, are depicted
in Fig. 3 for an operating frequency f disp = 10.006 THz and
f non = 10 THz, lower than the unperturbed loaded resonance
frequency f

disp
0,L = 10.027 THz and f non

0,L = 10.021 THz by
�f = 21 GHz for both cases. Because of the different Qi

values in the two cases, the normalized detuning is different:
δ = 1.3δth (dispersionless) and δ = 2.6δth (dispersive), with
respect to their common δth value. This, in turn, significantly
impacts the span and position of the bistability loop. As a
result, taking graphene dispersion into account is crucial for
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noissi
msnarT

f= 10 THz
rQ = 1

CMT nondispersive
CMT dispersive

FEM up-sweep
FEM down-sweep

FIG. 3. Bistability curves for dispersive (green) and nondisper-
sive (brown) graphene calculated with the proposed framework
at f disp = 10.006 THz (f disp

0,L = 10.027 THz) and f non = 10 THz
(f non

0,L = 10.021 THz), respectively. Note the significant impact on
the bistability loop. Circular (cross) markers are calculated with
the nonlinear VFEM for ascending (descending) input power. The
agreement is excellent.

correctly capturing the nonlinear response and associating
with experimental results. To confirm the validity of our
framework, we compare the results with full-wave nonlinear
VFEM simulations shown with markers in Fig. 3. The two
bistable branches are revealed by conducting two different
power sweeps, one with ascending and one with descending
steps. The solution of each step is used as an initial condition
for the next one. Clearly, the agreement between the two
methods is exceptional.

IV. CONCLUSIONS

To recapitulate, we have developed a general framework
for nonlinear resonant structures comprising dispersive bulk
and sheet materials. Although we have focused on third-order
electronic (Kerr) nonlinearity, the proposed framework can
handle any arbitrary nonlinearity expressed through the nonlin-
ear current density (or nonlinear polarization) term. Therefore,
it paves the way for modeling a multitude of nonlinear
phenomena with sheet materials, which have recently found
their way into THz/photonic components, and assessing their
true potential for nonlinear applications.

Importantly, we have demonstrated that when media with
a complex conductivity are involved, such as graphene, the
equality of electric and magnetic energies ceases to hold (a
condition that is typically taken for granted) and the stored
energy must be evaluated as the sum of electric, magnetic,
and current density energies. This stems from the reactive
power associated with the imaginary part of graphene’s surface
conductivity. In addition, we have shown that incorporating the
dispersion of linear material properties is important since it
can significantly impact the nonlinear response. This has been
explained in terms of the energy stored in the surface current,
which is zeroed out when linear dispersion is neglected.

The proposed framework not only provides physical insight
and clear design rules, but it is also accurate and efficient.
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It thus allows for modeling large physical systems that
would otherwise be too costly to model with full-wave
nonlinear simulations. In turn, this facilitates cross-checking
with experimental results and performing elaborate design
processes for meeting specific component requirements.
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APPENDIX A: STORED ENERGY IN DISPERSIVE
GRAPHENE

In this appendix, we will derive Eq. (13) by following
Ref. [24]. The Poynting theorem in the time domain is

−∇ · (E × H) = J · E + E · ∂D
∂t

+ H · ∂B
∂t

. (A1)

The second and third terms on the right-hand side of Eq. (A1)
correspond to the rate of change of the stored energy density.
The total stored electric and magnetic energies in dispersive
media are given by the widely known expressions [24]

We =
∫ (∫

E · ∂D
∂t

dt

)
ddr

= 1

4

∫
∂{ωε(ω)}

∂ω

∣∣∣∣
ω=ω0

E · E∗ddr, (A2a)

Wm =
∫ (∫

H · ∂B
∂t

dt

)
ddr

= 1

4

∫
∂{ωμ(ω)}

∂ω

∣∣∣∣
ω=ω0

H · H∗ddr. (A2b)

The first term on the right-hand side of Eq. (A1), on the other
hand, usually corresponds to power loss density. This is true
only when the conductivity tensor is purely real. In the case
of materials with complex conductivity (such as graphene),
it results in an extra term describing the rate of change of
the energy stored in the imaginary part of the dispersive
conductivity tensor. To show this, let us assume a slowly
varying envelope approximation for both the electric field and
current density, i.e.,

E = Re{E0(t)e+jω0t } = Re{E} = (E + E∗)

2
, (A3a)

J = Re{J0(t)e+jω0t } = Re{J} = (J + J∗)

2
. (A3b)

Substituting Eqs. (A3) in the first term of Eq. (A1) and
applying time averaging (denoted by 〈 · 〉) within a period of
T0 = 2π/ω0, we get

〈J · E〉 = (E∗ · J + E · J∗)

4
. (A4)

The slowly varying envelope can be expressed in the frequency
domain using Fourier transformation, resulting in the follow-
ing expression for the current:

J = J0(t)ejω0t =
[

1

2π

∫ ∞

−∞
J̃0(ξ )ejξtdξ

]
ejω0t , (A5)

with ξ being the baseband frequency. J̃0(ξ ) and Ẽ0(ξ )
are related by Ohm’s law through J̃0(ξ ) = [σ (1)

Re(ξ + ω0) +
jσ

(1)
Im(ξ + ω0)]Ẽ0(ξ ). Note that the value of σ (1) at the “high”

frequency ω = ξ + ω0 is used. To proceed, we use a zeroth-
order Taylor series expansion for the real part of electrical
conductivity (i.e., we neglect dispersion of losses) and a
first-order Taylor series expansion for the imaginary part, both
around ξ = 0,

σ
(1)
Re(ξ + ω0) ≈ σ

(1)
Re(ω0), (A6a)

σ
(1)
Im(ξ + ω0) ≈ σ

(1)
Im(ω0) + ξ

∂
{
σ

(1)
Im(ξ + ω0)

}
∂ξ

∣∣∣∣∣
ξ=0

= σ
(1)
Im(ω0) + ξ

∂σ
(1)
Im(ω)

∂ω

∣∣∣∣∣
ω=ω0

. (A6b)

Substituting Eqs. (A6) in Eq. (A5), we reach

J =
[

1

2π
σ

(1)
Re(ω0)

∫ ∞

−∞
Ẽ0(ξ )ejξtdξ

]
ejω0t

+
[
j

1

2π
σ

(1)
Im(ω0)

∫ ∞

−∞
Ẽ0(ξ )ejξtdξ

]
ejω0t

+
[

1

2π

∂σ
(1)
Im(ω)

∂ω

∫ ∞

−∞
jξ Ẽ0(ξ )ejξtdξ

]
ejω0t . (A7)

Note that all the derivatives involved are calculated at ω = ω0.
In the last integral on the right-hand side of Eq. (A7), we
recognize that the term jξ Ẽ0(ξ ) exp (jξ t) can alternatively
be written as ∂{Ẽ0(ξ ) exp(jξ t)}/∂t . By mutually exchanging
integral and differential operators and applying inverse Fourier
transformation, we get

J = σ
(1)
Re(ω0)E0(t)ejω0t + jσ

(1)
Im(ω0)E0(t)ejω0t

+ ∂σ
(1)
Im(ω)

∂ω

∂{E0(t)}
∂t

ejω0t . (A8)

Finally, returning to Eq. (A4) and substituting Eq. (A8), we
arrive at Eq. (13):

〈J · E〉 = 1

2
σ

(1)
Re(ω0)E · E∗ + 1

4

∂

∂t

{
∂σ

(1)
Im(ω)

∂ω
E · E∗

}
.

(A9)

As already mentioned, the first term on the right-hand side
of Eq. (A9) expresses power loss density. On the other hand,
the second term describes the rate of change of the energy
density stored by the current distribution due to the imaginary
part of the electrical conductivity tensor. In accordance with
Eqs. (A2), we can define the total stored energy as

Wj = 1

4

∫
∂σ

(1)
Im(ω)

∂ω

∣∣∣∣∣
ω=ω0

E · E∗ddr. (A10)

Equation (14) is a simplified version of Eq. (A10) when
graphene is the only material with imaginary conductivity
involved.
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APPENDIX B: CORRECT ESTIMATION OF THE
NONLINEAR FEEDBACK PARAMETER IN

TRAVELING-WAVE RESONATORS

Estimating the value of κ through Eq. (6) or Eq. (11)
in a TW resonator requires some attention if the solution
of an eigenvalue problem is used for obtaining the mode
distribution (the alternative is to use a weakly coupled
harmonic propagation simulation and exclude the waveguide
from the integration domain). Specifically, the solution of
the eigenvalue simulation is typically a standing wave (SW)
consisting of the two degenerate counterpropagating modes
with equal weights [Fig. 1(b)], instead of a unidirectional TW
mode [Fig. 1(c)]. This affects the calculated κ , as can be easily
shown.

Let us begin by assuming that a single traveling wave in the
resonator, propagating in a counterclockwise direction, can be
expressed as

e+(ρ,ϕ) = [eρ(ρ)ρ̂ + jeϕ(ρ)ϕ̂]e−jmϕ, (B1)

where eρ,ϕ(ρ) are the E-field components and m is the az-
imuthal order of the resonant mode. The π/2 phase difference
between transverse and axial components holds exactly for
lossless waveguides [18]. However, we have verified that this
holds in our case as well; this is because the field components
do not overlap with a lossy material. For a wave propagating
in a clockwise direction, we have

e−(ρ,ϕ) = [eρ(ρ)ρ̂ − jeϕ(ρ)ϕ̂]e+jmϕ. (B2)

Similar expressions can be written for the magnetic field, i.e.,
h± = ∓hz(ρ)ẑe∓jmϕ .

In the solution of the eigenvalue problem, the total electric
field on resonance consists of a linear combination of Eqs. (B1)
and (B2) with equal weights, i.e.,

Eeig
0 = e+ + e− = 2eρ cos(mϕ)ρ̂ + 2eϕ sin(mϕ)ϕ̂. (B3)

The tangential to the graphene sheet electric field is

Eeig
0,‖ = 2eϕ sin(mϕ)ϕ̂. (B4)

On the other hand, for the single unidirectional mode in a
harmonic propagation simulation, it simply holds that Eprop

0 =
e+. Similarly, for the magnetic field we have Heig

0 = h+ +
h− = −2jhz sin(mϕ)ẑ and Hprop

0 = h+, respectively.
To calculate the nonlinear feedback parameter κs through

Eq. (11), we have to calculate various norms of the electric
and magnetic field presented below,

∣∣Eeig
0

∣∣2 = 4|eρ |2 cos2(mϕ) + 4|eϕ|2 sin2(mϕ), (B5a)∣∣Heig
0

∣∣2 = 4|hz|2 sin2(mϕ), (B5b)∣∣Eeig
0,‖

∣∣2 = 4|eϕ|2 sin2(mϕ), (B5c)∣∣Eeig
0,‖

∣∣4 = 16|eϕ|4 sin4(mϕ), (B5d)∣∣Eeig
0,‖ · Eeig

0,‖
∣∣2 = 16

∣∣e2
ϕ

∣∣2
sin4(mϕ), (B5e)∣∣Eprop

0

∣∣2 = |eρ |2 + |eϕ|2, (B5f)∣∣Hprop
0

∣∣2 = |hz|2, (B5g)∣∣Eprop
0,‖

∣∣2 = |eϕ|2, (B5h)∣∣Eprop
0,‖

∣∣4 = |eϕ|4, (B5i)∣∣Eprop
0,‖ · Eprop

0,‖
∣∣2 = ∣∣e2

ϕ

∣∣2
. (B5j)

Substituting Eqs. (B5) in Eq. (11), performing the
integration with respect to ϕ, and taking into account that∫ 2π

0 cos2(mϕ)dϕ = ∫ 2π

0 sin2(mϕ)dϕ = π,
∫ 2π

0 sin4(mϕ)dϕ =
3π/4 for any integer m �= 0 and

∫ 2π

0 dϕ = 2π , we get (for the
d = 2 case)

κeig
s = 3π/4

π2

(
c0

ω0

)3 3σ3|eϕ(R)|4R[ ∫
εr (|eρ |2 + |eϕ|2)ρ dρ +

∫
η2

0|hz|2ρ dρ + 1

ε0

∂σ1,Im

∂ω
|eϕ(R)|2R

]2

σ max
3

, (B6a)

κprop
s = 2π

(2π )2

(
c0

ω0

)3 3σ3|eϕ(R)|4R[ ∫
εr (|eρ |2 + |eϕ|2)ρ dρ +

∫
η2

0|hz|2ρ dρ + 1

ε0

∂σ1,Im

∂ω
|eϕ(R)|2R

]2

σ max
3

. (B6b)

Taking the ratio of the two quantities, we find

κ
eig
s

κ
prop
s

= 3

2
. (B7)

The result of Eq. (B7) indicates that when using an eigenvalue
simulation to calculate κs in a TW resonator, we have to correct
the result by a factor of 2/3, originating from the different field
distributions of the traveling- and standing-wave patterns.
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