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Harvesting wind energy to detect weak signals using mechanical stochastic resonance
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Wind is free and ubiquitous and can be harnessed in multiple ways. We demonstrate mechanical stochastic
resonance in a tabletop experiment in which wind energy is harvested to amplify weak periodic signals detected
via the movement of an inverted pendulum. Unlike earlier mechanical stochastic resonance experiments, where
noise was added via electrically driven vibrations, our broad-spectrum noise source is a single flapping flag. The
regime of the experiment is readily accessible, with wind speeds ∼20 m/s and signal frequencies ∼1 Hz. We
readily obtain signal-to-noise ratios on the order of 10 dB.
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I. INTRODUCTION

Energy harvesting is an exciting research area in which
attempts are made to extract clean energy from ambient sources
to power small electronic devices [1–3]. Energy harvester
energy sources are free. A classic example is a crystal radio
receiver powered by the received radio waves. Especially in-
teresting is the potential for nonlinear energy harvesting [4,5].
While linear energy harvesters typically tune their resonant
frequencies to narrow spectral regions, nonlinear nonresonant
oscillators can have much wider spectral responses.

Stochastic resonance is a well-studied phenomenon where
ambient noise amplifies weak signals in nonlinear sys-
tems [6,7]. In bistable or threshold systems, broadband noise
can boost faint signals, too weak for a sensor to detect
otherwise, from subthreshold to superthreshold. Stochastic
resonance has modeled a wide range of phenomena, from
ice ages to hair cells [8–11]. Stochastic resonance has even
been used for energy harvesting in bistable vibrating systems:
Zheng et al. recently demonstrated stochastic resonance in a
mechanical system of a cantilevered beam with an electrical
vibrator as a noise source [12,13].

Here we describe stochastic resonance in a simple me-
chanical system with an aeromechanical noise source. We
achieved stochastic resonance by harvesting the noisy energy
of a flapping flag to amplify weak periodic signals delivered
to a bistable inverted pendulum. We find that the flapping
flag can be an excellent broadband noise source and realize
signal-to-noise ratios from 10 to 20 dB for moderate wind
speeds of 20–25 m/s.

In this article, Sec. II reviews theories of stochastic
resonance and our bistable system. Section III describes our
apparatus construction. Section IV details our experimental
protocol. Section V analyzes our results. Section VI offers a
summary, applications, and future work.

II. THEORY

A. Stochastic resonance

Model a damped inverted pendulum at an angle θ by

I θ̈ = −γ θ̇ − V ′[θ ] + τD sin[2πfDt] + τNξ [t], (1)
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where I is the rotational inertia, γ is the viscosity, τD is the
drive torque, fD is the drive frequency, τN is the root-mean-
square noise torque, and ξ [t] is a random process with zero
mean and unit variance. Overdots indicate time derivatives, and
the prime indicates derivative with respect to the argument. The
bistable potential V [θ ] has two wells separated by a barrier. If
the barrier height between the wells is �E and the vibrational
noise has a variance σ 2 and correlation time τ , the probability
of transition between the wells is proportional to the Kramers
rate [14], whose leading behavior is given by the Arrhenius or
Boltzmann factor

P ∼ fK ∼ e−�E/kT , (2)

where the effective temperature kT = σ 2τ/γ .
In mechanical resonance, the periodic drive frequency

equals a system’s natural frequency fD = f0. In stochastic
resonance, the drive frequency is half the Kramers rate,

fD = fK

2
, (3)

so that on average the transitions between wells occur twice
each drive period and TD = 2TK [15].

In practice, Fourier techniques reveal the statistical cor-
relation between a weak periodic signal and noise in a
bistable system. The power spectral density, or spectrum S,
is proportional to the absolute square of the Fourier transform
of the time series. The weak periodic drive embedded in the
noise produces a narrow spectral peak at the drive frequency
fD against a broad noise background. The signal-to-noise ratio

R = S∧ − N

N
= S∧

N
− 1 � 0, (4)

where S∧ = S[fD] is the spectrum at the drive frequency and
N is the background noise about the drive frequency. This
definition ensures R = 0 in the absence of the drive. The
signature of stochastic resonance is a local maximum of R

at a nonzero value of noise.

B. Inverted pendulum spring

Our bistable element is an inverted pendulum of length 	

rotating back and forth between two stops. We attach a spring
of stiffness k and equilibrium length 	0 to the pendulum bob
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of mass m. The spring is anchored a distance h directly below
the pivot axle. If the angle θ = 0 defines the upward vertical
position of the pendulum, then the torque between the stops is

τθ = mg	 sin θ + kh	

(
1 − 	0√

h2 + 2h	 cos θ + 	2

)
sin θ,

(5)

where g is the gravitational acceleration [16]. The correspond-
ing potential energy

V = −
∫ θ

0
τθdθ

= −(mg + kh)	(1 − cos θ )

+ k	0
(
h + 	 −

√
h2 + 2h	 cos θ + 	2

)
(6)

has the power-series expansion

V = − 1
2ckθ

2 + O[θ4], (7)

where

ck = kh	
h + 	 − 	0

h + 	
+ mg	. (8)

For stretched springs 	 > 	0, and so ck > c0 = mg	. Thus, a
stretched spring increases the curvature of the potential about
θ = 0, ensuring unstable equilibrium even in the presence
of residual friction. (Alternately, a pair of springs on either
side of the pivot can replace the stops to create a classic
smooth bistable potential with an unstable central maximum
surrounded by two stable minima.)

III. APPARATUS

The experimental apparatus consists of three subsystems: a
noise source, a drive signal, and a bistable inverted pendulum,
as shown in Fig. 1. The noise source is a wind-blown flag.
The flag is oriented horizontally and the wind is from a jet
fan oriented vertically. A string attached to the free end of the
flag wraps sliplessly over a pulley connected to the main axle
about which the pendulum pivots. A counterweight attached
to the other end of the string balances the mean force of the
noise.

A rotary motor coupled indirectly to the experiment
provides a small-amplitude sinusoidal drive signal. A string
from the driver wraps sliplessly over a pulley on an axle parallel
to and below the main axle. A counterweight attached to the
other end of the string stabilizes the drive signal. A second
pulley on the parallel axle couples the drive to the main axle
via springs attached to each end of a belt that slips back and
forth over a drum on the main axle.

Varying the distance between the two axles controls
the strength of this frictional coupling. Increasing the
distance stretches the springs and increases the frictional
torque, while decreasing the distance relaxes the springs and
decreases the frictional torque. Frictional slipping allows the
signal and noise to cooperate in driving the pendulum.

The bistable element consists of an inverted pendulum that
rotates back and forth between two hard stops. To ensure an
unstable inverted equilibrium in the presence of friction, a
spring is attached from the pendulum bob to below the pivot.

FIG. 1. Schematic of the mechanical stochastic resonance appa-
ratus. At lower right, a wind-blown flapping flag delivers noise to the
main axle via a slipless pulley. At lower left, a rotary motor delivers
a subthreshold sinusoidal signal to the main axle indirectly via a
tensioned slipping belt. At upper left, a bistable inverted pendulum
rotates back and forth between two stops.

IV. EXPERIMENT

As part of the initial calibration of the apparatus, a string
fastened to the end of the flag in the wind stream connects to
a force sensor and records the mean and standard deviation of
the force as a function of wind speed. The root-mean-square
flag force increases quadratically with wind speed. We use the
mean force values to select counterweights that balance the
noise coming from the flag. We adjust the counterweight to
center the pendulum motion for each wind speed, providing
approximately zero-mean torque to the bistable pendulum. We
initialize the flag in its neutral horizontal position, while the
pendulum rests at its neutral θ = 0 unstable equilibrium. The
string connecting the flag to the pendulum axle always starts at
the same length, sufficient to allow equal up and down motion
of the flag.

The drive subsystem includes two pulleys on an axle parallel
to and below the main axle, as in Fig. 1. The rotary motor is
connected to the first of the two lower pulleys by a string with
a counterweight on the other end. If the counterweight is too
light, the string will slip during the upstroke but not during the
downstroke. To ensure symmetry of the periodic drive, we use
a 150 g counterweight. A photogate separately monitors the
fD = 1.0 Hz drive frequency. The second pulley transfers this
balanced drive signal to the main axle via a string-spring-belt
loop. We adjust the distance between the two axles such that
the pendulum oscillates from 10◦ to 30◦ on one side of zero or
the other, so that in the absence of noise the drive is insufficient
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FIG. 2. Apparatus photograph. At right, the jet fan blows down-
ward on the horizontal flag. At left, the inverted (blue) pendulum tops
the tower. At center, a string passing through the acrylic tube couples
the motion of the flag to the rotation of the pendulum. At bottom left,
a rotary motor provides the drive signal.

to cause the pendulum to rotate through zero. This ensures a
subthreshold signal that can be promoted to a superthreshold
signal via the addition of noise.

To create a robust bistable subsystem, we adjust the mass
of the pendulum bob m = 25 g, the pendulum spring stiffness
k = 3.3 N/m, equilibrium length 	0 = 6.1 cm, and maximum
(upright) stretch 	m = 31 cm. We adjust the location of the
stops, as in the upper left of Fig. 2, to allow the pendulum to
oscillate up to 30◦ in either direction.

A variable autotransformer Variac controls the voltage to
the fan to provide a continuous range of wind speeds from
15 to 25 m/s, which are monitored by an anemometer. In
successive 30-min recordings, we swap Variacs to guard
against overheating. We record the motion of the pendulum
with a rotary motion sensor. To enable statistical analysis, we
typically record six 30-min time series for each wind speed. If
necessary, we adjust the Variac while recording to maintain a
constant wind speed for each time series.

V. ANALYSIS

A typical pendulum time series θ [t] consists of intrawell
and interwell motion, as in the continuous (black) trace of
Fig. 3. The stops at ±30◦ = ±0.52 rad demarcate the potential
minima. We remove the intrawell motion by filtering the time
series with a hysteresis to extract only barrier crossings, as in
the discrete (red) trace θF [t]. When the angle (black trace) rises
above a positive threshold, we pin the filtered angle (red trace)
to a positive value, and when the angle falls below a negative
threshold, we pin the filtered angle to a negative value.

We Fourier transform the filtered time series θF [t] to get
θ̃F [f ]. Figure 4 shows typical power spectral densities (grays)
S[f ] = |θ̃F [f ]|2 along with their average (red). Averaging
reduces noise variation and makes the signal peak at drive
frequency more distinct [17]. The inset shows the broadband
nature of the noise alone.
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FIG. 3. Angle θ vs time t for a typical time series with wind
speed vw = 19 m/s. Continuous unfiltered (black) data exhibit both
interwell and intrawell motion. Discrete filtered (red) data record only
interwell motion.

To compute the Eq. (4) signal-to-noise ratio R, we find the
area in square radians of the peak at the drive frequency and
divide it by the corresponding area of the background noise
(found by linear interpolation of the noise about the signal, but
not containing it).

For Fig. 5, we calculate R for each times series and average
the results for each wind speed. The signal-to-noise ratio has a
local maximum near vw = 23 m/s. Uncertainty box sizes are
plus or minus one standard deviation. When we average the
spectra first and then find one R per wind speed, we obtain
similar results. The stochastic resonance is robust with respect
to the details of our analysis. The top inset plots the signal-
to-noise ratio in decibels versus the variance of the flag force
noise, a classic stochastic resonance curve. The bottom inset
plots the filtered time series near the stochastic resonance,
where an average of two transitions per forcing period TD =
1/fD = 1 s agrees with the Eq. (3) Kramers condition, with
the fluctuations of the wind-blown flag playing the role of an
effective temperature.
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FIG. 4. Power spectral density or spectrum S vs frequency f with
wind speed vw = 23 m/s. The (red) average spectrum overlays the
(gray) spectra from individual time series. Averaging reduces noise
variation and makes more distinct the signal peak at drive frequency
fD = 1.0 Hz. Inset: spectrum S (rad2/Hz) vs frequency f (Hz) for
noise only.
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FIG. 5. Signal-to-noise ratio R vs wind speed vw for the filtered
time series. A smoothing spline connects uncertainty boxes. Stochas-
tic resonance occurs near wind speed vw = 23 m/s where the noise
cooperates with the weak signal to maximize the signal-to-noise ratio.
Insets: at top, ratio R (dB) vs noise variance σ 2 (N2); at bottom, filtered
angle θF vs time t (s) near resonance.

VI. CONCLUSIONS

Modern windmills use turbines to convert the kinetic energy
of moving air into electricity. But even the noisy fluttering of

a flag in a breeze can amplify periodic signals using stochastic
resonance. In this article, we demonstrate mechanical stochas-
tic resonance in an elegant tabletop experiment in which
wind energy is harvested to amplify weak periodic signals
detected via the movement of an inverted pendulum. Mod-
erate wind speeds can significantly amplify low-frequency
signals.

In the future, we hope to build smaller wind-powered
stochastic resonance experiments that operate at higher fre-
quencies to reduce data collection times. Flapping flags can be
excellent broadband noise sources, provided they do not flutter
periodically [18,19], and they can power diverse stochastic sys-
tems, including spatiotemporal and noise-enhanced stochastic
resonance experiments [20,21]. The ubiquity of wind and the
simplicity and broad spectral response of flapping flags suggest
the potential for diverse applications.
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