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Energy spectrum of a Langevin oscillator
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We derive analytical solutions for the autocorrelation and cross-correlation functions of the kinetic, potential,
and total energy of a Langevin oscillator. These functions are presented in both the time and frequency domains
and validated by independent numerical simulations. The results are applied to address the long-standing issue
of temperature fluctuations in canonical systems.
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I. INTRODUCTION

The Langevin equation is widely used for the modeling
of stochastic processes in many fields of physics and various
branches of science and engineering [1]. In particular, the
equation can describe Brownian motion of a particle in a
harmonic potential well, often referred to as the Langevin
oscillator. While many properties of the Langevin oscillator
have been exhaustively studied over the past century, to
our knowledge the correlation functions and other statistical
characteristics of the oscillator energy have not been reported
so far.

The goal of this paper is to investigate the fluctuations of
the kinetic, potential, and total energy of a one-dimensional
Langevin oscillator. The results are presented in the form
of analytical expressions for the respective autocorrelation
functions (ACFs) and cross-correlation functions (CCFs) and
their frequency spectra. The paper heavily relies on the
formalism of spectral representation of stochastic processes.
Some of the basic formalism is reviewed in Appendix A. The
calculations are enabled by a product rule of pair correlation
functions presented in Appendix B. The correlation functions
reported in this work permit a clear separation of two different
time scales inherent in the Langevin model. This time scale
separation is a key to addressing the delicate, and still
controversial, issue of temperature fluctuations in systems
connected to a thermostat.

The Langevin equation for a one-dimensional harmonic
oscillator with a natural (resonant) frequency ω0 and a friction
coefficient (damping constant) γ has the form [2–4]

mẍ = −mγv − mω2
0x + R, (1)

where m is the particle mass, x is its deviation from equilib-
rium, v = ẋ is the velocity, and the random force (noise) R

satisfies the condition R̄ = 0. Here and everywhere below, the
bar denotes the canonical ensemble average. The variance of R

is adjusted to balance the friction force and achieve equilibrium
with the thermostat at a chosen temperature T0. The random
force pumps mechanical energy into the oscillator by incessant
tiny kicks and causes thermal fluctuations, whereas the friction
force dissipates this energy into heat.

*Corresponding author: ymishin@gmu.edu

Equation (1) is solved by spectral methods [2–4]. Taking
its Fourier transform we obtain

x̂(ω) = R̂(ω)/m

ω2
0 − ω2 + iγ ω

, (2)

where the hat marks a Fourier transform with the angular
frequency ω (see Appendix A). For the particle velocity we
have

v̂(ω) = iωx̂(ω) = iωR̂(ω)/m

ω2
0 − ω2 + iγ ω

. (3)

The random force R is considered to be a white noise, for
which

R̂(ω)R̂(ω′) = δ(ω + ω′)IR, (4)

where IR is a constant. Practically, this condition is satisfied
when the correlation time of R is much shorter than both
the vibration period 2π/ω0 and the damping time 1/γ . The
standard calculation of v2 and application of the equipartition
theorem leads to the fluctuation-dissipation relation [2–4]

IR = γmkT0

π
(5)

linking the noise power IR to the damping constant γ .
The Fourier transform Ĉxx(ω) of the position ACF Cxx(t) =

x(0)x(t) is obtained by inserting x̂(ω) from Eq. (2) into
Eq. (A11) (Wiener-Khinchin theorem, Appendix A):

x̂(ω)x̂(ω′) = R̂(ω)R̂(ω′)/m2(
ω2

0 − ω2 + iγ ω
)(

ω2
0 − ω′2 + iγ ω′)

= (IR/m2)δ(ω + ω′)(
ω2

0 − ω2 + iγ ω
)(

ω2
0 − ω′2 + iγ ω′)

= Ĉxx(ω)δ(ω + ω′), (6)

where

Ĉxx(ω) = γ kT0/πm(
ω2

0 − ω2
)2 + γ 2ω2

. (7)

A similar calculation gives the spectral form of the velocity
ACF:

Ĉvv(ω) = (γ kT0/πm)ω2

(
ω2

0 − ω2
)2 + γ 2ω2

, (8)
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where we used Eq. (3) for v̂(ω). The position-velocity CCF
Ĉxv(ω) is obtained in a similar manner using Eq. (A7) from
Appendix A:

Ĉxv(ω) = − i(γ kT0/πm)ω(
ω2

0 − ω2
)2 + γ 2ω2

. (9)

The correlation functions (7)–(9) are well known and
are only reproduced here as ingredients for the subsequent
calculations.

II. KINETIC ENERGY OF THE LANGEVIN OSCILLATOR

Our goal is to compute the ACF C�K�K (t) = �K(0)�K(t)
of the kinetic energy K = mv2/2 relative to its average value
K = kT0/2, where we denote �K = K − K . We first find the
spectral ACF Ĉ�K�K (ω) by applying the equations derived in
Appendix B. Taking a(t) = v(t), Eq. (B12) gives

Ĉ�K�K (ω) = m2

2

∫ ∞

−∞
Ĉvv(ω′)Ĉvv(ω − ω′)dω′. (10)

Inserting Ĉvv(ω) from Eq. (8) we have

Ĉ�K�K (ω) = (γ kT0)2

2π2

∫ ∞

−∞

ω′2(ω − ω′)2dω′
[(

ω2
0 − ω′2)2 + γ 2ω′2][(ω2

0 − (ω − ω′)2
)2 + γ 2(ω − ω′)2

] . (11)

The integral in Eq. (11) is evaluated by replacing ω′ by a
complex variable z and integrating the function

f (z) = z2(ω−z)2

[(
ω2

0−z2
)2 + γ 2z2

][(
ω2

0−(ω−z)2
)2 + γ 2(ω−z)2

]
(12)

along a semicircular closed loop C in the complex plane
[Fig. 1(a)]. This function has eight singularities, the following
four of which lie inside the loop:

a1 = −ω1 + iγ /2, a2 = ω1 + iγ /2,

a3 = ω − ω1 + iγ /2, a4 = ω + ω1 + iγ /2, (13)

where

ω1 =
√

ω2
0 − γ 2/4 (14)

and we assumed that ω0 > γ/2. Finding the residues at these
singularities and inserting them in the residue theorem we have

∮
C

f (z)dz = 2πi

4∑
i=1

Res(f,ai)

= 2π
ω4 + ω2

(
γ 2 − 3ω2

0

) + 4ω4
0

γ (γ 2 + ω2)
[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] . (15)

(a)

a1 a2a3 a4iγ

1ω1−ω 1ω−ω 1ω+ω

Imz

Rez

C

0

(b)

a1

a2

a3

a4
iγ

Imz

Rez

C

0 ω

FIG. 1. Integration loop for computing Ĉ�K�K (ω) using Eq. (11).
The four singularity points enclosed by the loop are indicated. (a)
ω0 > γ/2 and (b) ω0 < γ/2.

If ω0 < γ/2, then the four singularities enclosed by the loop
are [Fig. 1(b)]:

a1 = −iω2 + iγ /2, a2 = iω2 + iγ /2,

a3 = ω − iω2 + iγ /2, a4 = ω + iω2 + iγ /2, (16)

where

ω2 =
√

γ 2/4 − ω2
0, (17)

and the calculations give the same result as in Eq. (15). When
|z| → ∞, |f (z)| tends to zero as 1/|z|4 and the integral along
the arc vanishes, leaving only the integral from −∞ to ∞
along the real axis appearing in Eq. (11). We finally obtain the
spectral ACF of the kinetic energy:

Ĉ�K�K (ω) = γ (kT0)2

π

ω4 + ω2
(
γ 2 − 3ω2

0

) + 4ω4
0

(γ 2 + ω2)
[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] .

(18)

This function has three maxima: one at ω = 0 and two more
near ω = ±2ω0 [Fig. 2(a)].

If γ � ω0 (underdamped regime), then the maxima of
Ĉ�K�K (ω) are very sharp and separated by frequency gaps.
Near the central maximum we have |ω| � ω0 and Eq. (18)

(a)
0

ω
02ω0−2ω

CΔKΔK

(b)

0
ω02ω0−2ω

CΔKΔU

FIG. 2. Schematic plots of the kinetic energy autocorrelation
function (a) and kinetic-potential energy cross-correlation function
(b) of a Langevin oscillator in the frequency domain.
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gives a Lorentz peak of width γ :

Ĉ�K�K (ω) = γ (kT0)2

4π

1

γ 2 + ω2
. (19)

The ACF corresponding to this peak is

C�K�K (t) =
∫ ∞

−∞
Ĉ�K�K (ω)eiωtdω

= γ (kT0)2

4π

∫ ∞

−∞

eiωt

γ 2 + ω2
dω. (20)

The integral is readily computed using the residue theorem
with the same semicircular loop as before. The loop encloses
one singularity at a = iγ . The integral along the arc vanishes
and we obtain (assuming t > 0)

C�K�K (t) = (kT0)2

4
e−γ t . (21)

This function describes long-range fluctuations of K due to
energy exchanges with the thermostat.

Around the remaining maxima we have |ω ± 2ω0| � ω0,
and Ĉ�K�K (ω) can be approximated by

Ĉ�K�K (ω) = γ (kT0)2

8π

1

γ 2 + (ω ± 2ω0)2
. (22)

This is again a Lorentz function of width γ , except that the
height of these peaks is half of that at ω = 0. The ACF
corresponding to these peaks is found by inverse Fourier
transformation:

C�K�K (t) = γ (kT0)2

8π

∫ ∞

−∞

eiωt

γ 2 + (ω ± 2ω0)2
dω. (23)

We again apply the residue theorem using the same integration
loop. There are two singularities lying inside the loop,
a± = ±2ω0 + iγ , and we obtain (assuming t > 0)

C�K�K (t) = (kT0)2

4
e−γ t cos(2ω0t). (24)

The peak at ω = 2ω0 describes the kinetic energy variations
during quasiharmonic oscillations. Since the kinetic and
potential energies transform to each other twice per each
period, the frequency is 2ω0. The peak at ω = −2ω0 describes
physically the same process and only appears in the spectrum
to formally satisfy the definition of the Fourier transformation.

The general form of C�K�K (t) is obtained by inverse
Fourier transformation of Eq. (18):

C�K�K (t)= γ (kT0)2

π

∫ ∞

−∞

[
ω4+ω2

(
γ 2−3ω2

0

)+4ω4
0

]
eiωt

(γ 2+ω2)
[
4γ 2ω2+(

ω2−4ω2
0

)2]dω.

(25)

As usual, we apply the residue theorem. Suppose ω0 > γ/2.
Then the function

f (z) =
[
z4 + z2

(
γ 2 − 3ω2

0

) + 4ω4
0

]
eizt

(γ 2 + z2)
[
4γ 2z2 + (

z2 − 4ω2
0

)2]
has three singularities in the upper half-plane (Imz > 0):

a1 = iγ, a2 = iγ − 2ω1, a3 = iγ + 2ω1, (26)

a1a2 a3
iγ

12ω1−2ω

Imz

Rez

C

0

FIG. 3. Integration loop for computing ĈKK (t) using Eq. (25).
The singularity points lying inside the loop when ω0 > γ/2 are
indicated.

with ω1 given by Eq. (14). Choosing the same semicircular
integration path as before (Fig. 3), we have

∮
C

f (z)dz = 2πi

3∑
i=1

Res(f,ai)

= πe−γ t

8γω2
1

[
2ω2

0 + (
2ω2

0 − γ 2
)

cos(2ω1t)

− 2γω1 sin(2ω1t)
]
. (27)

The integral along the arc vanishes and we finally obtain

C�K�K (t) = (kT0)2e−γ t

8ω2
1

[
2ω2

0 + (
2ω2

0 − γ 2) cos(2ω1t)

− 2γω1 sin(2ω1t)
]
. (28)

If ω0 < γ/2, then similar calculations give

C�K�K (t) = − (kT0)2e−γ t

8ω2
2

[
2ω2

0 + (
2ω2

0 − γ 2
)

cosh(2ω2t)

− 2γω2 sinh(2ω2t)
]
, (29)

where ω2 is given by Eq. (17). In the latter case, all three
singularities lie on the imaginary axis.

Knowing C�K�K (t), we can find the mean-square fluc-
tuation (�K)2 = C�K�K (0). Equations (28) and (29) both
give the same result: (�K)2 = (kT0)2/2, which matches the
independent calculation from the canonical distribution. On
the other hand, using Eqs. (21) and (24), we find that the peaks
at ω = 0 and ω = 2ω0 make equal contributions (�K)2 =
(kT0)2/4. Thus, one half of the kinetic energy fluctuation
(�K)2 is caused by quasiharmonic vibrations, whereas the
other half is due to energy fluctuations between the oscillator
and the thermostat.

III. POTENTIAL ENERGY OF THE LANGEVIN
OSCILLATOR

We next calculate the ACF C�U�U (t) of the potential
energy U = mω2

0x
2/2 relative to its average value U = kT0/2,

where �U = U − U . As with kinetic energy, we first find the
spectral ACF Ĉ�U�U (ω) using the approximation discussed in
Appendix B with a(t) = x(t). Applying Eq. (B12), we have

Ĉ�U�U (ω) = m2ω4
0

2

∫ ∞

−∞
Ĉxx(ω′)Ĉxx(ω − ω′)dω′. (30)
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Inserting Ĉxx(ω) from Eq. (7),

Ĉ�U�U (ω) = (γ kT0)2ω4
0

2π2

∫ ∞

−∞

dω′
[(

ω2
0 − ω′2)2 + γ 2ω′2]{[ω2

0 − (ω − ω′)2
]2 + γ 2(ω − ω′)2

} . (31)

The right-hand side is evaluated by integrating the complex
function

f (z) = 1[(
ω2

0−z2
)2 + γ 2z2

]{[
ω2

0−(ω−z)2
]2 + γ 2(ω−z)2

}
(32)

along a semicircular loop C in the complex plane (Fig. 1).
The loop encloses the same four singularities as for the kinetic
energy. The residue theorem gives

∮
C

f (z)dz = 2πi

4∑
i=1

Res(f,ai)

= 2π
4γ 2 + ω2 + 4ω2

0

γω2
0(γ 2 + ω2)

[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] ,

(33)

from which

Ĉ�U�U (ω) = γ (kT0)2ω2
0

π

4γ 2+ω2+4ω2
0

(γ 2+ω2)
[
4γ 2ω2+(

ω2−4ω2
0

)2] .

(34)

Similarly to the kinetic energy case, this function has maxima
at ω = 0 and near ω = ±2ω0, which have the same physical
meaning: The maximum at ω = 0 describes long-range fluc-
tuations due to energy exchanges with the thermostat, whereas
the maximum near ω = 2ω0 is due to quasiharmonic vibra-
tions. Again, the maximum near −2ω0 represents physically
the same process; the formal negative frequencies are only
shown on the plots to better visualize the central peak.

The real-time ACF C�U�U (t) is calculated by inverse
Fourier transformation of Eq. (34):

C�U�U (t) =
∫ ∞

−∞
Ĉ�U�U (ω)eiωtdω = γ (kT0)2ω2

0

π

×
∫ ∞

−∞

(
4γ 2 + ω2 + 4ω2

0

)
eiωt

(γ 2 + ω2)
[
4γ 2ω2 + (

ω2 − 4ω2
0

)2]dω.

(35)

The function

f (z) =
[
4γ 2 + z2 + 4ω2

0

]
eizt

(γ 2 + z2)
[
4γ 2z2 + (

z2 − 4ω2
0

)2] (36)

has the same three singularities in the upper half-plane (Imz >

0) as its kinetic energy counterpart (Fig. 3). Choosing the same
semicircular integration path and assuming that ω0 > γ/2, the
residue theorem gives
∮

C

f (z)dz = 2πi

3∑
i=1

Res(f,ai) = πe−γ t

8ω2
0ω

2
1

[
2ω2

0 + (
2ω2

0−γ 2
)

× cos(2ω1t) + 2γω1 sin(2ω1t)
]
. (37)

The integral along the arc vanishes and we obtain

C�U�U (t) = (kT0)2e−γ t

8ω2
1

[
2ω2

0 + (
2ω2

0 − γ 2
)

cos(2ω1t)

+ 2γω1 sin(2ω1t)
]
. (38)

When ω0 < γ/2, similar calculations give

C�U�U (t) = − (kT0)2e−γ t

8ω2
2

[
2ω2

0 + (
2ω2

0 − γ 2
)

cosh(2ω2t)

+ 2γω2 sinh(2ω2t)
]
. (39)

Note that C�U�U (t) looks similar but differs from the
previously derived C�K�K (t).

Knowing C�U�U (t), we find (�U )2 = C�U�U (0) =
(kT0)2/2. In the strongly underdamped (quasiharmonic)
regime, this fluctuation is split equally between quasiharmonic
vibrations and energy exchanges with the thermostat.

IV. TOTAL ENERGY OF THE LANGEVIN OSCILLATOR

The total energy of the oscillator can be factorized as
follows:

E = mv2

2
+ mω2

0x
2

2
= m

2
ab, (40)

where

a ≡ v + iω0x, b ≡ v − iω0x. (41)

To find the ACF C�E�E(t) (where �E = E − E), we first
calculate the spectral form of this ACF. Using Eq. (B10) from
Appendix B,

Ĉ�E�E(ω) = m2

4

∫ ∞

−∞
Ĉaa(ω′)Ĉbb(ω − ω′)dω′

+ m2

4

∫ ∞

−∞
Ĉba(ω′)Ĉab(ω − ω′)dω′. (42)

The correlation functions appearing in Eq. (42) are com-
puted as follows. We have

â(ω)â(ω′) = v̂(ω)v̂(ω′) − ω2
0x̂(ω)x̂(ω′)

+ iω0x̂(ω)v̂(ω′) + iω0v̂(ω)x̂(ω′)

= δ(ω+ω′)
[
Ĉvv(ω)−ω2

0Ĉxx(ω)

+ iω0Ĉxv(−ω) + iω0Ĉvx(−ω)
]
, (43)

where we used Eqs. (A7) and (A11) from Appendix A. The
last two terms cancel each other and we obtain

â(ω)â(ω′) = δ(ω + ω′)
[
Ĉvv(ω) − ω2

0Ĉxx(ω)
]
, (44)

from which

Ĉaa(ω) = Ĉvv(ω) − ω2
0Ĉxx(ω). (45)

Similar calculations give

Ĉbb(ω) = Ĉvv(ω) − ω2
0Ĉxx(ω). (46)
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For the cross-correlation Ĉab we have

â(ω)b̂(ω′) = v̂(ω)v̂(ω′) + ω2
0x̂(ω)x̂(ω′)

+ iω0x̂(ω)v̂(ω′) − iω0v̂(ω)x̂(ω′)

= δ(ω+ω′)
[
Ĉvv(ω)+ω2

0Ĉxx(ω)

+ iω0Ĉxv(−ω) − iω0Ĉvx(−ω)
]
, (47)

from which

Ĉab(ω) = ω2
0Ĉxx(ω) + Ĉvv(ω) − 2iω0Ĉvx(ω). (48)

The functions Ĉvv(ω), Ĉxx(ω), and Ĉvx(ω) are given by
Eqs. (8), (7), and (9), respectively. Inserting them into
Eqs. (45), (46), and (48) we obtain

Ĉaa(ω) = Ĉbb(ω) = (γ kT0/πm)
(
ω2 − ω2

0

)
(
ω2

0 − ω2
)2 + γ 2ω2

, (49)

Ĉab(ω) = Ĉba(−ω) = (γ kT0/πm)(ω − ω0)2

(
ω2

0 − ω2
)2 + γ 2ω2

. (50)

These functions provide the input to Eq. (42), which then
becomes

Ĉ�E�E(ω) = (γ kT0)2

4π2

∫ ∞

−∞

(ω0 + ω′)2(ω − ω′ − ω0)2dω′
[(

ω2
0 − ω′2)2 + γ 2ω′2][(ω2

0 − (ω − ω′)2
)2 + γ 2(ω − ω′)2

]dω′

+ (γ kT0)2

4π2

∫ ∞

−∞

(ω0 + ω′)2(ω − ω′ − ω0)2dω′
[(

ω2
0 − ω′2)2 + γ 2ω′2][(ω2

0 − (ω − ω′)2
)2 + γ 2(ω − ω′)2

]dω′. (51)

The integrals are readily evaluated using the residue
theorem with the same semicircular integration loop as for
the kinetic and potential energies. The singularities of the
integrands lying inside the loop are the same as in Eqs. (11)
and (31). Somewhat lengthy calculations give

Ĉ�E�E(ω) = γ (kT0)2

π

(
ω2 − 4ω2

0

)2 + γ 2
(
ω2 + 4ω2

0

)
(γ 2 + ω2)

[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] .

(52)

This function has a maximum at ω = 0 and local minima
near ±2ω0. When γ � ω0, these extrema are separated by
frequency gaps. Near the maximum, Ĉ�E�E(ω) behaves as

Ĉ�E�E(ω) = γ (kT0)2

π

1

γ 2 + ω2
. (53)

This is a Lorentz peak of width γ and height (kT0)2/πγ . This
peak represents the energy fluctuations between the system and
the thermostat and is 4 times as high as the similar peaks for
the kinetic and potential energies. Near ω = 2ω0, Ĉ�E�E(ω)
behaves approximately as

Ĉ�E�E(ω) = γ (kT0)2

8πω2
0

γ 2 + 2(ω − 2ω0)2

γ 2 + (ω − 2ω0)2
. (54)

This equation describes a Lorentz-shape local minimum of
width γ and depth γ (kT0)2/8πω2

0. This depth is a factor of
γ 2/8ω2

0 smaller than the height of the maximum ω = 0. In
the strongly underdamped regime (γ � ω0), this minimum
is extremely shallow and can be neglected. It describes an
“antiresonance” effect wherein the oscillator is less willing
to exchange the total energy with the thermostat at the
natural frequency of the kinetic-potential energy fluctuations
(which is 2ω0) than at nearly frequencies. In the underdamped
regime this is a tiny second-order effect. Most of the energy

exchanges between the oscillator and the thermostat occur at
low frequencies.

The time-dependent ACF C�E�E(t) can now be obtained
by inverse Fourier transformation of Eq. (52):

C�E�E(t) =
∫ ∞

−∞
Ĉ�E�E(ω)eiωtdω = γ (kT0)2

π

×
∫ ∞

−∞

[(
ω2 − 4ω2

0

)2 + γ 2
(
ω2 + 4ω2

0

)]
eiωt

(γ 2 + ω2)
[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] dω.

(55)

As before, we apply the residue theorem utilizing the semicir-
cular integration loop shown in Fig. 3. We obtain

C�E�E(t) = (kT0)2

4ω2
1

e−γ t
[
4ω2

0 − γ 2 cos(2ω1t)
]

(56)

if ω0 > γ/2 and

C�E�E(t) = − (kT0)2

4ω2
2

e−γ t
[
4ω2

0 − γ 2 cosh(2ω2t)
]

(57)

if ω0 < γ/2. These equations correctly give the mean-square
fluctuation of the total energy:

(�E)2 = (kT0)2. (58)

V. THE CROSS-CORRELATION FUNCTIONS

In this section we calculate the CCFs among the kinetic,
potential, and total energies. We start by computing the spectral
form of the kinetic-potential energy CCF Ĉ�K�U (ω) using the
equations from Appendix B with a(t) = v(t) and b(t) = x(t).
In the notations of Appendix B, G(t) = v2(t) and H (t) =
x2(t). Equation (B11) gives

Ĉ�K�U (ω) = m2ω2
0

4

∫ ∞

−∞
Ĉxv(ω′)Ĉxv(ω−ω′)dω′ = −

∫ ∞

−∞

(γ kT ω0/4π )2ω′(ω−ω′)dω′
[(

ω2
0−ω′2)2+γ 2ω′2][(ω2

0−(ω−ω′)2
)2+γ 2(ω−ω′)2

]dω′. (59)
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At the second step we inserted Ĉxv(ω) from Eq. (9). The
integral is evaluated by integration along the usual path
C in the complex plane (Fig. 1). The loop contains the
same singularities as in the ACF calculations for the kinetic
and potential energies. Calculations employing the residue
theorem give

Ĉ�K�U (ω) = γ (kT0)2

π

ω2
0

(
4ω2

0 − 3ω2
)

(γ 2 + ω2)
[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] .

(60)

This function has a central maximum at ω = 0 and two
negative minima at ω = ±2ω0 [Fig. 2(b)]. When γ � ω0,
these extrema are separated by frequency gaps and have a
Lorentz shape of width γ and the heights of (kT0)2/4πγ and
−(kT0)2/8πγ , respectively. As before, the central maximum
represents the energy exchanges with the thermostat while the
minima arise from quasiharmonic vibrations. The negative
sign of the minima reflects the fact that the kinetic and
potential energies oscillate in antiphase: When one increases,
the other decreases.

Since Ĉ�K�U (ω) is an even function of frequency,
Ĉ�U�K (ω) is given by the same equation (60). We can now
calculate the CCFs of the total energy with the kinetic and
potential energies. We have

Ĉ�E�K (ω) = Ĉ�K�K (ω) + Ĉ�U�K (ω)

= γ (kT0)2

π

ω4 + (
γ 2 − 6ω2

0

)
ω2 + 8ω4

0

(γ 2 + ω2)
[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] ,

(61)
where we used Eq. (18) for Ĉ�K�K (ω). Similarly,

Ĉ�E�U (ω) = Ĉ�K�U (ω) + Ĉ�U�U (ω)

= γ (kT0)2

π

8ω4
0 + 4γ 2ω2

0 − 2ω2ω2
0

(γ 2 + ω2)
[
4γ 2ω2 + (

ω2 − 4ω2
0

)2] ,

(62)

where we used Eq. (34) for Ĉ�U�U (ω). At γ � ω0, both
Ĉ�E�K (ω) and Ĉ�E�U (ω) have a central peak at ω = 0 and
a tiny wiggle near ω = ±2ω0, the latter being associated
with the “antiresonance” effect mentioned above. Thus, at
low frequencies, the kinetic and potential energies strongly
correlate with the total energy, which is consistent with
the picture of long-range fluctuations due to slow energy
exchanges with the thermostat maintaining nearly equilibrium
partitioning between the kinetic and potential energies.

The time domain forms of these CCFs are obtained by
Fourier transformations using the residue theorem and the
semicircular integration path shown in Fig. 3. In all cases,
the three singularities enclosed by the path are given by
Eq. (26). The calculations are similar to those for the ACFs
and, assuming ω0 > γ/2, give

C�K�U (t) = (kT0)2ω2
0

4ω2
1

e−γ t [1 − cos(2ω1t)], (63)

C�E�K (t) = (kT0)2e−γ t

8ω2
1

[
4ω2

0 − γ 2 cos(2ω1t)

− 2γω1 sin(2ω1t)
]
, (64)

C�E�U (t) = (kT0)2e−γ t

8ω2
1

[
4ω2

0 − γ 2 cos(2ω1t)

+ 2γω1 sin(2ω1t)
]
. (65)

If ω0 < γ/2, these equations become, respectively,

C�K�U (t) = − (kT0)2ω2
0

4ω2
2

e−γ t [1 − cosh(2ω2t)], (66)

C�E�K (t) = − (kT0)2e−γ t

8ω2
2

[
4ω2

0 − γ 2 cosh(2ω2t)

− 2γω1 sinh(2ω2t)
]
, (67)

C�E�U (t) = − (kT0)2e−γ t

8ω2
2

[
4ω2

0 − γ 2 cosh(2ω2t)

+ 2γω1 sinh(2ω2t)
]
. (68)

At t = 0, these equations give �K�U = 0 and �E�K =
�E�U = (kT0)2/2.

VI. MOLECULAR DYNAMICS SIMULATIONS

The analytical calculations presented in the previous sec-
tions rely on the approximation discussed in Appendix B. In
this approximation, the four-member correlation functions are
replaced by sums of products of pair correlation functions.
To demonstrate the accuracy of this approximation, the energy
ACFs and CCFs were computed by molecular dynamics (MD)
simulations and the results were compared with the analytical
solutions.

The Langevin equation (1) was integrated numerically
by implementing the velocity Verlet algorithm with m = 1,
ω0 = 1, and γ = 0.1ω0. Because γ /ω0 = 0.1 is relatively
small, the simulations realize the underdamped regime. The
time step of integration was 0.001. Every 100 MD steps, the
random force R was updated by drawing a new number from
the normal distribution with the standard deviation of 0.5.
Alternatively, a uniform distributions of R was used in a few
test runs and the same results were obtained. (In fact, the
popular LAMMPS molecular dynamics package [5] implements
the Langevin thermostat with a uniform distribution for speed.)
A total of 5000 statistically independent MD runs, each 80γ −1

long, were performed to reach convergence. For each run, the
discrete Fourier transformations of the kinetic, potential, and
total energies were computed and the Fourier amplitudes were
averaged over all MD runs. The Fourier amplitudes obtained
were used to calculate the respective correlation functions in
the frequency domain, which were then mapped into the time
domain by inverse Fourier transformation.

To facilitate comparison with the analytical solutions,
all correlation functions were expressed in terms of the
dimensionless frequency ω/ω0, time tγ , and damping constant
γ /ω0, and normalized as follows:

Ĉ�X�Y (ω/ω0,γ /ω0) = Ĉ�X�Y (ω)

((�X)2 (�Y )2)1/2
, (69)

C�X�Y (tγ,γ /ω0) = C�X�Y (t)

((�X)2 (�Y )2)1/2
, (70)
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FIG. 4. The kinetic energy ACF in the frequency (a) and time
(b) domains for underdamped vibrations with the damping constant
γ = 0.1ω0. The points and lines represent MD results and analytical
solutions, respectively. The functions are normalized according to
Eqs. (69) and (70).

where X and Y stand for K , U , or E, with X �= Y for CCFs
and X = Y for ACFs.

Selected results are shown in Figs. 4–6 (for the complete
set of figures the reader is referred to the Supplementary
Material [6]), plotting the normalized correlation functions
(69) or (70) against ω/ω0 or tγ for γ /ω0 = 0.1. Although
the spectra only have physical meaning when ω � 0, the
functions are mathematically defined in the entire frequency
range (−∞,∞) and are shown as such in the figures. The
main conclusion of this comparison is that the analytical
solutions accurately match the MD results, validating the
pair-correlation approximation discussed in Appendix B.

VII. APPLICATION TO THE PROBLEM OF
TEMPERATURE FLUCTUATIONS

While fluctuations of extensive parameters, such as energy,
are well understood, there are controversies regarding the
nature, or even existence [7–9], of temperature fluctuations
in canonical systems [10]. The main source of the controversy
is the disparity in the definitions of certain fundamental
concepts, such as entropy and temperature, in thermodynamics
and statistical mechanics. In thermodynamics, temperature is
uniquely defined by the fundamental equation of the substance
in question as the derivative of energy E with respect to
entropy S [11–13]. For a simple substance, the fundamental
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FIG. 5. The total energy ACF in the frequency (a) and time
(b) domains for underdamped vibrations with the damping constant
γ = 0.1ω0. The points and lines represent MD results and analytical
solutions, respectively. The inset shows a zoom into the “antireso-
nance” region. The functions are normalized according to Eqs. (69)
and (70).

equation has the form E = E(S,V,N ), where V is the system
volume and N is the number of particles. By contrast,
the statistical-mechanical definition depends on the adopted
logical structure of the discipline. For example, if temperature
of a canonical system is defined as the temperature of the
thermostat T0 (the inverse of β in the standard canonical
distribution), then of course the very notion of temperature
fluctuations is meaningless [7–9]. From this point of view, the
temperature fluctuation relation

(�T )2 = kT 2
0

Nc0
v

(71)

derived in the thermodynamic theory of fluctuations
[2,12,14,15] is the result of a mere manipulation of symbols
[9,16]. In Eq. (71), �T = T − T0, c0

v is the constant-volume
specific heat (per particle) at temperature T0, and k is
Boltzmann’s constant. The system volume and number of
particles are assumed to be fixed. At best, Eq. (71) is interpreted
as a rewriting of the known energy fluctuation relation

(�E)2 = NkT 2
0 c0

v (72)

by formally defining the nonequilibrium temperature T as
T ≡ T0 + �E/(Nc0

v) [10]. This makes T a formal parameter
essentially identical to energy up to units. Other authors
suggest that it is the temperature itself that is not perfectly
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FIG. 6. The kinetic-potential energy CCF in the frequency (a)
and time (b) domains for underdamped vibrations with the damping
constant γ = 0.1ω0. The points and lines represent MD results
and analytical solutions, respectively. The functions are normalized
according to Eqs. (69) and (70).

defined, whereas its fluctuation is perfectly well defined within
the framework of the statistical estimation theory [16,17].

By contrast, the thermodynamic theory of fluctuations
[2,12,14] endows the non-equilibrium temperature with a
physical meaning and considers its fluctuations as a real
physical phenomenon that can be studied experimentally [18].
The theory recognizes the existence of two different time
scales inherent in canonical fluctuations: the time scale of
internal relaxation tr inside the system and the time scale τr of
relaxation in the compound system consisting of the canonical
system and the thermostat.1 The two relaxation processes are
governed by different physical mechanisms and, in most cases,
tr � τr . Thus, there is an intermediate time scale tq , such
that tr � tq � τr , on which the system remains infinitely
close to internal equilibrium without being necessarily in
equilibrium with the thermostat. Such virtually equilibrium
states of the canonical system are called quasiequilibrium. On
the quasiequilibrium time scale tq , the system can be described
by a fundamental equation, from which its temperature can be

1An illuminating thermodynamic analysis of system-thermostat
interactions and the role of dissipation by friction in such interactions
can be found in recent papers [19,20].

found by

T = (∂E/∂S)V,N . (73)

During the equilibration of a system with a thermostat,
the system goes through a continuum of quasiequilibrium
states. Accordingly, we can talk about the time evolution of
its quasiequilibrium temperature T towards T0 as the system
approaches equilibrium with the thermostat. Based on the
fluctuation-dissipation relation [2,3,21–25], one can expect
that similar quasiequilibrium states arise during fluctuations
after the system has reached equilibrium with the thermostat.
Such quasiequilibrium states also have a well-defined temper-
ature that fluctuates around T0. As long as this temperature
is properly defined on the quasiequilibrium time scale, its
fluctuations will follow Eq. (71).

Similar theories of temperature fluctuations have been
formulated in statistical-mechanical terms by allowing β

of the canonical distribution to fluctuate away from β0 of
the thermostat [26,27]. Such theories assume, explicitly or
implicitly, the existence of time scale separation and internal
equilibration of the system on a certain time scale (which we
call here quasiequilibrium) with different values of β. Such
approaches are thus perfectly compatible with ours.

While Eq. (73) provides a thermodynamic definition of the
quasiequilibrium temperature T , in practice this temperature
can be evaluated by utilizing the equipartition relation and the
kinetic energy averaged over the quasiequilibrium time scale
tq . This can be readily done in computer simulations and, in
principle, in experiments measuring a property sensitive to
kinetic energy of the particles. Instead of kinetic energy, other
parameters could be used for computing the temperature [28].
This does not imply an ambiguity in the temperature definition
but rather the possibility of using different “thermometric
properties” for its evaluation. For example, the potential energy
could also be used for defining the temperature through the
appropriate equipartition relation. A thorough discussion of
different definitions of temperature in statistical mechanics
can be found, for example, in Refs. [28–30]. This approach
obviously assumes ergodicity of the system and classical
dynamics.

The Langevin oscillator offers a simple model that can
illustrate these ideas. Consider the Einstein model of a solid
with a single vibrational frequency ω0. The 3N oscillators
describing the atomic vibrations are considered totally de-
coupled from each other and only interact with a thermostat.
Suppose the latter is a Langevin thermostat characterized
by a damping constant γ and a random force R satisfying
the fluctuation-dissipation relation (5) for a given thermostat
temperature T0. The Langevin thermostat [31] mimics a real
thermostat by treating the atoms as if they were embedded
in an artificial viscous medium composed of much smaller
particles. This medium exerts a drag force as well as a
stochastic noise force R that constantly perturbs the atoms.
In this model, each vibrational mode can be represented by a
single Langevin oscillator. The damping time τr = 1/γ sets
the time scale of energy exchanges with the thermostat. By
contrast to a real solid wherein internal equilibration requires
redistribution of energy between different vibrational modes
by phonon scattering, in the present model the energy is
pumped into or removed from each oscillator individually.
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Thus, the internal equilibration time scale tr is on the order
of 1/ω0.2 We assume that the vibrations are quasiharmonic
and thus ω0 � γ (underdamped regime). Then tr � τr and
there is a quasiequilibrium time scale in between on which the
temperature can be defined.

We have shown above that kinetic energy fluctuations of
an underdamped Langevin oscillator have two components: a
fast component due to transformations between the kinetic and
potential energies during atomic vibrations (period π/ω0), and
a slow component due to energy exchanges with the thermostat
(time scale 1/γ ). It is the slow component that should be used
to calculate the quasiequilibrium temperature of the system.
The fast component can be “filtered out” by averaging K

over several vibration periods. Alternatively, the same can be
achieved by separating the peaks in the spectrum of the kinetic
energy ACF. As was shown above, Ĉ�K�K (ω) has two peaks
separated by a frequency gap [Figs. 2(a) and 4(a)]. One peak
at ω = 2ω0 represents the kinetic-potential energy exchanges
during the vibrations (fast component) while the other at ω = 0
represents the energy exchanges with the thermostat (slow
component). Thus, the separation of the two time scales can be
accomplished by splitting the spectrum into two Lorentz peaks
described by Eqs. (22) and (19), respectively. As was shown
in Sec. II, each peak describes kinetic energy fluctuations with
the same variance,

(�K)2 = (kT0)2/4. (74)

For a solid composed of 3N statistically independent oscil-
lators, we use the low-frequency peak (at ω = 0) to obtain

(�Ksolid)2 = 3N (kT0)2

4
. (75)

We can now identify the quasiequilibrium temperature with
the equipartition value T = 2Ksolid/3Nk using the kinetic
energy defined by the low-frequency peak. Inserting this
temperature into Eq. (75) we have

(�T )2 = T 2
0

3N
. (76)

This fluctuation relation matches Eq. (71) if c0
v = 3k, which is

exactly the classical specific heat of the solid. We emphasize
that this result was obtained by defining the quasiequilibrium
temperature using the kinetic energy and without any reference
to the behavior of the total energy during the fluctuations. This
fundamentally differs from the approach mentioned above
wherein T is defined as a formal quantity strictly proportional
to E. That approach also leads to Eq. (76), except that the
latter simply reflects the temperature definition. As mentioned
above, potential energy could also be used to define the
temperature, which would lead to exactly the same temperature
fluctuation (76).

To show that the foregoing derivation of Eq. (76) is
nontrivial, suppose we ignore the different time scales and

2Perhaps a more accurate measure is the half-period, π/ω0, which
is sufficient for the kinetic energy to transform to potential. But since
we are only interested in orders of magnitude, 1/ω0 is a suitable
estimate of the relevant time scale.

define the temperature from the same equipartition rule but
now using instantaneous values of the kinetic energy, as is
often done in MD simulations. The mean-square fluctuation
of this “instantaneous temperature” T̃ is obtained by averaging
over both time scales or, which is equivalent, by including both
peaks of Ĉ�K�K (ω). As discussed in Sec. II, the respective
kinetic energy fluctuation of an oscillator is then (�K)2 =
(kT0)2/2. This leads to the temperature fluctuation

(�T̃ )2 = 2T 2
0

3N
. (77)

The specific heat extracted from this fluctuation relation is
c0
v = 3k/2, which is factor of two off. It is only the temperature

defined on the quasiequilibrium time scale that satisfies the
fluctuation relation (71) with the correct specific heat.

VIII. CONCLUDING REMARKS

The main result of this work is the derivation of the analyti-
cal solutions for the energy correlation functions of a Langevin
oscillator. The derivation was enabled by approximating the
quadruple correlation functions by a sum of products of
pair correlation functions as explained in Appendix B. In
other words, the derivations neglect all correlations between
stochastic properties beyond pairwise. The accuracy of this
approximation has been validated by comparison with MD
simulations, which were found to be in excellent agreement
with the analytical solutions.

Given the role of the Langevin oscillator model in various
areas of physics, the results obtained here might be useful
for addressing diverse physics problems involving energy
fluctuations in systems coupled to a thermostat. As one
example of possible applications, we have presented a simple
model illustrating the existence and the meaning of the
temperature fluctuations in canonical systems. Temperature
fluctuations is a controversial subject with many conflicting
views published over the past century (see the references in
Ref. [10]).

One of the oldest and, in our opinion, most fruitful
approaches recognizes the existence of quasiequilibrium states
that arise during canonical fluctuations and exist on a par-
ticular time scale [2,12,14]. The temperature calculated on
this quasiequilibrium time scale by treating the system as
if it were equilibrium is a well-defined physical property
whose fluctuations follow the relation (71). By considering
an Einstein solid composed of Langevin oscillators, we have
demonstrated the existence of the quasiequilibrium time scale
and verified that the temperature computed on this time scale
indeed satisfies Eq. (71). Although rather simplistic, this model
captures the essential physics. A more realistic MD study of
temperature fluctuations in a crystalline solid modeled with
an accurate many-body atomistic potential will be published
elsewhere [15].
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APPENDIX A

The Fourier resolution of a function of time f (t) is

f (t) =
∫ ∞

−∞
f̂ (ω)eiωtdω,

with the Fourier amplitude

f̂ (ω) = 1

2π

∫ ∞

−∞
f (t)e−iωtdt.

The Fourier transform of a product of two functions is the
convolution of their Fourier transforms and vise versa: If
R(t) = f (t)g(t), then

R̂(ω) =
∫ ∞

−∞
f̂ (ω − ω′)ĝ(ω′)dω′, (A1)

and if R̂(ω) = f̂ (ω)ĝ(ω), then

R(t) = 1

2π

∫ ∞

−∞
f (t − t ′)g(t ′)dt ′. (A2)

Calculations involving Dirac’s δ function utilize the relations
1̂(ω) = δ(ω) and δ̂(ω) = 1/2π . Spectral calculations often
employ the residue theorem of complex analysis. The residues
can be found analytically or with the help of the Wolfram
Mathematica function Residue[].

The pair correlation function of two (generally, complex)
stochastic variables y and z is defined by

Cyz(t) = y(t ′)z(t ′ + t) = y(0)z(t), (A3)

where we assumed that the process is stationary and thus in-
dependent of the initial time t ′. Obviously, Cyz(t) = Czy(−t).
The Fourier transform

Ĉyz(ω) = 1

2π

∫ ∞

−∞
Cyz(t)e

−iωtdt (A4)

has the property Ĉyz(ω) = Ĉzy(−ω). The inverse transforma-
tion recovers Cyz(t):

Cyz(t) =
∫ ∞

−∞
Ĉyz(ω)eiωtdω. (A5)

Taking t = 0 we obtain

yz = Cyz(0) =
∫ ∞

−∞
Ĉyz(ω)dω. (A6)

It can be shown that

ŷ(ω)ẑ(ω′) = δ(ω + ω′)Ĉyz(ω
′) = δ(ω + ω′)Ĉyz(−ω). (A7)

Integrating the last equation with respect to ω′ we find

Ĉyz(ω) =
∫ ∞

−∞
ŷ(ω′)ẑ(ω)dω′. (A8)

In the particular case when y(t) ≡ z(t), we obtain the ACF

Cyy(t) = y(0)y(t) (A9)

and its Fourier transform Ĉyy(ω). Both functions are sym-
metric: Cyy(t) = Cyy(−t) and Ĉyy(ω) = Ĉyy(−ω). Equations

(A6), (A7), and (A8) become, respectively,

y2 =
∫ ∞

−∞
Ĉyy(ω)dω, (A10)

ŷ(ω)ŷ(ω′) = δ(ω + ω′)Ĉyy(ω), (A11)

Ĉyy(ω) =
∫ ∞

−∞
ŷ(ω′)ŷ(ω)dω′. (A12)

APPENDIX B

For two (generally, complex) stochastic properties a(t) and
b(t), let us evaluate the ACF of F (t) = a(t)b(t) relative to its
average value F = ab. Denoting �F = F − F , we have

C�F�F (t) = CFF (t) − (ab)2. (B1)

It will suffice to find the Fourier transform Ĉ�F�F (ω), which
can be then inverted to C�F�F (t).

By the product rule of the Fourier transformation,

F̂ (ω) =
∫ ∞

−∞
â(ω′)b̂(ω − ω′)dω′. (B2)

Applying this rule twice and averaging over the ensemble, we
obtain

F̂ (ω)F̂ (ω′)

=
∫ ∞

−∞

∫ ∞

−∞
â(ω′′)b̂(ω−ω′′)â(ω′′′)b̂(ω′−ω′′′)dω′′dω′′′. (B3)

We will assume that the quadruple correlation function
appearing in this equation can be broken into a sum of products
of pair correlation functions. Only three distinct products can
be formed, which are obtained by permutations of the â’s
and b̂’s:

â(ω′′)b̂(ω − ω′′) â(ω′′′)b̂(ω′ − ω′′′),

â(ω′′)â(ω′′′) b̂(ω − ω′′)b̂(ω′ − ω′′′),

â(ω′′)b̂(ω′ − ω′′′) â(ω′′′)b̂(ω − ω′′).

Applying Eq. (A7), these functions become, respectively,

δ(ω)δ(ω′)Ĉab(ω − ω′′)Ĉab(ω′ − ω′′′),

δ(ω′′ + ω′′′)δ(ω + ω′ − ω′′ − ω′′′)Ĉaa(ω′′′)Ĉbb(ω′ − ω′′′),

δ(ω′ + ω′′ − ω′′′)δ(ω − ω′′ + ω′′′)Ĉab(ω′ − ω′′′)Ĉab(ω − ω′′).

Inserting their sum into Eq. (B3), we obtain

F̂ (ω)F̂ (ω′)

= δ(ω)δ(ω′)
(∫ ∞

−∞
Ĉab(−ω′′)dω′′

)(∫ ∞

−∞
Ĉab(−ω′′′)dω′′′

)

+ δ(ω + ω′)
∫ ∞

−∞
Ĉaa(ω′′′)Ĉbb(ω′ − ω′′′)dω′′′

+ δ(ω + ω′)
∫ ∞

−∞
Ĉba(ω′′)Ĉab(ω − ω′′)dω′′. (B4)

By Eq. (A6), the first line gives δ(ω)δ(ω′)(ab)2.

062151-10



ENERGY SPECTRUM OF A LANGEVIN OSCILLATOR PHYSICAL REVIEW E 94, 062151 (2016)

Integrating Eq. (B4) with respect to ω′ and applying Eq. (A12) we obtain

ĈFF (ω) = δ(ω)(ab)2 +
∫ ∞

−∞
Ĉaa(ω′′)Ĉbb(ω − ω′′)dω′′ +

∫ ∞

−∞
Ĉba(ω′′)Ĉab(ω − ω′′)dω′′. (B5)

On the other hand, the Fourier transform of Eq. (B1) is

Ĉ�F�F (ω) = ĈFF (ω) − δ(ω)(ab)2. (B6)

Comparing Eqs. (B5) and (B6), we obtain

Ĉ�F�F (ω) =
∫ ∞

−∞
Ĉaa(ω′)Ĉbb(ω − ω′)dω′ +

∫ ∞

−∞
Ĉba(ω′)Ĉab(ω − ω′)dω′.

Next, we will take the same stochastic properties a(t) and b(t), form two new properties G(t) = a2(t) and H (t) = b2(t), and
evaluate the CCF C�G�H (t), where �G = G − G and �H = H − H . It will suffice to find the Fourier transform

Ĉ�G�H (ω) = ĈGH (ω) − δ(ω)G H. (B7)

Applying the product rule of Fourier transformations we have

Ĝ(ω)Ĥ (ω′) =
∫ ∞

−∞

∫ ∞

−∞
â(ω′′)â(ω − ω′′)b̂(ω′′′)b̂(ω′ − ω′′′)dω′′dω′′′. (B8)

As above, we break the quadruple correlation function into a sum of products of pair correlation functions. The three distinct
products are

â(ω′′)â(ω − ω′′) b̂(ω′′′)b̂(ω′ − ω′′′) = δ(ω)δ(ω′)Ĉaa(ω′′)Ĉbb(ω′′′),

â(ω′′)b̂(ω′′′) â(ω − ω′′)b̂(ω′ − ω′′′) = δ(ω′′ + ω′′′)δ(ω + ω′ − ω′′ − ω′′′)Ĉab(ω′′′)Ĉab(ω′ − ω′′′),

â(ω′′)b̂(ω′ − ω′′′) b̂(ω′′′)â(ω − ω′′) = δ(ω′ + ω′′ − ω′′′)δ(ω − ω′′ + ω′′′)Ĉab(ω′ − ω′′′)Ĉab(ω′′′).

Inserting the sum of these terms in Eq. (B8) we have

Ĝ(ω)Ĥ (ω′) = δ(ω)δ(ω′)
(∫ ∞

−∞
Ĉaa(ω′′)dω′′

)(∫ ∞

−∞
Ĉbb(ω′′′)dω′′′

)

+2δ(ω + ω′)
∫ ∞

−∞
Ĉab(ω′′′)Ĉab(ω′ − ω′′′)dω′′′

= δ(ω)δ(ω′)G H + 2δ(ω + ω′)
∫ ∞

−∞
Ĉab(ω′′′)Ĉab(ω′ − ω′′′)dω′′′.

Comparing this equation with Eq. (A7) and applying Eq. (B7), we obtain

Ĉ�G�H (ω) = 2
∫ ∞

−∞
Ĉab(ω′)Ĉab(ω − ω′)dω′. (B9)

The foregoing results can be summarized as the following statement:
If only pair correlations are taken into account, then for any two stochastic properties a(t) and b(t),

Ĉ�F�F (ω) =
∫ ∞

−∞
Ĉaa(ω′)Ĉbb(ω − ω′)dω′ +

∫ ∞

−∞
Ĉba(ω′)Ĉab(ω − ω′)dω′, (B10)

Ĉ�G�H (ω) = 2
∫ ∞

−∞
Ĉab(ω′)Ĉab(ω − ω′)dω′, (B11)

where F (t) = a(t)b(t), G(t) = a2(t), and H (t) = b2(t).
In the particular case when a(t) ≡ b(t), we have F (t) = a2(t) and Eq. (B10) gives

Ĉ�F�F (ω) = 2
∫ ∞

−∞
Ĉaa(ω′)Ĉaa(ω − ω′)dω′. (B12)
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