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Thermodynamics of a time-dependent and dissipative oval billiard:
A heat transfer and billiard approach
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We study some statistical properties for the behavior of the average squared velocity—hence the temperature—
for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the
collisions of the particles with the boundary of the billiard are inelastic, leading the average squared velocity to
reach a steady-state dynamics for large enough time. The description of the stationary state is made by using
two different approaches: (i) heat transfer motivated by the Fourier law and (ii) billiard dynamics using either
numerical simulations and theoretical description.
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I. INTRODUCTION

The initial mark in the investigation of billiards theory is
related to Birkhoff [1] in the beginning of last century. Since
then this research area has developed significantly. Birkoff
considered the investigation of the motion of a free point-like
particle—representing a billiard ball—in a bounded manifold.
However, the modern investigations of billiards are indeed
related to the results of Sinai [2,3] and Bunimovich [4,5] who
made rigorous demonstrations on the topic.

A billiard is a dynamical system composed of a particle, or
an ensemble of noninteracting particles, moving confined to
a domain with a piecewise-smooth boundary [6] where they
collide. The specular reflections occur under the condition the
boundary is sufficiently smooth. In such a case, the tangent
component of the velocity of the particle measured with
respect to the border where collision happened is unchanged
while the normal component reverses sign. There are many
results nowadays considering either static [7–15] and time-
dependent boundaries [16–19]. A phenomenon well known
in time-dependent boundary is the Fermi acceleration [20]
as well as the so-called Loskutov-Ryabov-Akinshin (LRA)
conjecture [21,22]. Fermi acceleration [20] is a phenomenon
where an ensemble of particles acquires unlimited energy
from collisions with an infinitely heavy and moving wall.
The conjecture itself claims that if chaos is present in the
dynamics of a particle in a static version of the billiard,
then this is a sufficient—but not necessary—condition to
observe Fermi acceleration when a time perturbation to the
boundary is introduced. Many different billiards exhibit Fermi
acceleration under time perturbation to the boundary including
the Lorentz gas [23,24], oval billiard [25], stadium [26], and
other shapes [27]. The elliptical billiard is an exception and the
LRA conjecture does not apply to it. For the static boundary,
the elliptical billiard is integrable [6] and the phase space

is composed of rotating and librating orbits. A curve that
separates these two different regimes is called as separatrix.
Lenz et al. [28,29] showed that when the boundary of the
billiard is allowed to be time dependent, the separatix curve
is replaced by a stochastic layer allowing cross visitations
from regions of libration and rotation. For the static case
both energy, E, and angular momenta about the two foci,
F , are constants of motion [30], leading the system to be
integrable. However, when time perturbation is introduced,
the observable F (see Ref. [28]) experiences strong and fast
variations from the crossing of orbits coming from rotation
and those leaving from libration. The successive crossings
produce the stochasticity required in the LRA conjecture,
hence leading the time-dependent elliptical billiard to exhibit
Fermi acceleration. This result is considered a counter example
of the LRA conjecture. Later on, investigations on different
models have proved the Fermi acceleration is not a robust
phenomenon since a very small amount of dissipation is
enough to suppress the phenomenon [31]. Consideration of
inelastic collisions in the elliptical billiard [32] has proved the
successive crossings of orbits coming from rotation region and
entering libration domain—and vice versa—are interrupted
suppressing the Fermi acceleration.

The motion of the time-dependent boundary can be related
to a more physical situation. Due to the thermal fluctuations the
position of each atom that compose the boundary is allowed
to move locally. Such oscillation of the atoms, and hence
of the boundary, can be brought to the context of billiard,
which allows connections of the observables obtained from
the velocity of the particle—hence the kinetic energy—to the
thermodynamics, particularly the temperature and entropy.

In this paper we investigate some dynamical properties
for an ensemble of particles confined in an oval billiard
whose boundary is moving in time. Our main goal is to
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understand and describe the dynamics of the average squared
velocity for a gas of noninteracting particles. We will do
this by using two different procedures. Because the boundary
of the billiard is moving, as soon as the particles collide,
there is a change of energy of the particle. Therefore, the
first procedure considered involves the heat transfer Fourier
equation. We write and solve the Fourier equation considering
the geometrical properties of the boundary. The resulting
equation is that the temperature of the gas settles down for a
sufficiently long time as the temperature of the boundary, hence
the average squared velocity, reaches the thermal equilibrium.
The second one involves the formalism commonly used
in billiard problems. We write down the equations of the
mapping that describe the dynamics of the problem and
extract some average properties for the squared velocity of the
particles. The properties are obtained either by straightforward
numerical simulations as well as analytically. The results
obtained on the analytical approach are remarkably well fitted
by the numerical simulations. The first approach, however,
uses the time as the dynamical variable while the second
one uses the number of collisions of the particles with the
boundary. The two dynamical variables are not trivially
connected among themselves. Therefore, by the use of an
empirical function, we find a straight relation between these
two parameters.

This paper is organized as follows. In Sec. II we discuss
the properties of the average squared velocity by the use
of heat transfer Fourier equation. We use some geometrical
properties of the boundary to fit into the required parameters
of the equation. Section III is devoted to constructing the
billiards approach of the problem. We then obtain the equations
that describe the dynamics of the model and discuss the
several types of characterizations, including steady state,
dynamical regime, numerical simulations, critical exponents,
and the behavior of the probability distribution function for
the velocity of the particles. The connection of the two parts
is made in Sec. IV, where a relation between the time and
number of collisions is obtained. Conclusions and discussions
are made in Sec. V.

II. HEAT TRANSFER APPROACH

We discuss in this section the approach involving heat
transfer. To start with we assume that there is a set of identical
particles moving inside a closed boundary. The density of
the particles is considered sufficiently small such that the
particles are noninteracting. Figure 1(a) shows an illustration
of the system. We assume the boundary of the billiard is
moving in time, therefore, this is the mechanism responsible
for the exchange of energy with the particles: collisions! The
boundary is at a temperature Tb that is considered fixed and
does not change with the dynamics of the particles. Hence the
boundary works as a thermal bath and two obvious conclusions
can be extracted. If the temperature of the gas of particles is
less than Tb, then the boundary gives energy to the particles
raising up the temperature of the gas. On the other hand, if
the temperature of the particles is larger than Tb, the heat bath
absorbs energy from the particles and dissipate it along with
the chain of nearby atoms of the boundary—hence reducing
the temperature of the gas. There is a region near the border

FIG. 1. (a) Sketch of the billiard boundary and an ensemble of
noninteracting particles. (b) Illustration of the heat transfer region.
The arrows direction point the heat flux.

of the billiard where the particles can exchange energy, which
we denote as a collision region.

The Hamiltonian that describes the dynamics of each
particle is given by

H = p2

2m
+ V (qx,qy,t), (1)

where p2 = p2
x + p2

y corresponds to the momentum of the
particle and V is the potential energy, which is written as

V (qx,qy,t) =
{

0 if (qx,qy,t) < R(t)

∞ if (qx,qy,t) = R(t)
, (2)

where R is the radius of the boundary written in polar
coordinates, which assumes the following form in this work
R(θ,η,t) = 1 + ηf (t) cos(pθ ), where p is any integer number.
A noninteger number leads to an open boundary to where
the particles can escape. η is a parameter that controls the
circle perturbation. If η = 0, the boundary is a circle, that is
integrable [6], in billiards terminology, due to the conservation
of energy and angular momentum, while η �= 0 leads the phase
space to be mixed when f (t) is a constant [30]. The function
f (t) leads to the time perturbation of the boundary and we
consider in this work two different types of perturbation: (i)
periodic oscillations and (ii) random oscillations. For case (i)
the function is written as f (t) = 1 + ε cos(ωt), where ε is the
amplitude of oscillation and ω is the angular frequency, which
we set as fixed ω = 1. For the random case (ii), the function
f (t) assumes the same expression as in case (i), however, at
the instant of the impact, we assume there is a random phase
Z(t), given random numbers Z ∈ [0,2π ], such that the velocity
of the moving boundary is given by �Vb(t) = d

dt
�Rb(t + Z(t)).

This choice is made in such a way to avoid the possibility
of having the chance of the particles moving outside of the
boundary, hence a nonphysical situation. At the same time, this
is an easy way to introduce randomness in the model. In this
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section we discuss the thermodynamical properties based on
the heat transfer equation—Fourier law—and the geometrical
parameters of the boundary will be used in the approach.
In the next section we describe the dynamics by using the
billiards formalism, hence writing the dynamical equations of
the particle and averaging the velocity as a function of the
number of collisions as well as along an ensemble of particles.

The equation that governs the heat transference [33] is
written as

∂Q

∂t
= −κ	

∂T

∂x
, (3)

where κ corresponds to the heat conductivity coefficient, 	 is
length along the boundary to where the heat can flow and is
obtained from the geometrical properties of the boundary, ∂Q

∂t

denotes the flux of heat from a region where there is a tempera-
ture difference 
T , and ∂T

∂x
corresponds to the temperature gra-

dient. We present a short discussion of the Fourier equation in
Appendix A and an interpretation of the heat conductivity coef-
ficient κ for the one-dimensional case. The minus (−) is related
to the fact the heat flows from the region of higher to the lower
temperature, hence opposite to the temperature gradient [33].
Figure 1(b) illustrates schematically the collision zone and the
region to where heat can flow. The effective length 	 to where
heat can flow is obtained from 	 = ∫ 2π

0 R(θ,η,ε,p,t)dθ =∫ 2π

0 [1 + η[1 + ε cos(t)] cos(pθ )]dθ = 2π .
The two steps we consider to solve Eq. (3) is to obtain the

corresponding expressions for (i) ∂Q

∂t
and (ii) ∂T

∂x
in such a way

that its solution can be obtained. We know that the density of
particles is considered sufficiently small so that each particle
does not interact with any other. Therefore, the energy of each
particle is due to the energy associated to the state of its motion,
hence kinetic energy. From the energy equipartition theorem
we have that

1
2mV 2(t) = kT (t), (4)

where k is the Boltzmann constant and V 2(t) corresponds
to the squared average velocity averaged over the ensemble
of particles. The knowledge of V 2(t) directly gives the
temperature T (t).

We know from the thermodynamics [33] that an amount
of heat transferred in a process depends on the temperature
[34] dQ = cdT , where dQ is an infinitesimal amount of heat
transferred at the price of an infinitesimal variation dT in the
temperature. The parameter c corresponds to the heat capacity
of the gas of particles. For an ideal gas c = kNp, where Np

is the total number of particles in the gas [35]. With these we
have the left hand side of Eq. (3) is written as ∂Q

∂t
= cm

2k
∂
∂t

V 2(t).
The next step is to obtain the expression of the right side of
Eq. (3). Since the temperature gradient can only happen along
the collision zone, we can consider an approximation that

∂T

∂x
∼= 
T


x
= T − Tb


x
, (5)

where 
x is measured along the collision zone. To obtain

x we note that the radius of the boundary can assume two
extrema: Rmax = 1 + η(1 + ε) cos(pθ ) and Rmin = 1 + η(1 −
ε) cos(pθ ), where Rmax and Rmin correspond to the maximum
and minimum values of the radius when time varies. The

collision zone then is a region given by 
R = Rmax − Rmin =
2ηε cos(pθ ). We see that 
R is not constant being dependent
directly on θ and has the property that 
R = 0. Therefore, an

approximation for 
x is obtained from 
x =
√

(
R)2, where

(
R)2 = 1

2π

∫ 2π

0
4η2ε2 cos2(pθ )dθ. (6)

A straightforward calculation gives 
x = √
2ηε. Hence the

expression of 
T

x

= T −Tb√
2ηε

. Incorporating these approximations
in the heat transfer equation we end up with

cm

2k

∂

∂t
V 2 = − κ	√

2ηε

[
m

2k
V 2 − Tb

]
. (7)

Equation (7) is a first-order differential equation that when
solved properly leads to the following result:

V 2(t) = 2k

m
Tb +

[
V 2

0 − 2k

m
Tb

]
e
− 2πκ√

2ηεc
t
. (8)

From the energy equipartition theorem, the temperature is
written as

T (t) = Tb + [T0 − Tb]e
− 2πκ√

2ηεc
t
. (9)

Let us now discuss some possibilities to study from
experimental approach. Suppose a gas of particles is injected
in the billiard with a low initial velocity such that T0 � Tb.
From Eq. (9) and considering only the dominant term we have

T (t) ∼= Tb + T0e
− 2πκ√

2ηεc
t
, (10)

therefore, confirming an exponential decay for short t and a
convergence to the stationary state at T (t) = Tb when t → ∞.
Another type of behavior is observed when an ensemble of
particles is injected in the billiard with very low energy such
that T0 
 Tb. Expanding the exponential in Taylor series and
keeping only the dominant term we end up with

T (t) = Tb

2πκ√
2ηεc

t. (11)

This result confirms the temperature grows at short time
linearly in time hence leading the average velocity V (t) =√

V 2 to grow with square root of time, hence

V (t) =
√

Tb

4πkκ√
2mηεc

√
t . (12)

III. BILLIARDS APPROACH

We now discuss how to construct the equations of the
mapping that describe the dynamics of the particle inside of
the billiard. The mapping gives the angular position of the
particle θ , the angle that the trajectory of the particle forms
with a tangent line at the position of the collision α, the
absolute velocity of the particle | �V |, and finally the instant
of the collision with the boundary t at the impact nth with the
further impact (n + 1)th. Figure 2 shows a typical illustration
of a billiard and the angles used to describe the dynamics of
the model.
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FIG. 2. Illustration of four snapshots of the boundary at the four
collisions.

The position of the particle at a given state (θn,αn,| �Vn|,tn),
written as a function of time is

X(t) = X(θn,tn) + | �Vn| cos(αn + φn)(t − tn), (13)

Y (t) = Y (θn,tn) + | �Vn| sin(αn + φn)(t − tn), (14)

where the time t � tn with X(θn,tn) = R(θn,tn) cos(θn) and
Y (θn,tn) = R(θn,tn) sin(θn). As soon as the θ is known,
the angle φ, which corresponds to the angle between
the tangent line and the horizontal at X(θ ),Y (θ ) is
φ = arctan[Y ′(θ,t)/X′(θ,t)], where Y ′(θ,t) = dY/dθ and
X′(θ,t) = dX/dθ .

Considering the particle travels with a constant speed
between collisions, the distance traveled by the particle
measured with respect to the origin of the coordinate system
is given by Rp(t) =

√
X2(t) + Y 2(t). The angular position

θn+1 is obtained by solving the equation Rp(θn+1,tn+1) =
R(θn+1,tn+1). The time at collision n + 1 is given by

tn+1 = tn +
√


X2 + 
Y 2

| �Vn|
, (15)

where 
X = Xp(θn+1,tn+1) − X(θn,tn) and 
Y =
Yp(θn+1,tn+1) − Y (θn,tn).

We notice that the referential frame of the boundary is
noninertial. We assume also the collisions of the particle with
the boundary are inelastic, hence there is a fractional loss of
energy upon collision, which we consider only with respect to
the normal component of the velocity. Then at the instant of
collision the reflection laws are

�V ′
n+1 · �Tn+1 = �V ′

n · �Tn+1, (16)

�V ′
n+1 · �Nn+1 = −γ �V ′

n · �Nn+1, (17)

where the unit tangent and normal vectors are

�Tn+1 = cos(φn+1)î + sin(φn+1)ĵ , (18)

�Nn+1 = − sin(φn+1)î + cos(φn+1)ĵ . (19)

Here γ ∈ [0,1] is the restitution coefficient. If γ = 1 we have
completely elastic collisions while γ < 1 leads the particle to
experience a partial loss of velocity upon collisions. The term
�V ′ corresponds to the velocity of the particle measured in the

noninertial reference frame. We can then obtain the tangential
and normal components of the velocity after collision n + 1 as

�Vn+1 · �Tn+1 = �Vn · �Tn+1, (20)

�Vn+1 · �Nn+1 = −γ �Vn · �Nn+1

+ (1 + γ ) �Vb(tn+1 + Z(n)) · �Nn+1, (21)

where �Vb(tn+1 + Z(n)) denotes the velocity of the boundary
that is given by

�Vb(tn+1) = dR(t)

dt

∣∣∣
tn+1

[cos(θn+1)̂i + sin(θn+1)ĵ ], (22)

and Z(n) ∈ [0,2π ] is a random number introduced in the
argument of the velocity of the moving wall to simulate
stochasticity into the model.

Finally, the velocity of the particle after the collision (n + 1)
is given by

| �Vn+1| =
√

( �Vn+1 · �Tn+1)2 + ( �Vn+1 · �Nn+1)2, (23)

when the angle αn+1 is written as

αn+1 = arctan

[ �Vn+1 · �Nn+1

�Vn+1 · �Tn+1

]
. (24)

With the equations above we can now discuss some of the
statistical properties for the average velocity of the particle.

A. Stationary state

To investigate the average velocity of an ensemble of
particles we make the following assumption. We consider the
probability distribution for the velocity in the two-dimensional
phase space α versus θ is uniform. In the stochastic model, the
one which gives random numbers Z in the argument of the
velocity of the moving wall at each collision, this is observed.
If we take the expression of | �Vn+1| and average the squared
velocity for the ranges θ ∈ [0,2π ], α ∈ [0,π ], and t ∈ [0,2π ]
we end up with

V 2
n+1 = V 2

n

2
+ γ 2V 2

n

2
+ (1 + γ )2η2ε2

8
. (25)

In the steady-state regime the mean-squared velocity is
obtained considering V 2

n+1 = V 2
n = V 2, and after isolating V 2

we obtain

V 2 = (1 + γ )η2ε2

4(1 − γ )
. (26)

If we define the root mean square velocity as V =
√

V 2, we
have

V = ηε

2

√
(1 + γ )(1 − γ )−1/2. (27)

We notice from Eq. (27) that the exponent heading the term
(1 − γ ) is −1/2, while the exponent heading the parameters
(ηε) is 1. We discuss these exponents latter on.
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B. Dynamical regime

An easy way to study the dynamical regime is transform
the difference equation given in Eq. (25) into a differential
equation where the solutions can be easier to track. We assume
for a large ensemble that

V 2
n+1 − V 2

n = V 2
n+1 − V 2

n

(n + 1) − n
∼= dV 2

dn
, (28)

which leads to

dV 2

dn
= V 2

2
(γ 2 − 1) + (1 + γ )2η2ε2

8
. (29)

A straightforward integration considering the initial condition
V0 at n = 0 gives

V 2(n) = V 2
0 e

(γ 2−1)
2 n + (1 + γ )

4(1 − γ )
η2ε2

[
1 − e

(γ 2−1)
2 n

]
. (30)

The dynamics of V (n) =
√

V 2(n) is described by

V (n) =
√

V 2
0 e

(γ 2−1)
2 n + (1 + γ )

4(1 − γ )
η2ε2

[
1 − e

(γ 2−1)
2 n

]
. (31)

Two important limits are obvious from Eq. (31). The first
one considered is when V0 � (1+γ )1/2

2 (1 − γ )−1/2ηε, hence
leading to an exponential decay of the velocity

V (n) ∼= V0e
(γ 2−1)

4 n ∼= V0e
(γ−1)

2 n. (32)

The second one is observed when the initial velocity is
sufficiently small, say V0

∼= 0, the dominant expression for
V (n) is

V (n) = (1 + γ )1/2

2
(1 − γ )−1/2ηε

[
1 − e

(γ 2−1)
2 n

]1/2
. (33)

A Taylor expansion in Eq. (33) gives that

V (n) ∼ ηε
√

n. (34)

C. Numerical simulations

Let us now discuss the behavior of the squared average
velocity via numerical simulations. The range of γ we are
interested in is γ → 1, therefore close to the transition from
conservative to dissipative dynamics. According to the LRA
conjecture, if γ = 1 (conservative case) the average velocity
must grow unbounded. However, for 0 < γ < 1 there must
exist a limit for the growth, as foreseen for the two previous
sections. The transition is better characterized for (1 − γ ). The
simulations were made in such a way that each initial condition
has a fixed initial velocity, V0 = 10−3, ηε ∈ [0.002,0.02]
and randomly chosen α0 ∈ [0,π ], θ0 ∈ [0,2π ], t0 ∈ [0,2π ].
Moreover, after each time step, a random number [Z(n)] is
drawn in the equation of the velocity of the moving wall
introducing stochasticity into the model. For computing the
average velocity numerically, two different procedures were
applied: (i) we evaluate the average velocity over the orbit for
a single initial condition; and (ii) average the velocity over an
ensemble of initial conditions. Hence, the average velocity is

FIG. 3. (a) Plot of 〈V 〉 vs. n for different values of γ and two
combinations of ηε. (b) Overlap of the curves shown in (a) onto
a single and universal plot after the following scaling transforma-
tions: n → n/[(1 − γ )z1 (ηε)z2 ] and 〈V 〉 → 〈V 〉/[(1 − γ )α1 (ηε)α2 ].
The straight line gives the theoretical prediction [Eq. (40)].

written as

〈V 〉(n) = 1

M

M∑
i=1

1

n + 1

n∑
j=0

Vi,j , (35)

where the index i corresponds to a sample of an ensemble
of initial conditions and M = 2000 denotes the number of
different initial conditions. A plot of 〈V 〉 versus n for different
values of γ is shown in Fig. 3(a).

From Fig. 3(a) we see two different kinds of behaviors. At
small n, the average velocity grows to start with to a power
law and eventually it bends toward a regime of saturation for
large n. The change from growth to the saturation is given by a
characteristic crossover nx . We notice that a transformation
n → n(ηε)2 coalesces all curves to grow together before
moving to the saturation. The behavior shown in Fig. 3(a)
allows us to propose that: (i) for short n, say n 
 nx , the
growth regime is described by 〈V 〉 ∝ [(ηε)2n]β , where β is
the acceleration exponent; (ii) for large enough n, typically
n � nx , we have 〈V sat〉 ∝ (1 − γ )α1 (ηε)α2 , where α1 and α2
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are the saturation exponents; (iii) the crossover nx that marks
the changeover from growth to the saturation is given by
nx ∝ (1 − γ )z1 (ηε)z2 where z1 and z2 are crossover exponents.

The three previous hypotheses allow us to describe the
behavior of 〈V 〉 by a homogeneous function of the type

〈V 〉[(ηε)2n,ηε,(1 − γ )]

= l〈V 〉[la(ηε)2n,lbηε,ld (1 − γ )], (36)

where l is a scale factor, and a, b, and d are characteristic
exponents that in principle must be related to the scaling
exponents. A straightforward calculation gives the two scaling
laws:

z1 = α1

β
, z2 = α2

β
− 2. (37)

All five exponents can be obtained numerically. A power
law fitting in the regime of growth for 〈V 〉 gives β =
0.503(1) � 1/2. Similar values were obtained for all curves
we simulated for the range of γ ∈ [0.999,0.99999]. If we keep
fixed ηε and vary γ , a power law fitting for 〈V sat〉 vs. (1 − γ )
furnishes α1 = −0.495(7) ∼= −1/2, as shown in Fig. 4(a). A
fitting to the plot of nx vs. (1 − γ ) gives z1 = −0.991(1) ∼=
−1. Finally, if we keep constant (1 − γ ) a fitting to the
behavior of 〈V sat〉 vs. ηε gives α1 = 1.010(8) ∼= 1, while a
plot of nx vs. ηε yields z2 = −0.0003(7) ∼= 0. When the two

scaling laws Eqs. (37) are used to check the exponents, the
results obtained are remarkably in good agreement with the
simulations.

D. Averaging the velocity along n

As given by Eq. (30), the squared velocity was obtained con-
sidering an average over an ensemble of particles. However, the
simulations were made using either ensemble average as well
as average on time. Therefore, we have to find a corresponding
expression of the squared velocity when it is also averaged
over the number of collisions n. The average squared velocity
is written as

〈V 2(n)〉 = 1

n + 1

n∑
i=0

V 2(i). (38)

The summation over the exponential terms converges since
their arguments are negative. The convergence of the expo-
nential terms is

n∑
i=0

e( γ 2−1
2 )i =

[
1 − e( γ 2−1

2 )(n+1)

1 − e
γ 2−1

2

]
, (39)

hence the root mean-squared velocity is written as Vrms(n) =√
〈V 2(n)〉, therefore

Vrms(n) =
√√√√ (1 + γ )η2ε2

4(1 − γ )
+ 1

(n + 1)

[
V 2

0 − (1 + γ )η2ε2

4(1 − γ )

][
1 − e(n+1) (γ 2−1)

2

1 − e
(γ 2−1)

2

]
. (40)

A plot of Eq. (40) is represented as a continuous line in
Fig. 3(a).

Two important limits for Eq. (40) are
(1) n = 0, that leads to Vrms(0) = V0;
(2) Considering the limit of n → ∞, we have

Vrms(n → ∞) =
√

(1 + γ )η2ε2

4(1 − γ )
. (41)

With Eq. (40) we can discuss the behavior of Vrms for
short n. In the limit of γ ≈ 1 we can Taylor expand the
two exponentials of Eq. (40). Because of term (n + 1) in the
denominator of Eq. (40), the expansion of the exponential
of the numerator must go until second order, while the
denominator can go only to the first. Grouping the terms
properly we obtain the expression of Vrms(n) when V0

∼= 0 as

Vrms(n) ∼= (1 + γ )ηε

4

√
(n + 1). (42)

When n � 1 such that
√

(n + 1) ∼= √
n then we have

Vrms(n) ∼= (1+γ )ηε

4

√
n.

E. Critical exponents

The five relevant critical exponents that describe the scaling
properties of the average velocity curves are β, αi , and zi with

i = 1, 2. The exponents α1 and α2 are obtained for the regime
of n → ∞. From Eq. (41) we obtain α1 = −1/2 and α2 = 1.
The exponent β comes from Eq. (42). When n � 1 we have
β = 1/2. Finally, the crossover iteration number nx can be
estimated when Eq. (42) intersects Eq. (41). A straightforward
calculation gives

nx = 4

(1 + γ )
(1 − γ )−1. (43)

Then we conclude that z1 = −1 and z2 = 0.

F. Velocity distribution

Let us discuss here the shape of the velocity distribution for
the dynamics in the dissipative case. It is important to notice
that the lowest velocity for a moving particle is limited to
the lowest velocity of the moving boundary, hence Vl = −ηε.
Upward velocities are unbounded but unlimited energy growth
is not observed due to the dissipation. The lower limit for the
velocity plays a major role on the distribution of the velocity,
and to illustrate this we discuss the following case. Suppose an
ensemble of initial conditions with different angular variables,
α, θ , but with the same initial velocity is given. The initial
velocity is chosen in such a way that it is located in a region
above the lower velocity limit and, at the same time, below
the saturation. The dynamics evolves as follows. For a small
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FIG. 4. Behavior of: (a) 〈V sat〉 and (b) nx as a function of (1 − γ ).
The inset shown the behavior of 〈V sat〉 and nx for different values
of εη.

number of collisions with the boundary, part of the ensemble
of particles raises the velocity while the other part reduces
velocity. This distribution is Gaussian, as shown in Fig. 5 in
blue (dark gray) color for and initial velocity of V0 = 0.2 and
distribution collected after 10 collisions with the boundary.
The parameters used were εη = 0.02, γ = 0.999 and p = 2,
although other values would lead to similar results. Moreover,
a total of 2.5 × 106 different initial conditions were considered
in the ensemble. As soon as the dynamics evolves, the Gaussian
distribution flattens itself on both sides until the left-hand side
curve touches the lower limit of the velocity. See the red (light
gray) bars obtained for the distribution after 100 collisions with
the boundary. At this point, the distribution experiences a break
of symmetry and hence if the initial velocity of the distribution
is lower than the saturation, the average velocity starts to grow
until it approaches the saturation. From this point of symmetry
break and beyond this point, the distribution is not Gaussian
anymore and it has a similar shape as shown in the in box of
Fig. 5. Such distribution was obtained after 50 000 collisions
of the ensemble of particles with the boundary. Although
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V
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14
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)

n=10
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V
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2

P(
V
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n=50000

FIG. 5. Plot of the normalized probability distribution for the
velocity for an ensemble of 105 particles in the dissipative and
stochastic oval billiard. Blue (dark gray) was obtained after 10
collisions while red bars (light gray) was obtained after 100 collisions.
The in box was obtained after 50 000 collisions. The initial velocity
used was V0 = 0.2 and control parameters εη = 0.02 and γ = 0.999
for p = 2.

the distribution is not Gaussian anymore due to the break
of symmetry at V = Vl , the distribution has clearly a peak
and decays monotonically for large enough values of velocity
warranting convergence for the average velocity as well other
momenta of the distribution. It is worth mentioning that such
a break in the symmetry in the probability distribution was
previously observed for a one-dimensional Fermi Ulam model
[36]. There, the authors show that the velocity and energy
distribution can be described perfectly by a folded normal
distribution.

IV. CONNECTION BETWEEN THE TWO APPROACHES

The results discussed in Sec. II involving the heat transfer
equation were obtained as a function of the time t while
in Sec. III the results were discussed using the number of
collisions n. It is important to mention that the time t and
the number of collisions n are variables not trivially connected
with each other. It happens because a particle moving with high
speed can experience many more collisions with the boundary
when compared with a particle with low energy at the same
interval of time. In this section we discuss a way to make a
connection of the two variables therefore linking the results
discussed in Secs. II and III.

Given the particle travels with constant velocity between
collisions, the length of time between two collisions is 
t =
d/| �V |, where d is the distance traveled by the particle and
| �V | is its absolute velocity. Therefore, the total time spent at n

collisions is written as

τ =
n∑

i=0

di

| �Vi |
. (44)
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The summation in Eq. (44) seems to be not easy to be made. As
an attempt to have an explicit expression involving the relevant
parameters of the system considered we will do the summation
in two stages evaluating then the numerator separately then the
denominator.

From the numerator we can estimate the mean free path,
which we represent as

d = 1

(n + 1)

n∑
i=0

di, (45)

where di is defined as the distance from two collisions as

di =
√

[x(θi+1) − x(θi)]2 + [y(θi+1) − y(θi)]2, (46)

where x(θ ) = R(θ ) cos(θ ) and y(θ ) = R(θ ) sin(θ ). The dy-
namics of each particle is chaotic, therefore when we do an
average over θ ∈ [0,2π ] we obtain

d =
√

2 + η2

[
1 + ε2

2

]
. (47)

The second part we have to consider is
∑n

i=0
1
Vi

. To do that
we consider the variation of the velocity from the collision i

to (i + 1) is small so that the summation can be approximated
by

n∑
i=0

1

Vi

∼=
∫ n

0

1

V (n′)
dn′. (48)

The expression for τ obtained for the explicit form of V as
shown in Eq. (31) is not an easy equation to deal with and
the result is reported in Appendix B for the interested reader.
Instead of dealing with the whole equation we consider an
easier approach. As discussed in Ref. [37], the behavior of the
average squared velocity, when settled in scaling variables, can
be described by a function of the type

f (x) =
[

x

1 + x

]β

, (49)

where β is the accelerating exponent. In our case β = 1/2.

Therefore, the scaled variables considered are f → V
√

(1−γ )
ηε

and x → n(1 − γ ). Incorporating these two equations as the
behavior of V (n) we end up with the following equation to be
solved:

τ = d
√

(1 − γ )

ηε

∫
dn√
n(1−γ )

1+n(1−γ )

. (50)

After doing the integration (see Appendix C for the result of
the integral) and keeping only the leading term in n, we obtain

τ ∼= d
√

(1 − γ )

ηε
n. (51)

V. CONCLUSIONS

We have studied some dynamical and statistical properties
of gas of noninteracting particles in a time-dependent and
dissipative oval billiard. We have investigated the behavior of

the average velocity of the particles as a function of time and
the number of collisions with the moving boundary by using
two different approaches, namely, involving (i) heat transfer
and (ii) billiards. We have obtained an empirical expression
for the average squared velocity by using the equilibrium
condition at the steady-state regime. Such an expression
allowed us to make a connection with the thermodynamic,
more precisely by using the Fourier law for heat transfer. The
resulting equation have shown that the temperature of the gas
reaches the thermal equilibrium for a sufficiently long time.
Our results also have demonstrated that the average squared
velocity grows as a power law and after a crossover it tends to
a constant plateau. Furthermore, the stronger the dissipation,
the faster the transition from growth to saturation. Finally,
by using an empirical function to describe the behavior of the
average squared velocity, we have shown that time and number
of collisions are linearly correlated.
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APPENDIX A

This Appendix is devoted to a short discussion on the heat
flow equation [33]. The heat can indeed quantify an amount of
energy that is transferred due to a temperature gradient. The
amount of heat flowing along the temperature gradient depends
on the thermal conductivity κ . The heat flows from a region
of high to low temperature, therefore this flow is contrary to
the temperature gradient. In a generic 3D system, the heat flux
vector �J is written as �J = −κA �∇T , where A corresponds
to a section of area perpendicular to where the flow of heat
is flowing while �∇T gives the gradient of temperature. The
signal (−) is introduced to represent a flow contrary to the
temperature gradient, i.e., from higher to lower temperature.
The vector �J indeed represents a certain amount of energy,
which is flowing through an area A at a given interval of time
due to a gradient of temperature.

In the system we are considering in this paper, the flow of
heat is not crossing a perpendicular area but rather it crosses
the border of the billiard. Hence, in the case 2D as discussed,
the heat transfer equation is written as

J = ∂Q

∂t
= −κ	

∂T

∂x
, (A1)

where J represents the amount of heat that is transferred
around the border 	 of the billiard at a given instant of time
due to a temperature gradient represented as ∂T

∂x
. In our case,

the thermal conductivity coefficient κ denotes the constant of
proportionality between the amount of energy flowing in the
border of the billiard 	 per unit of time due to a temperature
gradient.
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APPENDIX B

When we consider V (n) as given by Eq. (31) to obtain the expression for τ , the direct integral is

τ = d

∫ n

0

dn′√
V 2

0 e
(γ 2−1)

2 n′ + (1+γ )
4(1−γ )η

2ε2
[
1 − e

(γ 2−1)
2 n′] . (B1)

A straight integration yields

τ =
8
√

2 + η2
(
1 + ε2

2

)
ηε

√
(1 + γ )(1 − γ 2)

×
⎡⎣arctanh

⎛⎝
√

(1+γ )η2ε2

4(1−γ ) + (
V 2

0 − (1+γ )η2ε2

4(1−γ )

)
e

(γ 2−1)
2 n

ηε

2

√
(1+γ )
(1−γ )

⎞⎠− arctanh

⎛⎝ V0

ηε

2

√
(1+γ )
(1−γ )

⎞⎠⎤⎦. (B2)

With some algebra one can isolate n as a function of τ from the equation above.

APPENDIX C

The solution of the integral

τ = d
√

(1 − γ )

ηε

∫
dn√
n(1−γ )

1+n(1−γ )

(C1)

is given by

τ = d
√

(1−γ )

ηε

⎡⎣1

2

2
√

(n2 − n2γ + n)
√

(1−γ )
√

(1−γ )
√−n(−1 − n + nγ )

√
−n(1−γ )

−1−n+nγ

n

⎤⎦+ d
√

(1−γ )

ηε

⎡⎢⎣1

2

ln
[− 1

2

(−1−2n+2nγ−2
√

(n2−n2γ+n)
√

1−γ√
(1−γ )

)]
√

(1−γ )
√−n(−1 − n + nγ )

√
−n(1−γ )

−1−n+nγ

n

⎤⎥⎦.

(C2)

After grouping the terms and considering only the leading term, we have

τ = d
√

(1 − γ )

ηε

[
n

√
1 + 1

n(1 − γ )

]
. (C3)

Expanding the square root and keeping only the first order, we have

τ = d
√

(1 − γ )

ηε

[
n + 1

2(1 − γ )

]
, (C4)

therefore

τ ∼= d
√

(1 − γ )

ηε
n. (C5)
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