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Multifractals embedded in short time series: An unbiased estimation of probability moment
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An exact estimation of probability moments is the base for several essential concepts, such as the multifractals,
the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method
called factorial-moment-based estimation of probability moments. Theoretical prediction and computational
results show that it can provide us an unbiased estimation of the probability moments of continuous order.
Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from
several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two
empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing
price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison
with the well-established tools displays significant advantages of its performance over the other methods. The
factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three
generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation
of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides
the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find
its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality
relationship network between elements of a complex system.
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I. INTRODUCTION

A stochastic process can be described with probability
distribution function (PDF) of its displacement x at time
t , denoted with p(x,t). The process behaves multifractal,
providing the partition function obeys [1]

z(t,q) ≡
∫ +∞

−∞
pq(x,t)dx ∼ t−τ (q), (1)

where q ∈ (−∞, + ∞) is used to extract different components
of p(x,t) that are scaling-invariant with exponents τ (q),
respectively.

From a stationary time series, one can extract all the possible
segments with a predefined length s. Regarding each segment
as a trajectory of a stochastic process, all the trajectories
(segments) are accordingly a bundle of realizations of the
process, which form an ensemble. From all the displacements
of the realizations one can obtain the probability distribution
function p(x,s). If p(x,s) obeys the power-laws in Eq. (1), the
time series is called to behave multifractal [2–8].

Multifractal embedded in time series finds its great use
in diverse research fields (see [9–12] and the references
therein for important contributions in this field). For instance,
a large amount of time series in financial markets behave
multifractal [13–27], based upon which the fractal market
theory is established to replace the efficient market hypothesis
[28]; multifractals embedded in physiological signals provide
us helpful information on healthy states [29–38]; along a
DNA sequence, some regions guide the production of proteins,
while some other regions take part in the regulation of
protein production. In the coding regions the base pairs are
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positioned randomly, and in the noncoding regions the base
pairs distribute according to (multi)fractal [39–42]. This fact
is widely used to distinguish coding regions from noncoding
regions in DNA sequences [41,42].

Precise estimation of the partition function requires an
infinite (at least a large enough) number of segments, namely,
infinite length of the considered time series. However, in reality
we have only time series containing a finite number of records.
Sometimes monitoring dynamical process of a complex system
produces a long time series, but in the time duration structure
of the system may have changed significantly, or the dynamical
process has transited to other attractors. We should separate the
long series into parts to obtain evolutionary behaviors of the
system. Finite length of time series may lead to unacceptable
fluctuation to the probability p(x,s) and subsequently serious
statistical fluctuation and bias to the term pq(x,s) in the
partition function, a nonlinear function of the probability
([43]; see also the Sec. II for detail). How to detect exactly
multifractals from real-world time series is still an open
problem.

Actually, almost all the standard tools widely used to
evaluate scaling-invariance require the length of a time series
being infinite or large enough. Extensive calculations show that
[44–49], to obtain reliable scaling behaviors of a time series,
the length should reach 213 and 215 for wavelet analysis [29,50]
and detrended fluctuation analysis [51–55], respectively. For
the R/S method [56], even a length of 216 cannot provide
us a well-converged result. Very recently, Bonachela et al.
proposed a balanced estimation of entropy to minimize the
summation of bias and statistical fluctuation [57]. This concept
performs well even for small sets of data containing few tens
of records. Replacing the original Shannon entropy with this
new estimation, we convert the diffusion entropy approach
[2–4,58–74] [a novel method to evaluate the scaling exponent
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τ (q → 1)] to a new version, called balanced estimation of
diffusion entropy [75–78], by which one can obtain reliable
values of τ (q → 1) for very short time series with several
hundred lengths. But this new version of diffusion entropy can
only evaluate monofractals.

In the research branch of high-energy collision, a critical
problem is how to uncover dynamical behaviors covered
by large statistical fluctuations due to a limited number of
experiments. An important concept called factorial moment
[79–88] is proposed to extract intermittency (multifractal)
behaviors from several tens of experimental cases. From the
experimental cases, one can find the distribution region of
measured quantities. Separating the region into many bins and
reckoning the number of particles occurring in each bin. In
the rth experimental case the number of particles occurring in
the j th bin is here denoted with nr (j,s), where s is the size
of a bin. A basic estimation of the occurring probability in
this bin is nr (j,s) over the total number of particles. And the
partition function is subsequently estimated to be proportional
to the summation of the moments n

q
r (j,s),j = 1,2, . . . ,J . J

is the number of the bins. The key idea of factorial moment
is to replace the moment n

q
r (j,s) with a factorial moment

nr (j,s)[nr (j,s) − 1][nr (j,s) − 2] . . . [nr (j,s) − q + 1].
A large amount of works prove the powerfulness of factorial

moment in filtering out large fluctuations and subsequent bias
induced by Poisson noise (see, for examples, Refs. [41,83–92].
It can expose exactly dynamical behaviors of a complex
system. But this solution is valid only for positive integer
values of q. Hwa [93] extends the idea to real values of
q by taking an expansion of the distribution of n(j,s),j =
1,2, . . . ,J in terms of negative binomial distributions. But
the procedure requires exact coincidence of the expansion
with experimental data, which leads to unreasonably large
(absolute) and alternatively occurring positive and negative
values of the set of fitting parameters [94].

In the present paper, starting from the idea of factorial
moment, by using the approximation theory of functions
we extend the original definition of factorial moments to
a version of continuous order, which makes it possible to
estimate exactly the partition function (without bias) and
subsequent multifractal behaviors for very short time series.
The contribution is multifold,

First, we introduce the basic and the integer-order factorial-
moment-based estimations of partition function. Their per-
formances are measured by the theoretical predictions of
biases and fluctuations, which are verified also by detailed
calculations, respectively.

Second, an unbiased estimation of partition function, a
new concept called continuous q-order factorial moment,
is developed to evaluate scaling behaviors embedded in
short time series. A probability moment is approximated
with a polynomial function of probability, by use of which
the continuous q-order partition function is transformed to
a summation of positive-integer-order factorial moments.
Performance of this solution is shown as a typical example by
measuring exactly the multifractal structure in the probability
redistribution model.

Third, we investigate the evolutionary behaviors of two
empirical records. The first case contains three walking trials
(fast, normal, and slow) for a healthy volunteer. From the

gait time series we extract five successive nonoverlapping
segments with a length of 500 each. It is found that all
the segments display perfect multifractal behaviors. The
multifractal strength for the fast trivial changes abruptly, while
that for the normal and slow trials behave similar with each
other. As the second example, the Shanghai stock market
index series in the duration from 1995 to 2015 is separated
into seven periods covering three years each. All the periods
have large multifractal strengths. Interestingly, in the period
of 2007–2009, which covers the famous global financial crisis
occurring in the year 2008, the multifractal strength is the
weakest, while that for the successive duration of 2010–2012
is the strongest, which is regarded here as the relaxation from
abnormal to normal state. The durations of 2004–2006 (before
the global crisis) and 1998–2000 (after the Asia financial crisis
occurring in the year 1997) behave very similar to that for
the extreme case in the duration of 2007–2009, all of which
form a crisis-cluster. The other durations far from the crises
behave very similar to each other and form a distinguished
normal-cluster.

Fourth, as a comparison, the well-established tools to
evaluate multifractals, such as the basic estimation of parti-
tion function, the multifractal detrended fluctuation analysis
(MF-DFA), and the wavelet transformation modulus maxima
(WTMM), are also used to detect the scaling behaviors in the
empirical data. With the increase of scale the basic estimation
of partition functions [see Eq. (5) in Sec. II for detail] bends
down significantly. The MF-DFA method, on the contrary, fails
in the small scales. The estimations using the WTMM have
unacceptable large fluctuations in all the considered scales.
The continuous q-order factorial moment proposed in this
paper can estimate the partition functions perfectly in a wide
range of scale and evaluate reliably multifractals in very short
time series. This conclusion is also confirmed by using a large
amount of fractional Brownian motions.

It should be emphasized that the key contribution of the
present work is an unbiased estimation of the probability mo-
ments of continuous order. Besides its application in evaluating
scaling invariance embedded in short time series as being
focused on in this paper, it can be extended straightforwardly to
estimate entropies defined with various formulas. For instance,
the Tsallis entropy [95–97] can be estimated with 1−z(t,q)

1−q
,

which shows us the nonextensive behaviors of a complex
system. It can also be used to estimate transfer entropy between
each pair of elements of a complex system, based upon
which one can find causalities and reconstruct subsequently
a relationship network between the elements [98,99].

In Sec. II we introduce the basic estimation of multi-
fractals (Sec. II A), and then develop a new method called
factorial-moment (FM)-based estimation of partition functions
(Secs. II B and II C). Performance of each method is measured
by the average and the variance. A remark on the algorithm
of the FM-based estimation is presented (Sec. II D). Several
well-established tools to evaluate scaling behaviors of time
series are introduced finally for comparison (Sec. II E). In
Sec. III materials are introduced in detail, including the
probability redistribution model by which one can generate
a perfect multifractal structure and its realizations (Sec. III A),
the stride interval series of gait trials for a healthy volunteer
as the first empirical case (Sec. III B), and the closing price
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series of the Shanghai Stock Market as the second empirical
case (Sec. III C). In Sec. IV the theoretical predictions of
performance are verified by calculations (Secs. IV A and IV B),
and the FM-based estimation is used to find the evolutionary
behaviors in the two empirical cases (Secs. IV C and IV D).
A detailed comparison with the well-established tools is
presented in Sec. IV E. We finish with concluding remarks
in Sec. V.

II. METHOD AND MATERIALS

A. Basic evaluation of multifractals in time series

Let us start from a stationary time series, ξ = {ξ1,ξ2,

. . . ,ξN }. All the possible segments with length s read

Xs
i = {ξi,ξi+1, . . . ,ξi+s−1}, i = 1,2, . . . ,N − s + 1. (2)

Now we regard Xs
i as a realization of a stochastic process,

namely, the trajectory of a particle walking randomly from the
original point in one-dimensional space [4]. The duration is a
total of s time units. All the N − s + 1 realizations form an
ensemble, displacements of which read,

xi(s) ≡
s∑

j=1

Xs
i (j ) =

i+s−1∑
j=i

ξj , i = 1,2, . . . ,N − s + 1.

(3)
Selecting a certain fraction of the standard deviation of the

initial time series as the size of a bin, i.e., 1
ε

√∑N
j=1(ξj − 〈ξ 〉)2

(for instance, ε = 2) [4], one can separate the distributing re-
gion of displacement into many bins, denoted with K(s), where
〈.〉 is the average. Reckoning the number of displacements
occurring in every bin, denoted with n(k,s),k = 1,2, . . . ,K(s),
the PDF can be simply approximated as

p(k,s) ∼ p̂(k,s) = n(k,s)

N − s + 1
, k = 1,2, . . . ,K(s), (4)

The basic estimation of partition function reads,

z(s,q) ≡
K(s)∑
k=1

pq(k,s)

∼ ẑn(s,q) =
K(s)∑
k=1

[
n(k,s)

N − s + 1

]q

≡
K(s)∑
k=1

ẑn(s,q,k). (5)

Assuming the time series behaves multifractal, we have the
power laws [1],

ẑn(s,q) ∼ s−τ (q), q ∈ (−∞, + ∞). (6)

A large value of q will enlarge significantly the differences
of contributions from big and small probabilities and conse-
quently extract the scaling behaviors obeyed by the component
of big probabilities. On the other hand, a negative value of
q will filter out the contributions of the large probabilities

and expose the scaling behaviors in the component of small
probabilities. The structure of the scaling behaviors, i.e., the
density of components characterized by the scaling exponent
τ (q), can be described by the multifractal spectrum, defined
by the Legendre transform of τ (q) [100,101], which reads,

h = dτ (q)

dq
, D(h) = qh − τ (q), (7)

where h is the local Hurst exponent and the relation of
D(h) versus h is the multifractal spectrum. One can measure
the characteristics of the spectrum by the point at which
D(h) reaches the maxima, denoted with [hmax,D(hmax)], and
the strength of multifractal defined as �h = h(q → −∞) −
h(q → +∞). In the special case of h(q)= dτ (q)

dq
= H = const,

all the components obey the same power law. The multifractal
degenerates to a monofractal.

In calculations, numerical derivative of τ (q) usually leads to
unacceptable errors. Herein we employ the solution proposed
by Kantelhardt [50], i.e., fitting the discrete points of τ (q)
obtained from empirical records with an analytical expression,
which reads,

τ (q) = − ln(xq + yq)

ln 2
. (8)

The multifractal strength is �h = | ln x−ln y|
ln 2 .

From the viewpoint of statistics, the simple approximation
of PDF in Eq. (4) requires an infinite length of the initial
time series ξ , namely, N → ∞. In reality, however, the
considered time series is generally very short, which may lead
to unacceptable bias and statistical fluctuations to the estimated
partition function ẑn(s,q). Performance of an estimation
should be measured by bias and standard deviation. As a simple
illustration, we show herein the bias and variance of ẑn(s,q)
with a positive integer q.

For a specific system with its conditions keeping un-
changed, it is reasonable to assume that the displacement’s
occurring probability distribution, p(k,s),k = 1,2, . . . ,K(s),
keep unchanged. If we conduct many times the measurements,
from each measurement we can obtain a value of n(k,s)
corresponding to the kth bin, which is a realization of the
probability p(k,s). The measurements are independent of each
other, namely, the deviation of n(k,s) from the expected value
of Np(k,s) comes from uncorrelated noise. The realizations
produced by this process obey a binomial distribution function
(for simplicity p(k,s) and n(k,s) are denoted with p and n,
respectively),

P (p,n,k,s) = (N − s + 1)!

n!(N − s + 1 − n)!
pn(1 − p)N−s+1−n, (9)

which will degenerate to Poisson and Gaussian distributions
when N and p satisfy some special conditions. Hereafter, the
statistical averages 〈·〉 are all conducted over the binomial
distribution.

A tedious computation (see Appendix for details) leads
to the statistical average of the basic estimation of partition
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function,

〈ẑn(s,q)〉 = 1

(N − s + 1)q

K(s)∑
k=1

〈nq(k,s)〉

= (N − s + 1)!

(N − s + 1)q

K(s)∑
k=1

q∑
j=0

S(q,j )

(N − s + 1 − j )!
pj (k,s)

≡
K(s)∑
k=1

〈ẑn(s,q,k)〉, (10)

where S(q,j ) is the Stirling numbers of the second kind, which can be generated iteratively as below [102],

S(i � 1,0) = 0, S(i � 0,i � 0) = 1, S(i + 1,j ) = S(i,j − 1) + jS(i,j ). (11)

The bias from the kth term can be calculated with

�ẑn(s,q,k) = 〈ẑn(s,q,k)〉 − pq(k,s), k = 1,2, . . . ,K(s). (12)

For the special case of q = 2, we have the bias of the kth term,

�ẑn(s,2,k) = (N − s + 1)p(k,s) + (N − s + 1)(N − s)p2(k,s)

(N − s + 1)2
− p2(k,s)

= p2(k,s)

[
1

p(k,s)(N − s + 1)
− 1

N − s + 1

]

≈ 1

〈n(k,s)〉p
2(k,s). (13)

Hence, when the average occurring number is small, the relative bias will reach unreasonably large. For instance, if 〈n(k,s)〉 = 5
the relative bias is 20%.

By using a procedure analogous with that in Eq. (10), one can also estimate the statistical fluctuations for the terms in ẑn(s,q),
which read,

En(s,q,k) ≡ 1

(N − s + 1)2q
〈[nq(k,s) − 〈nq(k,s)〉]2〉

= 1

(N − s + 1)2q
{〈n2q(k,s)〉 − 〈nq(k,s)〉2}

= 1

(N − s + 1)2q

⎧⎨
⎩

2q∑
j=0

(N − s + 1)!

(N − s + 1 − j )!
S(2q,j )pj (k,s)−

q∑
j1,j2=0

[(N − s + 1)!]2S(q,j1)S(q,j2)

(N − s + 1 − j1)!(N − s + 1 − j2)!
pj1+j2 (k,s)

⎫⎬
⎭,

(14)

where k = 1,2, . . . K(s).
For the special case of q = 2, as an example, a simple computation leads to

En(s,2,k) =
[

1

(N − s + 1)3p3(k,s)
+ 6(N − s) − 1

(N − s + 1)3p2(k,s)
+ 4(N − s)(N − s − 2)

(N − s + 1)3p(k,s)
+ 2(N − s)(1 − 2N + 2s)

(N − s + 1)3

]
× p4(k,s)

≈
[

1

〈n(k,s)〉3
+ 6(N − s) − 1

(N − s + 1)〈n(k,s)〉2
+ 4(N − s)(N − s − 2)

(N − s + 1)2〈n(k,s)〉
]

× p4(k,s), (15)

where for simplicity N − s + 1 ∼ N is used. If N keeps unchanged, the value of 〈n(k,s)〉 will increases proportionally with
p(k,s). Hence, a large value of p(k,s) means a large standard deviation of ẑn(s,q).

B. Unbiased estimation of partition functions with positive integer q

Hence, the key problem is how to estimate the partition function z(s,q) in Eq. (5) as precise as possible, i.e., to reduce the
bias and statistical fluctuations simultaneously to minima. Let us consider first the case of q being a positive integer. Herein we
will show that the goal can be realized by replacing the moment nq(k,s) with a q-order factorial moment [79–82], which reads,

Fq[n(k,s)] = n(k,s)[n(k,s) − 1][n(k,s) − 2] . . . [n(k,s) − q + 1]. (16)
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The statistical average of the factorial moment reads (p(k,s) and n(k,s) are denoted with p and n respectively, for simplicity),

〈Fq(n)〉 = 〈n(n − 1) . . . (n − q + 1)〉

=
N−s+1∑

n=0

n!

(n − q)!

(N − s + 1)!

n!(N − s + 1 − n)!
pn(1 − p)N−s+1−n

=
N−s+1∑

n=0

(N − s + 1)!

(n − q)!(N − s + 1 − n)!
pn(1 − p)N−s+1−n. (17)

Because the terms with n < q equal to zero, we can define w = n − q and rewrite the average of n(n − 1) . . . (n − q + 1) with

〈Fq(n)〉 =
N−s+1−q∑

w=0

(N − s + 1)!

w!(N − s + 1 − w − q)!
pw+q(1 − p)N−s+1−w−q = (N − s + 1)!

(N − s + 1 − q)!
pq. (18)

Accordingly, by using the factorial moment we have an unbiased estimation of partition function, which reads,

ẑf (s,q) =
K(s)∑
k=1

(N − s + 1 − q)!

(N − s + 1)!
n(k,s)[n(k,s) − 1] . . . [n(k,s) − q + 1] ≡

K(s)∑
k=1

ẑf (s,q,k). (19)

Estimations of ẑf (s,q) with different samplings will distribute randomly around the perfect value of partition function. As
discussed in the remarks in subsection D, this kind of unbiased estimation of partition function values at different scales s can
guarantee a minimum-variance mean-unbiased estimation of the slope of ln ẑf (s,q) versus ln s by using the ordinary least-square
(OLS) regression method.

To evaluate the performance of this factorial-moment-based estimation, besides the statistical average’s being unbiased
we should also know its variance. Herein we derive the variances for the terms in ẑf (s,q). Defining a set of integers A =
(a1,a2, . . . ,aQ), we have a simple fact that reads,

Q∏
j=1

[n(k,s) + aj ] =
Q∑

m=0

C(m)nQ−m(k,s), (20)

where

C(0) = 1

0!
= 1, C(m) =

∑Q
j1 
=j2 
=···
=jm=1 aj1aj2 . . . ajm

m!
, m = 1,2,3, . . . ,Q, (21)

based upon which one has the variance of the quantity defined in Eq. (20),

ef (s,Q,k) ≡
〈{ Q∏

j=1

[n(k,s) + aj ] −
〈 Q∏

j=1

[n(k,s) + aj ]

〉}2〉

=
Q∑

m1,m2=0

C(m1)C(m2)〈n2Q−m1−m2 (k,s)〉 −
Q∑

m1,m2=0

C(m1)C(m2)〈nQ−m1 (k,s)〉〈nQ−m2 (k,s)〉

=
Q∑

m1,m2=0

C(m1)C(m2)

⎧⎨
⎩

2Q−m1−m2∑
j=0

(N − s + 1)!S(2Q − m1 − m2,j )

(N − s + 1 − j )!
pj (k,s)

−
Q−m1∑
j1=0

Q−m2∑
j2=0

[(N − s + 1)!]2S(Q − m1,j1)S(Q − m2,j2)

(N − s + 1 − j1)!(N − s + 1 − j2)!
pj1+j2 (k,s)

⎫⎬
⎭

= [(N − s + 1)!]2

[(N − s + 1 − Q)!]2

Q∑
m1,m2=0

C(m1)C(m2)

⎧⎨
⎩

2Q−m1−m2∑
j=0

[(N − s + 1 − Q)!]2S(2Q − m1 − m2,j )

(N − s + 1)!(N − s + 1 − j )!
pj (k,s)

−
Q−m1∑
j1=0

Q−m2∑
j2=0

[(N − s + 1 − Q)!]2

(N − s + 1 − j1)!(N − s + 1 − j2)!
S(Q − m1,j1)S(Q − m2,j2)pj1+j2 (k,s)

⎫⎬
⎭

062201-5



QIU, YANG, YIN, GU, AND YANG PHYSICAL REVIEW E 94, 062201 (2016)

≈ [(N − s + 1)!]2

[(N − s + 1 − Q)!]2
p2Q

Q∑
m1,m2=0

C(m1)C(m2)

⎧⎨
⎩

2Q−m1−m2∑
j=0

S(2Q − m1 − m2,j )

〈n(k,s)〉2Q−j
−

Q−m1∑
j1=0

Q−m2∑
j2=0

S(Q − m1,j1)S(Q − m2,j2)

〈n(k,s)〉2Q−j1−j2

⎫⎬
⎭. (22)

The statistical fluctuation of the kth term in ẑf (s,q) can be calculated as

Ef (s,q,k) =
[

(N − s + 1 − q)!

(N − s + 1)!

]2

ef (k,s)|(a1,a2,...,aQ)=(0,−1,−2,...,−q+1), (23)

where for simplicity N � j,j1,j2,Q are used. If N keeps unchanged, the value of 〈n(k,s)〉 will increases proportionally with
p(k,s). Hence, a large value of p(k,s) implies a large standard deviation of ẑf (s,q).

C. Unbiased estimation of partition functions with noninteger q

In this part, based upon Eq. (19) we propose an unbiased
estimation of partition functions with noninteger q. First, we
employ the best square approximation [103] to mimic the term
pq(k,s) in the partition functions, which is formulated as an
optimization problem. The approximation expression reads,

pq ∼
I∑

i=0

bip
i,

(24)
p = p(k,s), k = 1,2, . . . ,K(s),

where bi,i = 0,1,2, . . . ,I are expansion coefficients. To de-
termine the expansion coefficients, we define the summation
of the squares of residuals as

F (b0,b1,b2, . . . ,bI ) =
∫ 1

pmin

(
pq −

I∑
i=0

bip
i

)2

dp, (25)

where pmin is set to be sure the integrals in the following
procedure are finite. The expansion coefficients are selected to
make the function F (b0,b1,b2, . . . ,bI ) reach minima, which
requires

∂F (b0,b1,b2, . . . ,bI )

∂bi

= 0, i = 0,1,2, . . . ,I. (26)

A simple computation leads to the values of the expansion
coefficients,

bi =
I∑

j=0

[C−1]ij [D]j , (27)

where the elements of the matrices C and D read,

Cij =
∫ 1

pmin

pi+j dp = 1 − p
i+j+1
min

i + j + 1
,

Di =
∫ 1

pmin

pq+idp = 1 − p
i+q+1
min

q + i + 1
,

i = 0,1,2, . . . ,I ; j = 0,1,2, . . . ,I. (28)

In numerical calculations, the contribution of the terms with
n(k,s) = 0,k = 1,2, . . . ,K(s) are neglected. Consequently, a
proper selection of pmin is 1

N−s+1 , though for q > 0 it can be
assigned simply to be zero.

Second, inserting the approximation in Eq. (24) into the
partition functions in Eq. (5), one has

z(s,q) =
K(s)∑
k=1

I∑
i=0

bip
i(k,s) =

I∑
i=0

bi

K(s)∑
k=1

pi(k,s). (29)

By using the unbiased estimation ẑf (s,q) in Eq. (19), we
obtain the unbiased estimation of partition functions with

noninteger q,

Ẑf (s,q) =
I∑

i=0

bi ẑf (s,i)

=
I∑

i=0

bi

K(s)∑
k=1

n(k,s)

N − s + 1

n(k,s) − 1

N − s
. . .

n(k,s) − i + 1

N − s + 2 − i

=
K(s)∑
k=1

[
I∑

i=0

bi

n(k,s)

N − s + 1

n(k,s) − 1

N − s
. . .

n(k,s) − i + 1

N − s + 2 − i

]

≡
K(s)∑
k=1

Ẑf (s,q,k). (30)
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Obviously, when q is an integer, Ẑf (s,q) degenerates to
ẑf (s,q) in Eq. (19).

As a brief summary, we propose in this work a procedure
to evaluate multifractal behaviors embedded in a very short
(stationary) time series, herein called FM-based evaluation of
multifractals. The algorithm is realized with four steps.

Step 1: Map the time series to a stochastic process. Let a
window with size s slide along the original stationary time
series with length N . The covered segments form an ensemble
of a stochastic process containing a total of N − s + 1
realizations (trajectories), as shown in Eq. (2);

Step 2: Find the distribution of the stochastic process. We
calculate the summation of the elements in every segment,
called displacement of the corresponding trajectory. Then one
can find the distribution interval of all the displacements and
divide it into a total of K(s) bins. The width of a bin is selected
to be a certain fraction (e.g., 1

2 ) of the standard deviation of
the initial time series. The distribution can be estimated by the
number of displacements that occur in every bin, denoted with
n(k,s),k = 1,2, . . . ,K(s) [see Eqs. (3) and (4)];

Step 3: Calculate the FM-based estimation of partition
function (an unbiased estimation). Let us specify first the
values of q, e.g., 0.50,0.55,0.60, . . . ,5.0. For each value of
q, given an approximation precision in Eq. (24) (e.g., 10−6),
one can determine the minimum expansion order, I , that makes
the approximation errors for all the pq(k,s),k = 1,2, . . . ,K(s)
are within the predefined precision, from which the values of
expansion coefficients b0,b1, . . . ,bI can be determined further
by using Eq. (27). The partition functions with different values
of q can be estimated by using Eq. (30);

Step 4: Evaluation of multifractals. We select different
values of window size s and for each specific value of s

iterate Step 1 to Step 3. This procedure will generate curves of
ln Ẑf (s,q) versus ln(s) with different values of q. If the curves
obey power law, the multifractal spectrum can be calculated
straightforwardly according to Eqs. (6) to (8).

D. Several remarks

The integer-q-order factorial moment is initially designed
to discover dynamical behaviors embedded in records of high-
energy collision experiments [79–82]. The standard scheme
of the approach contains four steps. First, let us collect all
the experiments and divide the phase space occupied by
the produced particles into L(s) bins with a window size
of s each. For every experiment we count the number of
particles occurring in each bin of the phase space, denoted with
nr (k,s), where r = 1,2, . . . ,R are a total of R experiments,
and k = 1,2, . . . ,K(s) the total of K(s) bins. Second, by
using ẑf (s,q) in Eq. (19) we calculate the unbiased estimation
of partition function for every experiment, denoted with
ẑr
f (s,q),r = 1,2, . . . ,R. Third, the statistical average over all

the experiments, i.e., 〈ẑf (s,q)〉 = 1
R

× ∑R
r=1 ẑr

f (s,q), is used
to approximate the partition function. Fourth, iteration of the
above three steps with different window size s and the order q

will generate curves of ẑf (s,q) versus s for each specified q. If
the curves obey power law, the dynamical process behaves
intermittently (multifractal). A large amount of works on

high-energy collision experiments show that R = 20 ∼ 30 can
guarantee high performance of the factorial moment approach
[81,82].

An analogous procedure to detect multifractals in time
series requires also an average procedure over a certain number
of time series. However, this requirement cannot be fulfilled
in most cases. For instances, the dynamical process of an
earthquake produces only a single time series. An alternative
way of statistical average is to separate a single time series
into R parts as being a bundle of realizations. Obviously, it
requires the time series being long enough, which is not the
focus of the present work.

As described in the algorithm mentioned above, for a single
short time series, we employ simply Ẑf (s,q) in Eq. (30) to
estimate the partition functions, i.e., no statistical average
is conducted. Fortunately, we are interested in the scaling
behavior, namely, the slope of ln Ẑf (s,q) versus ln(s). It is
well-known that the ordinary least-square regression (OLS)
method can provide a minimum-variance mean-unbiased
estimation of the slope, if the errors for different points
of s are homoscedastic and serially uncorrelated [104]. In
this paper, we use the OLS method to estimate the scaling
exponents, which guarantees a reliable result, even though
we have only a single unbiased estimation of Ẑf (s,q) at
each specific point of s. The key factor leading to bias in
the scaling exponent is the bias in estimations of partition
function, which has been solved successfully by the FM-based
estimation.

The confidence interval of the estimated scaling exponent
is mainly determined by the errors of partition functions at
different points of s, which can be roughly measured by
the variance of Ẑf (s,q). Here we assume that the terms,
Ẑf (s,q,k) with k = 1,2, . . . ,K(s), are independent of each
other, namely, a total of K(s) independent stochastic variables.
We denote their distribution functions and the corresponding
standard deviations with W [Ẑf (s,q,k)] and σ (s,q,k),k =
1,2, . . . ,K(s), respectively. Obviously, the standard deviation
of the mean of the stochastic variables will be

σ (s,q) =
√∑K(s)

k=1 σ 2(s,q,k)

K(s)
= 〈σ (s,q,k)〉k√

K(s)
, (31)

where 〈·〉k is the statistical average over k. Hence, the
summation in calculation of Ẑf (s,q) will reduce the standard
deviation of the estimated partition function by 1√

K(s)
.

As shown in Eq. (13), the bias in the basic estimation
ẑn(s,q) will be unreasonably large when the average 〈n(k,s)〉
is very small. While the standard deviations in the basic
estimation ẑn(s,q) and the FM-based estimation Ẑf (s,q) will
be significantly large when p(k,s) is large. At the beginning the
number of bins K(s) is small and the occurring probabilities in
the bins are large, and subsequently the statistical fluctuations
are ignorable. While for s becoming large, the displacements
will distribute in a wide range that implies the average
occurring number in each bin is small. The number of bins K(s)
becomes subsequently large, which can reduce the standard
deviation as shown above.
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E. Standard tools for evaluating multifractals

The performance of the FM-based evaluation of multifrac-
tals is compared with the well-established tools in literature,
including the wavelet transform modulus maxima (WTMM)
and the multifractal detrended fluctuation analysis (MF-DFA).

Let us start from a nonstationary time series, θ =
{θ1,θ2, . . . ,θN }. In the MF-DFA method [53,105–108], one
constructs first from the initial time series a profile, whose ith
element is the summation of the elements from θ1 to θi , namely,
	i = ∑i

j=1 θj ,i = 1,2, . . . ,N . Second, separating the profile

into a total of M(s) = int[N
s

] nonoverlapping segments with
a predefined window size s and fitting every segment with
a polynomial function, the resulting curves are regarded as
trends for their corresponding segments. Here int[·] is the
roundoff number. Subtracting the trends from the profile
results in a stationary series, 	s = {	s

1,	
s
2, . . . ,	

s
sM(s)}. If

the partition function behaves power law, i.e.,

Ẑmfdfa(s,q) ≡ 1

M(s)s

M(s)s∑
i=1

∣∣	s
i

∣∣q ∼ sκ(q), (32)

the initial series behaves multifractals. In calculations, the
order of the polynomial function is selected to be 2.

In the WTMM method [29,109–111], one should select
a proper wavelet ψ( i−b

s
) and let it slide along the series θ ,

namely, b = 0,1,2, . . . ,N . At every specific value of b, we
calculate the wavelet transform coefficient, which reads

ηb(s) =
N∑

i=1

ψ

(
i − b

s

)
θi . (33)

All the coefficients forms a series {η1(s),η2(s), . . . ,ηN (s)}.
Finding all the coefficients at which the coefficient reaches
local maxima, denoted with {ηmax

1 (s),ηmax
2 (s), . . . ,ηmax

V (s)},
where V is the total number of local maxima, the partition
function is defined to be

Ẑwtmm(s,q) ≡
V∑

i=1

[
ηmax

i (s)
]q

. (34)

For a multifractal series, it satisfies a power law, Ẑwtmm(s,q) ∼
sχ(q). In our calculations the wavelet is selected to be the second
differential of Gaussian function, which can eliminate the trend
in the series θ up to the second order.

As for the window size, because we are interested
in scaling behaviors, the scale ranges, for instance, of
20–21, 21–22, 22–23, and 23–24 should have the same contri-
butions in estimating the scaling exponents (τ (q), κ(q), and
χ (q)). The window sizes are selected to be s = [1.1m],m =
1,2, . . . , where [·] is the integer part of a real number. If we
plot the curve of logarithm value of partition function versus
logarithm value of window size s, the points are distributed at
almost identical intervals along the log(s) axis. Accordingly, in
the least-square estimate of the scaling exponents, all the scales
contain almost the same number of points and consequently
have identical contributions.

III. MATERIALS

A. Probability redistribution model

The performance of our method is confirmed by multifrac-
tals generated with the probability redistribution (PRD) model.
Let us define a vector as generator, which reads,

G
β

0 = [β,1 − β], 0 � β � 1. (35)

At each generation, every element (probability) is redistributed
into two new elements according to the generator, namely,

G
β

1 = [1] ⊗ G
β

0 = [β,1 − β],

G
β

2 = G
β

1 ⊗ G
β

0 = [β2,(1 − β)β,β(1 − β),(1 − β)2],

. . .

Gβ
g = G

β

g−1 ⊗ G
β

0 . (36)

At the gth generation, the initial probability is separated into
2g subelements. To cite an example, if the generator is se-
lected to be [0.3,0.7], one has G0.3

2 = [0.3,0.7] ⊗ [0.3,0.7] =
[0.32,0.7 × 0.3,0.3 × 0.7,0.72]. The generated probability
distribution G

β
g behaves exactly multifractal, whose elements

are denoted with G
β
g (k),k = 1,2, . . . ,2g .

We sample according to the uniform distribution N times
and reckon the number of the samplings occurring in the
intervals of [

0,Gβ
g (1)

]
,(

Gβ
g (1),Gβ

g (1) + Gβ
g (2)

]
,

. . .(
m∑

i=1

Gβ
g (i),

m+1∑
i=1

Gβ
g (m + 1)

]
,

. . . ;(
2g−1∑
i=1

Gβ
g (i),

2g∑
i=1

Gβ
g (i)

]
, (37)

respectively, denoted with �ng = [n1,n2, . . . ,n2g ]. The vector
�ng is a realization of the perfect multifractal G

β
g .

B. Gait time series

Two empirical records are investigated. The first case is
to monitor the evolution of scaling invariance embedded in
gait time series. The data is downloaded from the famous
website www.physionet.org. The experiment recorded gaits
for a total of ten young healthy volunteers [112,113], denoted
with si01,si02, . . . ,si10, respectively. Here “health” implies
that the participants have no history of any neuromusucular,
respiratory, or cardiovascular disorders and are taking no
medication. The ages are from 18 to 29 years. The height
and weight center at 177 cm and 71.8 kg, with standard
deviations of 8 cm and 10.7 kg, respectively. All the subjects
walk continuously on level ground around an obstacle-free,
long either 225- or 400-m, approximately oval path. The stride
interval is measured by using an ultrathin, force-sensitive
switch taped inside one shoe. Each subject walks for four
trials, including slow, normal, fast, and metronome-regulated.
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C. Shanghai stock market index series

The second case is to detect multifractal behaviors of
the Shanghai stock market, embedded in the closing stock
price series [114]. A series containing a total of 5350
closing stock prices is collected which covers a duration of
21 years from 1995 to 2015. The time series is separated
into seven parts covering three years each, denoted with
95–97,98–00,01–03,04–06,07–09,10–12, and 13–15, respec-
tively. We will focus our attention on the comparison of
multifractal behaviors between the different periods. To avoid
trend effect on the calculated results, the daily return series is
employed, which is defined herein as

rk = log2 Ok+1

log2 Ok

, k = 1,2, . . . ,D − 1, (38)

where Ok is the closing stock price at the kth day, and D the
total records in the considered series.

FIG. 1. Bias and fluctuation in estimation of pq with positive
integer q. For every specified probability a total of 300 samplings
are used to generate a realization. Each bias and each standard
deviation are calculated over 50 000 realizations. Curves with q = 2
are shown as typical results. (a) Biases for the basic and the FM-based
estimations. The basic estimation leads to significant bias, while the
bias is eliminated in the FM-based estimation. (b) Standard deviations
for the basic and FM-based estimations.

IV. RESULTS

A. Performance of FM-based evaluation of pq

The key contribution of the present work is the explicit ex-
pression of Ẑf (s,q,k) in Eq. (30), i.e., an unbiased estimation
of pq(s,k). As a first step, we compare its performance with
that of the basic estimation, ẑn(s,q,k) ≡ [ n(k,s)

N−s+1 ]
q
, as defined

in Eq. (5). Specifying a probability p, let us generate a total of
N random numbers uniformly distributed in the interval [0,1],
and reckon the number of the values occurring in the interval
of [0,p], herein called a realization. Obviously, the realization
obeys a binomial distribution.

Figure 1 presents the biases and the standard deviations
for the basic and the FM-based estimations of pq with
integer q. Here the curves for q = 2, N = 300 are shown
as a typical result. The statistical averages are conducted
over 50 000 realizations. One can find from Fig. 1(a) that
the calculated bias for the basic estimation increases with
probability, while that for the FM-based estimation oscillates
with small amplitudes around the probability axis (zero).
The calculated bias are all consistent with the theoretical

FIG. 2. Bias and fluctuation in estimation of pq with positive
noninteger q. Curves for q = 0.5,2.8, and 4.1 are shown as typical
examples. For each specified probability a total of 300 samplings are
used to generate a realization. Each bias and each standard deviation
are calculated over 50 000 realizations. (a) Biases for the basic and
the FM-based estimations. The basic estimation leads to significant
bias, while the bias is eliminated in the FM-based estimation; (b)
standard deviations for the basic and the FM-based estimations.
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FIG. 3. A typical example of multifractal generated with the
probability redistribution (PRD) model. Black curve: probability
distribution of G0.3

10 produced with G
β

0 = [0.3,0.7] and g = 10. Red
open circle: a realization with N = 600 samplings.

predictions. The standard deviations for the two estimations are
almost the same and increase monotonically with probability
[see Fig. 1(b)]. Analogous results with noninteger q are shown
in Fig. 2 (q = 0.5, 2.8, and 4.1).

B. Performance of FM-based evaluation of multifractals

By using the PRD model one can generate a perfect
multifractal G

β
g . Figure 3 shows the structure of G0.3

10 . A
realization with N = 600 is also provided with the open red
circles.

Figure 4 depicts estimations of partition functions for
multifractals generated with the generators G

β

0 = [0.3, 0.7]
and G

β

0 = [0.4, 0.6], the total number of samplings N =
300, 600, and the number of generations g = 10. To make
the illustration be consistent with that for multifractals in time
series, we convert the generation to a window size, defined
as being the reciprocal of the total number of probabilities
in the generation, denoted with win. For instance, in the
4th generation there are 24 probabilities, the corresponding
window size is win = 1

24 . With the increase of generation,
namely, the initial probability is redistributed into many
probabilities, the basic estimation will deviate significantly
from the exact value. The deviation will become much larger
when β in G

β

0 = [β, 1 − β] becomes closer to 0.5, namely,
the probability distribution is comparatively homogenous.
While the FM-based estimation keeps very close to the exact
value. The averages and deviations are calculated over 1000
realizations.

From the partition functions for four single realizations
(N = 300, 600, G

β

0 = [0.3,0.7], [0.4,0.6], and g = 10), one
can obtain the relations of τq versus q, and the multifractal
spectra (see columns (a), (b), and (c) in Fig. 5, respectively).
The FM-based estimations of τq versus q and D(h) versus h are
very close to or even coincident exactly with the theoretical
curves. On the contrary, the basic estimations will lead to
significant errors, or even mistakes. Here we fit the partition

FIG. 4. Four typical estimations of partition functions for multi-
fractals generated with the probability redistribution (PRD) model.
Corresponding to the gth generation, we define the window size win

as being the reciprocal of the total number of probabilities contained
in Gβ

g , namely, 1
2g . Statistics are conducted over 1000 realizations.

(a1) G
β

0 = [0.3,0.7], N = 300, g = 10. (a2) G
β

0 = [0.4,0.6], N =
300, g = 10. (b1) G

β

0 = [0.3,0.7], N = 600, g = 10. (b2) G
β

0 =
[0.4,0.6], N = 600, g = 10. With the increase of generation, the
basic estimation will deviate significantly from the exact value.
The deviations for G

β

0 = [0.4,0.6] are larger than the corresponding
values for G

β

0 = [0.3,0.7]. While the FM-based estimation keeps very
close to the exact value.

functions with the power-law function no matter if there exists
significant biases or not. The curve of τq versus q obtained
with the basic estimation will bend down in a comparatively
significant way with the increase of q. Consequently, the
basic estimation will give unreasonably wider distribution of
fractal dimension (�h) at the left side of the spectrum, that
corresponds to the components extracted with larger values
of q.

C. Evolution of multifractals in gait time series

As a typical example, we consider here the fast, nor-
mal, and slow trials for the volunteer numbered si09. The
metronome-regulated trial is not shown, because it behaves
simply random (Hurst exponent is 0.5). From each gait series
we extract five segments, which cover the elements 1–500,
501–1000, 1001–1500, 1501–2000, and 2001–2500, denoted
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FIG. 5. Evaluation of multifractal spectrum from a single realization of the probability redistribution (PRD) model. Partition functions
with q = 0.5, 2.0, 2.8, and 4.1 are shown as typical examples. The relations of partition function versus window size, τq versus
q, and multifractal spectrum [D(h) versus h] for four single realizations are displayed in rows (a), (b), (c), and (d), respectively.
(a1–a3) N = 300, G

β

0 = [0.3, 0.7],g = 10; (b1–b3) N = 600, G
β

0 = [0.3, 0.7], g = 10; (c1–c3) N = 300, G
β

0 = [0.4, 0.6], g = 10; (d1–d3)
N = 600, G

β

0 = [0.4, 0.6], g = 10. The window size is defined to be the reciprocal of the number of probabilities in the generated probability
distribution Gβ

g , namely, win = 1
2g .

with seg-1,seg-2,sge-3,seg-4, and seg-5, respectively (see
Fig. 6 for details).

Figures 7(a1)–(a5), 7(b1)–(b5), and 7(c1)–(c5) provide the
partition functions for the fast, normal, and slow series. The
shapes of partition function with different values of q are
qualitatively similar. A larger value of q will simply enlarge
the differences between the values in a curve. Hence we show
only the curves for q = 0.5 and 2.3 as being representatives
(the red circles). One can find that the partition functions obey

power law in considerable wide scales (from 20 to 25.7 ∼ N
10

or even to 26.8 ∼ N
5 ).

As for the relations between τq and q (see Fig. 7(d1)–(d3),
one can find that only the points for q > 1 can be fitted with
the Eq. (8) very well, while that for q < 1 are significantly
larger than the calculated points with the fitting function (the
points are above the calculated values). How to understand the
part for q < 1 is still an open problem to be fixed with much
more data and detailed analysis.
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FIG. 6. Gait time series for the volunteer numbered si09.
The fast, normal, and slow trials are shown. From each triv-
ial we extract five successive segments covering the records
1–500, 501–1000, 1001–1500, 1501–2000, and 2001–2500, denoted
with seg-1,seg-2,seg-3,seg-4, and seg-5, respectively.

The multifractal spectra for the fast, normal, and slow
series (containing five segments each) are displayed in
Figs. 7(e1)–(e3), from which one can find that the multi-
fractal strength for the fast segments changes significantly,
while that for the normal and slow trials have similar
behaviors. The strengths for the three series distribute in
[0.04,0.47], [0.16,0.27], and [0.13,0.29], respectively.

D. Multifractals in stock index series

The collected stock index series from the year 1995
to the year 2015 is separated into seven succes-
sive durations covering three years each, denoted with
95–97, 98–00, 01–03, 04–06, 07–09, 10–12, and 13–15, re-
spectively (see Fig. 8 for details on the original series and the
return series). In the two durations 95–97 and 07–09 occurred
the famous Asia financial crisis in the year 1997 and the global
financial crisis in the year 2008.

Figures 9(a1)–(a7) provide the partition functions with
q = 0.5 and 2.8 as typical examples. One can find that the
partition functions versus window size obey power-law with
different slopes in considerable wide scales (red circles).
Interestingly, in the two durations when crises occurred, i.e.,
95–97 and 07–09 the partition function versus window size
obey comparatively much perfect power law and in much
larger scales (up to 27.8 ∼ 222, a length covering about one
year, i.e., one-third of the whole series length), as presented in
Figs. 9(a2) and 9(a5).

As for the relations between τq and q (see Figs. 9(b1)–(b4),
one can find that they behave similar with that of the gait
time series. The points for q > 1 can be fitted with the
Eq. (8) very well, while that for q < 1 are significantly larger
than the calculated points with the fitting function. Much
more data and detailed analysis are required to fix this open
problem.

The multifractal spectra for the seven durations are dis-
played in Fig. 8(c), from which one can find that all the

series have large multifractal strengths, values of which are
0.99, 0.68, 0.99, 0.70, 0.63, 1.35, and 1.0 for the successive
durations from 95–97 to 13–15, respectively. In the crisis
duration 07–09 the multifractal strength becomes the weakest,
namely, the local hurst exponents corresponding to q distribute
in the sharpest range, while that for the following duration
10–12 has the widest distribution, which is regarded here
as the intermediate state. The behaviors for the duration
04–06 (before crisis) and the duration 98–00 (after crisis) are
very similar with that for the extreme case in the duration
07–09, all of which form a crisis-cluster. The behaviors for
the other durations far from crises (95–97, 01–03, 13–15)
are very similar and they form a distinguished normal
cluster.

E. Comparison with the well-established tools

In Figs. 7 and 9, for every series segment we calculate
also the partition functions with three well-established tools,
including the WTMM, the MF-DFA, and the basic estimation.
The FM-based estimation can capture the scaling behaviors
of the partition functions in a considerable wide range from
20 to 25.7 ∼ N

10 or even to 26.8 ∼ N
5 for the gait time series

(N = 500), and from 20 to 26.7 ∼ N
5 or even to 27.8 ∼ N

3 for
the closing price series of the Shanghai stock market (N ∼
670), as mentioned above. The scale covers about 6 or even
8 generations. And the estimated values of partition function
for every segment scattered closely around a power-law line.
Here a generation is defined to be the doubling of the window
size.

The MF-DFA-based estimations can detect the scaling
behaviors only when the window size is larger than 23, i.e., the
third generation. On the contrary, the basic estimation fails at
the larger window sizes, where the curves bend down and can
not detect qualitatively the scaling invariance.

To reach a reliable conclusion on existence of a scaling
invariance, the key criterion is to find a reasonably wide range
of scale in which the partition functions behave power law.
The scale ranges, for instance, of 20–21, 21–22, and 23-24 are
equivalent in the criterion. Hence, the generations covered by
the scale range is much more important than the maximum
scale the range reaches. Comparing with the MF-DFA and the
basic estimation, the FM-based estimation can detect scaling
invariance in a wide range of scale about three generations
larger. It is a significant improvement of performance for very
short time series.

As for the WTMM-based estimations, for all the segments
they have unacceptable large fluctuations over all the genera-
tions of scale.

This advantage of FM-based estimation over the other stan-
dard tools is verified further by fractional Brownian motions
(fBm). Figures 10(a1) and 10(a2) show the partition functions
with q = 0.6, 2.8 and Hurst exponent H = 0.65, 0.75 as
typical examples (length is selected to be 500). Similar
evidences are found, namely, the FM-based estimation obey
almost a perfect power law in a wide scale covering more
than four generations, while the MF-DFA method can capture
the scaling behaviors only in the scales larger than 23 that
cover about two generations. The values of partition function
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FIG. 7. Evolution of multifractals in gait series for the volunteer numbered si09. (a1–a5), (b1–b5), and (c1–c5) The partition functions for
the fast, normal, and slow series, respectively. The curves with q = 0.5 and 2.3 are provided as representatives. The basic, FM-based, WTMM,
and MF-DFA estimations are shown with the blue open circles, red open circles, gray open circles, and black solid circles, respectively. For
visual convenience, the logarithm of partition function is rescaled with �. For the basic and FM-based method � = q − 1, while for the
WTMM and MF-DFA, � = q; (d1–d3) The relations of τq versus q; (e1–e5) The multifractal spectra for the fast, normal, and slow series
(containing five segments each).

062201-13



QIU, YANG, YIN, GU, AND YANG PHYSICAL REVIEW E 94, 062201 (2016)

(a)

(b)

FIG. 8. Closing price series and return series for the Shanghai
stock market. (a) The closing price series; (b) The corresponding
return series. The time series covers a 21-year duration from
1995 to 2015, which is partitioned into seven segments covering
three years each, denoted with 95–97, 98–00, 01–03, 04–06, 07–09,

10–12, 13–15, respectively.

estimated with WTMM scattered around a power-law curve
with unacceptable large fluctuations.

Figures 10(b1), 10(b2), 10(c1), and 10(c2) provide the
distributions of the estimated scaling exponents τq (rescaled
for visual convenience). For each specified value of H we
generate a total of 1000 fBm series and calculate the partition
functions, from which one can evaluate the scaling exponents.
Because the generated series are mono-fractals, the estimated
values should distribute with the specified values of H as
being the centers, respectively. The red curves (FM-based
estimation) are the results fitting in the scale ranges of 20–23.5

(open circles) and 20–24.5 (solid circles), which turn out to be
very close and their averages are very close with the expected
values (H ). The black curves (MF-DFA-based estimation) are
the results fitting in the scale ranges of 22–25 (open circles)
and 23–25 (solid circles). The part in the scale range of 22–23

leads to a unreasonably large estimations of scaling exponents.
Hence, FM-based estimation can capture the scaling behaviors
in much wider a scale range.

V. CONCLUSION AND DISCUSSION

In summary, multifractal exists in a large amount of series
and has been making great contributions in diverse research
fields. Some powerful methods such as the WTMM and the
MF-DFA have been developed in literature. The tools require
generally an infinite length (at least large enough a length)
of time series. In reality, we have a finite number of records,
which may lead to unacceptable errors or even mistakes to
estimation of multifractals. How to evaluate exactly multi-
fractal spectrum from a short time series is still an open
problem.

In this paper, by means of approximation theory we propose
a new method called continuous order FM-based estimation of
multifractal. It is theoretically predicted and computationally

confirmed that it can provide an unbiased estimation of
partition functions, while its standard deviation is almost the
same with that for the basic estimations. It can give almost
exactly scaling behaviors embedded in very short time series
with several hundred length.

Comparing with the well-established tools one can find that
the continuous order FM can evaluate correctly the scaling
behaviors in a wide scale (starting from 20) about three
generations larger than that of the MF-DFA, in which the scale
starts from 23. The basic estimation method fails in detecting
the scaling behaviors at large scales (the partition function
bends down). As for the WTMM, the estimated partition
function has unacceptable fluctuations in the whole scale.
It is a significant improvement of performance in detecting
multifractals in very short time series.

Two empirical cases are investigated as typical examples.
The first case is the gait time series for fast, normal, and
slow trials of a healthy volunteer. The series are separated
into five successive nonoverlapping segments with a 500
length each. It is found that the multifractal strength for the
fast trial changes abruptly, while that for the normal and
slow trials have similar behaviors. The second case is the
closing price series for Shanghai stock market. The series
is partitioned into seven successive periods covering three
years each. Interestingly, the period from 2007 to 2009, which
covers the famous global financial crisis occurring in 2008
is an extreme case with the weakest multifractal strength.
The periods after the Asian financial crisis (from 1998 to
2000) and before the global financial cris (from 2004 to 2006)
behave very similar with the extreme case, all of which form
a crisis-cluster. After the extreme case follows a relaxation
state with the strongest multifractal strength (from 2010 to
2012). While the other periods far from the crises, have
also almost the same behaviors, which form a normal state
cluster.

The key contribution in our work is that we develop a
method to estimate without bias the probability moments
of continuous order. It can be used to evaluate multifractals
embedded in short time series with a several hundreds
length as being the focus of the present work. However,
one can find its applications in various problems beyond the
measurement of scaling invariance. Actually, estimation of
probability moments is the base of several essential theories.
To cite examples, the continuous order FM can be used
straightforwardly to estimate the Tsallis entropy to show
nonextensive behavior of a complex system; to estimate
mutual entropy and transfer entropy between elements in
a complex system to find causality relationships between
each pair of elements. When we analyze multivariate time
series, finite number of records will lead to unreasonable bias
and fluctuations because the finite recordings will distribute
into bins whose number increases geometrically with variate
number. Hence, to conduct empirically multivariate time series
analysis, we should replace the basic estimation of probability
moments with the FM-based estimation.

It should be noted that the proposed factorial moment of
continuous order turns out to be valid only for positive order.
How to extend it to negative order is still an open problem to
be solved in future.
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FIG. 9. Evolution of multifractals in Shanghai stock market index series. (a1–a7) The partition functions for the segments numbered
95–97, 98–00, 01–03, 04–06, 07–09, 10–12, and 13–15, respectively. Curves with q = 0.5, 2, 2.8, 4.1 are shown as typical examples. The
basic, FM-based, WTMM, and MF-DFA estimations are shown with the blue open circles, red open circles, gray open circles, and black
solid circles, respectively. For visual convenience, the logarithm of partition function is rescaled with �. For the basic and FM-based method
� = q − 1, while for the WTMM and MF-DFA, � = q; (b1–b4) The relations between τq and q; (d1) The multifractal spectra for the seven
durations.
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FIG. 10. Comparison of performance by using fractional Brow-
nian motions. For each specified value of H we generate a total of
1000 fBm series and calculate the partition functions, from which
one can evaluate the scaling exponents. Series length is selected
to be 500. The red curves (FM-based estimation) are the results
fitting in the scale ranges of 20–23.5 (open circles) and 20–24.5 (solid
circles). The black curves (MF-DFA-based estimation) are the results
fitting in the scale ranges of 22–25 (open circles) and 23–25 (solid
circles). (a1–a2) The partition functions with q = 0.6, 2.8 and Hurst
exponent H = 0.65, 0.75 as typical examples. The distributions of
the estimated scaling exponents τq (rescaled for visual convenience)
are shown in (b1) H = 0.65, q = 0.6; (b2) H = 0.65, q = 2.8; (c1)
H = 0.75, q = 0.6; and (c2) H = 0.75, q = 2.8.
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APPENDIX

Before the derivation of the high-order moments, let us
introduce several definitions and theorems.

Binomial distribution function. Let us sample a total of
N times from the homogenous distribution in the interval of
[0,1] and reckon the number of the samplings occurring in
the interval [0,p] (0 < p < 1). The distribution of n obeys the
binomial distribution function, which reads,

P (n,p) = N !

n!(N − n)!
pn(1 − p)N−n. (A1)

The q-order moment reads,

〈nq〉 ≡
N∑

n=0

nqP (n,p) =
N∑

n=0

N !nq

n!(N − n)!
pn(1 − p)N−n.

(A2)

The Stirling numbers of the second kind. The Stirling
numbers of the second kind can be generated iteratively by
using the relation

S(m,l) = lS(m − 1,l) + S(m − 1,l − 1), (A3)

accompanying with the initial values, S(m � 1,0) =
0, S(0,0) = 1, and S(m � 0,m � 0) = 1.

By using the Stirling numbers of the second kind, the term
nq in Eq. (A2) can be expressed with an expansion [102],
which reads,

nq = S(q,0)[n]0 + S(q,1)[n]1 + · · · + S(q,q)[n]q

=
q∑

l=0

S(q,l)[n]l , (A4)

where [n]l ≡ n!
(n−l)! .

Accordingly, one can derive the q-order moment [115].
Herein we consider only the case of q being a positive integer
value:

〈nq〉 =
N∑

n=0

nq N !

n!(N − n)!
pn(1 − p)N−n

=
N∑

n=0

q∑
l=0

S(q,l)[n]l
N !

n!(N − n)!
pn(1 − p)N−n

=
q∑

l=0

N∑
n=0

S(q,l)l!
n!

l!(n − l)!

N !

n!(N − n)!
pn(1 − p)N−n

=
q∑

l=0

N∑
n=l

S(q,l)l!
n!

l!(n − l)!

N !

n!(N − n)!
pn(1 − p)N−n

=
q∑

l=0

S(q,l)l!
N∑

n=l

n!

l!(n − l)!

N !

n!(N − n)!
pn(1 − p)N−n

=
q∑

l=0

S(q,l)l!
N−l∑
r=0

(r + l)!

l!r!

N !pr+l(1 − p)N−r−l

(r + l)!(N − r − l)!

=
q∑

l=0

S(q,l)l!pl

N−l∑
r=0

(r + l)!

l!r!

N !pr (1 − p)N−r−l

(r + l)!(N − r − l)!

=
q∑

l=0

S(q,l)
N !

(N − l)!
pl

N−l∑
r=0

(N−l)!

r!(N−r−l)!
pr (1−p)N−r−l

=
q∑

l=0

S(q,l)
N !

(N − l)!
pl

=
q∑

l=0

S(q,l)[N ]lp
l. (A5)
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