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We present a case study of how topology can affect synchronization. Specifically, we consider arrays of phase
oscillators coupled in a ring or a chain topology. Each ring is perfectly matched to a chain with the same initial
conditions and the same random natural frequencies. The only difference is their boundary conditions: periodic
for a ring and open for a chain. For both topologies, stable phase-locked states exist if and only if the spread or
“width” of the natural frequencies is smaller than a critical value called the locking threshold (which depends
on the boundary conditions and the particular realization of the frequencies). The central question is whether a
ring synchronizes more readily than a chain. We show that it usually does, but not always. Rigorous bounds are
derived for the ratio between the locking thresholds of a ring and its matched chain, for a variant of the Kuramoto
model that also includes a wider family of models.
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I. INTRODUCTION

The Kuramoto model has been used to study the dynamics
of synchronization in a wide variety of physical, chemical, and
biological systems [1–9]. The model’s governing equations
can be written (unconventionally, but most usefully for our
purposes) in the following dimensionless form:

θ̇k = �ηk +
∑

j∈N (k)

sin(θj − θk), (1)

for k = 1, . . . ,N , where θk is the phase of oscillator k, and
the sum is over all of k’s neighbors N (k), as determined by
the coupling graph. By rescaling time in Eq. (1), we have
normalized the coupling strength to unity without loss of
generality. The term �ηk can then be interpreted as the scaled
natural frequency of oscillator k.

The motivation for this unusual notation is that we are
going to regard η = (η1, . . . ,ηN ) as a fixed frequency vector
and � � 0 as an adjustable parameter controlling the spread
of the natural frequencies. For instance, the components of η

could be chosen independently at random from a prescribed
probability distribution. Then increasing � would allow us to
increase the “width” of the set of frequencies {�η1, . . . ,�ηN }.
We will occasionally write ωk := �ηk for brevity.

In the simple case where � = 0 and all the oscillators
have ωk = 0, the model has a stable fixed state with θk =
0 for all k, for a broad class of coupling graphs. Now
imagine increasing � slightly to produce some variation
among the ωk . Starting from an initial condition θk(0) = 0
and assuming a sufficiently small but nonzero �, the system
will asymptotically approach a stable periodic solution of
Eq. (1) in which all the oscillators run at the same constant
frequency θ̇k ≡ � for all k, for some constant �. We call
such a solution a stable phase-locked state. But when � gets
too large, the natural frequencies ωk = �ηk will become too
disparate for the coupling to lock the oscillators to a common
�. So as � increases, we eventually lack any stable phase-
locked solution.

This desynchronization transition occurs at what we call the
locking threshold, at a parameter value given by the critical
value of � (alternatively, the critical width). Its calculation

has been a focus of many prior studies of the Kuramoto
model. Among these, a major point of variation has come
from the choice of coupling topologies. The manner in which
the oscillators are connected can have drastic effects on the
critical �, as has been demonstrated in work on complete
graphs, one-dimensional chains and rings, two-dimensional
square grids, three-dimensional cubic lattices, d-dimensional
hypercubic lattices, random graphs, small-world and scale-free
networks, and so on. For recent reviews, see Refs. [7–9].

In this paper, we analyze a tractable situation where the
dependence of the critical � on topology, as opposed to
dimension, can be well characterized. Namely, if we have
a one-dimensional lattice of oscillators with nearest-neighbor
coupling, how does the critical � depend on the choice of
boundary condition? If oscillators 1 and N are coupled, we
call this the ring topology and denote its locking threshold by
�R . Alternatively, if oscillators 1 and N are not connected,
we call this the chain topology and write its corresponding
locking threshold as �C .

Intuitively, one might expect a ring and a chain to have
similar locking thresholds, especially when N becomes large.
After all, the two topologies differ only by a single edge. On
the other hand, that single edge is responsible for a topological
(and hence qualitative, not merely quantitative) change in
the lattice’s connectivity structure. For that reason it could
conceivably have a very potent effect.

Although the setting of one-dimensional lattices may seem
overly simplistic, it has the advantage that both rings and
chains of oscillators have been studied extensively, using
various techniques to analyze their dynamics and bifurcations
[10–27].

The main question is this: If we have a chain and a ring
subject to the same initial condition θk(0) = 0 and the same
vector of base frequencies η = (η1,...,ηN ), what limits can be
placed on the ratio �R/�C? In particular, must a ring always
be “more stable” than a chain, leading to �R/�C � 1?

A. Telescopic coupling

In addition to variation in the connectivity structure, another
source of variation in Kuramoto-like systems comes from
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FIG. 1. Schematic illustration of the relationship between stan-
dard coupling, telescopic coupling, and their agreement for odd
coupling functions f .

altering the coupling function. For instance, we could replace
the pure sine function in Eq. (1) with a more general periodic
function. As we will see, the following analysis allows for such
a generalization, though at the cost of introducing a different
type of special structure.

To motivate this structure, let us look at the governing
equation for an internal oscillator k (meaning an oscillator
with 1 < k < N) in a one-dimensional Kuramoto chain or
ring:

θ̇k = ωk + sin(θk−1 − θk) + sin(θk+1 − θk). (2)

Because sine is odd, Eq. (2) can be rewritten as

θ̇k = ωk + sin(θk−1 − θk) − sin(θk − θk+1). (3)

So if we want to generalize from sine to a more general function
f , mathematically speaking we have two plausible choices:
either

θ̇k = ωk + f (θk−1 − θk) + f (θk+1 − θk), (4)

or

θ̇k = ωk + f (θk−1 − θk) − f (θk − θk+1). (5)

Equation (4) is a generalization of the Kuramoto model that
has often been studied in the past, motivated by its physical
and biological applications [11–13,30]. However, we believe
it is instructive to consider the alternative Eq. (5) as well,
and will devote most of our attention to it below. Where the
distinction becomes important, we will say Eq. (4) represents
standard coupling, and Eq. (5) represents telescopic coupling,
thanks to some convenient cancellation properties it enjoys. We
will restrict attention to continuously differentiable coupling
functions f that are 2π -periodic, and will also demand that f

is nonconstant and has at least one zero.
Although telescopic coupling is unconventional, it coin-

cides with standard coupling when f is an odd function, as
shown in Fig. 1. In that sense, telescopic and standard coupling
schemes are on equal footing as generalizations of Kuramoto’s
sinusoidal coupling. Actually, considering the vast literature
that focuses on pure sine coupling, even that special case
remains of interest. Our results for telescopic coupling will
include the traditional sine case while extending it to a new
and wider family of models.

One possible objection is that telescopic coupling injects a
directionality to a chain or ring. To see this, note that swapping
the oscillators and natural frequencies “left to right” (j →
N − j + 1 for j = 1, . . . ,N ) changes the governing equations
for telescopic coupling, but not for standard coupling. But

such a directionality may be reasonable in some contexts. For
example, there are a number of physical and biological systems
that have been modeled as directed chains of oscillators, such
as central pattern generators for the swimming rhythm of
lamprey [10,13,28,29].

A related point in favor of telescopic coupling is that it eases
the analysis of oscillator arrays whose coupling functions f

lack odd symmetry. Although some results have been obtained
for nonodd coupling on a chain [13,16,30], these are rare.
Much of the existing research in this field has relied on the
oddness of the coupling function and struggled otherwise. As
we will see, telescopic coupling handles nonodd functions
without difficulty.

II. CRITICAL WIDTH �C FOR A CHAIN

To begin the analysis, we calculate the critical width �C ,
above which the chain has no phase-locked solutions [16,17].
After including the chain boundary terms, and assuming
telescopic coupling as in Eq. (5), the dynamics are given by

θ̇1 = ω1 − f (θ1 − θ2),

θ̇k = ωk + f (θk−1 − θk) − f (θk − θk+1), for 1 < k < N,

θ̇N = ωN + f (θN−1 − θN ).

By definition, for � � �C , the system evolves to a stable
locked state, and conversely, locking is impossible for � > �C .
So if we find a condition on the existence of a locked state, we
get a condition on �C .

Recall that locking occurs when θ̇k ≡ � for all k, for some
�. If we simply sum all N of the differential equations above
and then divide by N , we find

� = 1

N

N∑
k=1

ωk =: �η̄, (6)

where we took advantage of telescoping nature of telescopic
coupling. This allows us to rewrite our condition for locking
as

ω1 − � = f (θ1 − θ2),

ωk − � = −f (θk−1 − θk) + f (θk − θk+1), 1 < k < N,

ωN − � = −f (θN−1 − θN ).

Sum the first k equations and telescope them to obtain
k∑

j=1

(ωj − �) = f (θk − θk+1).

Let us define

φk = θk − θk+1 (7)

and

Dk =
k∑

j=1

(ηj − η̄) (8)

for k = 1, . . . ,N − 1. This yields

f (φk) = �Dk, (9)

which is an exact condition on finding a locked state in the
chain topology. In particular this means that �C corresponds
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to the supremum of all �’s where the above equation is satisfied
and the solution φ = (φ1,..,φN−1) is stable. This condition is
equivalent to one found previously for sine coupling [16,17].

Existence and stability of the locked state

Next we check that Eq. (9) is satisfiable for the class of f

under consideration. Our biggest demand on f was that it be
continuously differentiable and periodic. Continuous periodic
real-valued functions are bounded and attain their maximum
and minimum, so we know that both f and f ′ attain their upper
and lower bounds. Let us define the bounds fu := maxx f (x)
and fl := minx f (x). We also requested that f be nonconstant
and cross zero, so fu > 0 > fl.

Given a particular realization of ηk’s, we can define
Du := max(0, maxk(Dk)) and Dl := min(0, mink(Dk)). So Du

represents the largest positive value of Dk if it exists and
0 otherwise, with Dl similarly defined for negative values,
enforcing Dl � 0 � Du. Therefore, we know that all locked
states disappear at a critical point of

�C = min(fu/Du,fl/Dl). (10)

We formally take 1/0 = ∞; notice that �C = ∞ if and only
if Dk = 0 for all k, which is only possible if all the ηk are
identical. Also note that since fu and fl represent global
bounds on f , then no equilibrium at all can exist when
� > �C. However, for � < �C we can always find a set of
φk that will satisfy the prior equations. This makes �C the true
point between a locked state existing and disappearing.

However, knowing a phase-locked state exists does not
ensure it is stable. Fortunately, it is not hard to show if � < �C ,
then a stable locked state exists. For any y ∈ (fl,fu) there exists
some point x where f (x) = y and f ′(x) > 0; otherwise, f

could never climb from y to fu. Moreover, since f ′ is bounded,
there are only finitely many x that could work for each y in the
bounded domain (−π,π ]. And since f ′ is continuous, then f ′
will be positive in a neighborhood of x, so our point selection
can take advantage of this. Ergo there exists some open set 	

where f restricted to 	 always has positive derivative and is
surjective onto (fl,fu). For a visual example, see Fig. 2.

-3 -1.5 0 1.5 3
x

-2

0

2

f
(x

)

FIG. 2. Example showing a choice of 	 for a specific coupling
function f (x) = sin(x) + cos(3x), as indicated by the shaded region
on the x axis. The dashed lines illustrate how image(f |	) =
image(f ), up to global extrema, while having f ′|	(x) > 0.

Returning to our original question, if � < �C, we can
select a set of φk out of 	 in a well-defined way, where
f ′(φk) > 0 and f (φk) = �Dk . A theorem of Ermentrout [31]
then guarantees that such a solution is asymptotically stable.
Therefore, Eq. (10) really does define �C , below which at least
one stable locked state exists and above which none do.

III. AN UPPER BOUND ON �R/�C

The next step is to obtain an upper bound on �R , the locking
threshold for a ring. Although the interior of a chain looks the
same as a ring, they differ at the boundary terms, as seen in
the following equations:

θ̇1 = ω1 + f (θN − θ1) − f (θ1 − θ2),

θ̇k = ωk + f (θk−1 − θk) − f (θk − θk+1), 1 < k < N,

θ̇N = ωN + f (θN−1 − θN ) − f (θN − θ1).

Nevertheless, several steps in the following argument will be
the same as for the chain. For example, locked states still satisfy
θ̇k = � for some �, and we can still telescope the equations,
yielding � as the average of the ωi’s again. Similarly,

ω1 − � = −f (θN − θ1) + f (θ1 − θ2),

ωk − � = −f (θk−1 − θk) + f (θk− − θk+1), 1 < k < N,

ωN − � = −f (θN−1 − θN ) + f (θN − θ1),

which can be telescoped into

�Dk = f (φk) − f (θN − θ1).

Here, Dk and φk are defined exactly as in the last section.
Hence, if we put the same choice of η’s on a ring and a
chain, they would have the same vectors D = (D1,...,DN−1).
Also, notice that −∑N−1

j=1 φj = ∑N−1
j=1 (θj − θj−1) = θN − θ1.

Therefore, we can write

�Dk = f (φk) − f

⎛
⎝−

N−1∑
j=1

φj

⎞
⎠. (11)

Equations like this have been found before for the special
case of sine coupling [21,25,27]. Although Eq. (11) has a
compact form, demonstrating that solutions to it exist and
calculating them explicitly is a difficult endeavor; hence, our
more modest goal is to establish a bound on �R .

Let us define fu, fl,Du, and Dl as before. Since fl<0<fu

represent global extrema, the ring can have a locked state only
if fl − fu � �Dk � fu − fl for all k. This yields

�R � min

(
fu − fl

Du

,
fl − fu

Dl

)
. (12)

Because we have been careful to use the same Dk here as in
the chain case, Eq. (12) can be directly compared to Eq. (10)
to give the bound

�R/�C � min

(
fu − fl

Du

,
fl − fu

Dl

)/
min

(
fu

Du

,
fl

Dl

)

= min

(
fu − fl

Du

,
fl − fu

Dl

)
max

(
Du

fu

,
Dl

fl

)
.
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If Du/fu > Dl/fl , then we have that

�R/�C � min

(
fu − fl

Du

,
fl − fu

Dl

)(
Du

fu

)

�
(

fu − fl

Du

)(
Du

fu

)

= 1 +
∣∣∣∣ fl

fu

∣∣∣∣.
If otherwise Du/fu < Du/fl , then

�R/�C � min

(
fu − fl

Du

,
fl − fu

Dl

)(
Dl

fl

)

�
(

fl − fu

Dl

)(
Dl

fl

)

= 1 +
∣∣∣∣fu

fl

∣∣∣∣.
Together these facts imply

�R/�C � 1 + max

(∣∣∣∣ fl

fu

∣∣∣∣,
∣∣∣∣fu

fl

∣∣∣∣
)

. (13)

Thus, we have found a rigorous upper bound on the
“advantage” of a ring over a chain, with the bound depending

exclusively on the shape of the coupling function f . Also
notice that the arguments of the max function are a nonnegative
real number and its reciprocal, so this upper bound is always
at least 2.

In fact, if f is odd and N = 2 then �R = 2�C, so Eq. (13)
is tight in certain cases. We will discuss the linear stability of
states on the ring later, but since we need a solution to exist
before it can be stable, the bound is valid.

IV. UPPER AND LOWER BOUNDS

Now that we have the upper bound Eq. (13) on the ratio of
the critical widths, it is natural to want to check how sharp it is.
The results shown in Fig. 3 do exactly that. We generate many
different realizations of the base frequency vectors η, using a
uniform distribution on [−1,1]. Then we plot the numerically
obtained �C and �R on a scatterplot, and draw a solid line to
denote our predicted boundary Eq. (13). Figure 3(a) first tests
an odd coupling function, namely sine. Next we test several
nonodd coupling functions in Figs. 3(b)–3(d). For the regimes
being tested, many points congregate at our upper bound, but
as expected, none actually trespass it.

Figure 4 shows that the results continue to hold if we use a
standard Cauchy distribution instead of a uniform distribution
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FIG. 3. Scatterplot comparing the critical width � for a chain and a ring of N = 25 oscillators for a variety of coupling schemes and
random realizations of the natural frequencies. For each data point, the corresponding ring and chain were matched, meaning that both were
subject to the same initial conditions and natural frequencies. Initial phases θk(0) were chosen to be identically zero, and natural frequencies
ηk were drawn at random from a uniform distribution on [−1,+1]. Lines here represent a 1:1 ratio (dashed green line) and our theoretically
predicted upper bound [solid red line defined by Eq. (13)]. Panel (a) has f (x) = sin(x) and panel (b) has f (x) = sin(x) + cos(3x), both
under the telescopic coupling scheme of Eq. (5). Panels (c) and (d) on the right have f (x) = sin(x + 0.6) − sin(0.6). However, panel (c) uses
telescopic coupling, whereas panel (d) follows the standard coupling Eqs. (4). Notice that the upper bound is always obeyed, but some data
points lie below the lower dashed line, showing that it is not a strict bound. Values of � were estimated via a bisection technique combined
with numerical integration, using a fourth-order Runge-Kutta method with a time step of 0.125, a transient time between 5 × 102 and 2 × 103

time units, and observation times of 5 × 102.
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FIG. 4. Same parameters, conditions, and coupling schemes as described in the caption of Fig. 3, except the natural frequencies ηk were
drawn from a standard Cauchy distribution instead of a uniform distribution. Although the data arrange themselves differently because of the
altered choice of natural frequencies, they still obey the upper bound while only occasionally disobeying the lower bound.

to generate the η vectors. Although the clustering of the points
differs, the upper bound remains intact.

But what about the lower dashed line representing
�C = �R? It is tempting to think that this line should also
be respected; after all, a ring has an additional coupling
connection, and it has no free ends. With this extra edge to
provide more coupling between the oscillators, one intuitively
expects that a ring should always lock more easily than a chain.
Moreover, the difference in boundary conditions means that
the ring permits topologically twisted states [12,18] that would
be impossible for the chain. This too would naively suggest
that the ring is always more susceptible to locking than the
chain is.

However, Figs. 3 and 4 indicate that some cases lie below
the dashed line. In such cases the chain locks when its
matched ring does not. Apparently the naive intuition above is
wrong. We now confirm this surprising result by constructing
a counterexample.

Counterexample to �C � �R

In fact, the critical width of a chain is not always less than
that of a matched ring. Here is a counterexample. Say we
have N = 4, f = sin, and we have obtained a realization of
η’s such that D = (+1,−1,−1)T . Then Eq. (10) immediately
implies that �C = 1, and we can satisfy this system with
φ1 = −φ2 = −φ3 = π/2.

Now consider what the corresponding locked state would be
for the ring. By assumption, such a state must exist; if �C � �R

is true, we should be able to produce a locked solution to the

ring Eqs. (11) with � = 1. Such a solution would then satisfy
the following system:

sin(φ1) + sin(φ1 + φ2 + φ3) = +1, (14)

sin(φ2) + sin(φ1 + φ2 + φ3) = −1, (15)

sin(φ3) + sin(φ1 + φ2 + φ3) = −1. (16)

Notice that if we subtract the second or third equation from
the first, we get

sin(φ1) − sin(φ2) = +2,

sin(φ1) − sin(φ3) = +2.

From here, we realize we have no choice. It must be that
φ1 = π/2 and φ2 = φ3 = −π/2, which yields the desired
contradiction, since it gives

sin(φ1) + sin(φ1 + φ2 + φ3) = sin(π/2) + sin(−π/2) = 0,

which violates Eq. (14).
The contradiction shows that even though we have a locked

state for a chain, none exists for the ring. So sometimes
�C �� �R . Because this counterexample uses the sine function,
it works for both the standard and telescopic coupling models.

Unfortunately, trying to come up with a genuine lower
bound for �R/�C is surprisingly involved, given that such
shenanigans can be found in the small-N cases.
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V. ASYMPTOTIC EXISTENCE

Although small N is problematic, the large-N regime is
more tractable. Let us fix N to be large but finite and choose
some realization of η. If we start with � < �C , we are
guaranteed a phase-locked solution φ(C) to the chain Eq. (9),
satisfying f (φ(C)

k ) = �Dk for all k = 1, . . . ,N − 1. Moreover,
we are guaranteed to be able to choose these φk from the set
	 as defined earlier.

We seek to construct an approximate phase-locked solution
to the ring based on this chain solution. The coupling function
f is 2π -periodic, so let us define


 :=
⎛
⎝N−1∑

j=1

φ
(C)
k

⎞
⎠mod2π.

Thus, 0 � 
 < 2π . Since we insisted that f cross zero and
be both nonconstant and periodic, there exists some point x0 ∈
(−π,π ], such that f (x0) = 0 and f ′(x0) > 0. We can then
define φ

(R)
k := φ

(C)
k − (x0 + 
)/(N − 1) as a value close to

φ
(C)
k . This will represent our attempted solution to the ring

Eq. (11).
First notice that

f

⎛
⎝−

N−1∑
j=1

φ
(R)
j

⎞
⎠ = f

⎡
⎣−

N−1∑
j=1

(
φ

(C)
k − x0 + 


N − 1

)⎤
⎦

= f

⎡
⎣−

N−1∑
j=1

(
φ

(C)
k

) + x0 + 


⎤
⎦

= f (x0)

= 0.

And so we find

f
(
φ

(R)
k

) − f

⎛
⎝−

N−1∑
j=1

φ
(R)
j

⎞
⎠ = f

(
φ

(C)
k − x0 + 


N − 1

)
.

But recall that f is continuously differentiable, so there is
some finite upper bound on the derivative f ′

u = maxx |f ′(x)|.
In other words, for any x and δ, then |f (x) − f (x + δ)| < f ′

uδ.

Therefore,∣∣∣∣f
(

φ
(C)
k − x0 + 


N − 1

)
− f

(
φ

(C)
k

)∣∣∣∣ < f ′
u

|
 + x0|
N − 1

,

which implies

f
(
φ

(R)
k

) − f

⎛
⎝−

N−1∑
j=1

φ
(R)
j

⎞
⎠ = �Dk + O(N−1).

So φ(R) is an approximate solution to the ring equations that
becomes exact as N approaches infinity.

Figure 5 shows the convergence of this approximate
solution for the ring to that for the chain. We numerically
construct pairs of solutions that get closer as N gets large.
All this makes sense, since an infinitely long chain should be
identical to an infinitely long ring.

Concerning stability, remember that the set 	 is open, so
for any x ∈ 	, then for sufficiently small δ then x + δ ∈ 	. So
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FIG. 5. A plot showing the log of the separation (as measured
by the infinity norm) between the vector of φk’s for a chain and
the same vector for a ring, given that they are subject to the same
natural frequencies ηk , which were randomly drawn from a uniform
distribution on [−1,+1]. We first calculate the locked solution for
a chain, using an initial condition of all zeros. Then we use the
final result of that calculation as the initial condition of the ring to
allow for direct comparison. A coupling function f (x) = − sin(x)
was used. The straight line shows the best linear fit to the log-log
plot, indicating that we are seeing a decay comparable to O(N−1).
Values of the phases were computed by numerical integration, using
a fourth-order Runge-Kutta method with a time step of 0.125, a
transient time between 5 × 102 and 106 time units, and observation
times of 103.

this ring solution φ(R) also lies entirely in 	 for large enough
N . This is almost enough to cite Ermentrout and establish the
stability of this solution [31]. However, we have an additional
phase difference in our dynamics, θN − θ1 = −∑N−1

j=1 φk. In
our proposed solution this quantity is sent to 
 + x0, which
by construction has f ′(
 + x0) = f ′(x0) > 0, and so stability
is secured.

To summarize, if we have a stable locked solution to the
chain of oscillators for large N , then there is a nearby stable
locked solution for the ring of oscillators. Hence, the naive
lower bound �R � �C is valid in the asymptotic case N � 1.

A. Partial results for standard coupling

Our prior argument relied very little on telescopic cou-
pling. In fact, we can use a similar method to show an
equivalent result using the standard coupling Eq. (4) instead
of telescopic coupling Eq. (5). However, this requires the
additional constraint of x0 = 0 or π [where f (x0) = 0 and
f ′(x0) > 0].

To derive the relevant results, suppose that we have some
set of φ

(C)
k = θk − θk+1, which satisfy the standard coupling

equations for the chain and are locked at θ̇k ≡ �. Then,

� = ω1 + f
(−φ

(C)
1

)
,

� = ωk + f
(
φ

(C)
k−1

) + f
(−φ

(C)
k

)
, 1 < k < N,

� = ωN + f
(
φ

(C)
N−1

)
.
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Using the fact that θN − θ0 = −∑N−1
j=1 φk , the condition for

locking on a ring becomes

� = ω1 + f
(−φ

(R)
1

) + f

⎛
⎝−

N−1∑
j=1

φ
(R)
k

⎞
⎠,

� = ωk + f
(
φ

(R)
k−1

) + f
(−φ

(R)
k

)
, 1 < k < N,

� = ωN + f
(
φ

(R)
N−1

) + f

⎛
⎝N−1∑

j=1

φ
(R)
k

⎞
⎠.

If we try plugging in φ
(R)
k := φ

(C)
k − (
 + x0)/(N − 1), with


 defined the same as before, then the sum terms will evaluate
to x0 modulo 2π . If we use the continuity arguments from
before for 1 < k < N , then

ωk + f

(
φ

(C)
k−1 − 
 + x0

N − 1

)
+ f

(
−φ

(C)
k + 
 + x0

N − 1

)

= � + O(N−1).

For k = 1, then

ω1 + f
(−φ

(R)
1

) + f

⎛
⎝−

N−1∑
j=1

φ
(R)
k

⎞
⎠

= ω1 + f

(
−φ

(C)
1 + 
 + x0

N − 1

)
+ f (x0)

= � + O(N−1),

and for k = N , then

ωN + f
(
φ

(R)
N

) + f

⎛
⎝N−1∑

j=1

φ
(R)
k

⎞
⎠

= ωN + f

(
φ

(C)
N − 
 + x0

N − 1

)
+ f (−x0)

= � + O(N−1).

Hence, as N → ∞ this solution becomes exact. The reason
we restricted x0 was because we wanted f (x0) = 0 = f (−x0),
which was only guaranteed if x0 = −x0 mod 2π .

By periodicity and continuity, if fl < f (φk) < fu, then
there is always some φ′

k such that f (φ′
k) = f (φk) and

f ′(φ′
k)>0. So without loss of generality, if we had a chain

solution φ
(R)
k , we could pick another solution where all the

phase differences have positive slope in f . And for sufficiently
large N , the same would hold true for the ring, since we are
perturbing only slightly and we already assumed f ′(x0) > 0
for the boundary term.

Therefore, given any existing locked solution for the
chain with standard coupling (even an unstable solution), this
argument guarantees the existence of a stable locked solution
for the chain and a stable approximate solution for the ring, also
with standard coupling. This means the large-N limit gives
�R � �C for standard coupling, just as it did for telescopic
coupling. But unlike the more convenient case of telescopic
coupling, we can no longer construct a locked solution in the
first place nor can we put clean upper bounds on �R or �C .

VI. SUMMARY AND FUTURE DIRECTIONS

Our main results have put a limit on the relative behavioral
difference between a ring and a chain of phase oscillators. As
noted in the Introduction, it is generically hard to predict the
conditions on synchronization. As we have shown, even a sin-
gle additional connection can cause a doubling of the locking
threshold, emphasizing its sensitivity to topology. However,
simply putting limits on the synchronization criterion is often
good enough for practical purposes. This is especially true for
our particular comparison, since an analytic criterion is exactly
known for a chain, but no equivalent has been demonstrated
for a ring.

Our analysis was facilitated by the introduction of the
telescopic coupling scheme Eq. (5). Thanks to its convenient
analytic properties, a large collection of different results, which
typically require sine, odd, or some other heavily restricted
coupling function, have been generalized to a new family of
f ’s. And as we noted earlier, telescopic coupling Eq. (5) and
standard coupling Eq. (4) have equally legitimate mathemati-
cal claims to being a generalization of the sine-based Kuramoto
model. Moreover, as illustrated earlier by Fig. 1, these two
coupling schemes exactly overlap in the case of odd f .

Regarding future directions, one possibility is to ask
whether the results generalize to higher dimensions. Telesco-
pic coupling introduces a directionality to a one-dimensional
chain. The natural extension to higher-dimensional lattices
would be to introduce a directionality along each axis. It is not
hard to do such a thing, and when we do, we extend the same
cancellation properties enjoyed by odd f to generic f . What
results might come of this?

Although we distinguished between the two coupling
scheme Eqs. (4) and (5), we have not made much effort
to connect their behaviors for f nonodd. But hints of a
connection are present. For example, the two plots on the
right side of Fig. 3 both seemingly obey our predictions,
even though only one of them used our preferred telescopic
coupling. The other came from standard coupling, about
which we were unable to make comparably strong statements.
Unfortunately, we made little progress in computing exact
relationships between the two schemes. Given that the
telescopic scheme is much easier to work with, any general
connection could potentially shed light on the standard case.

Finally, the fundamental question of this paper could be
generalized in an ambitious way. Given a network of oscillators
on a connectivity graph G, how does the locking threshold �

change with the addition or removal of a single edge? We chose
both the graph and the edge very carefully in this paper, but
some of our logic might still be relevant to this larger problem.
Considering the close relationship between the power grid and
the Kuramoto model, this question might bear on current issues
of power grid resilience [32–37].
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