PHYSICAL REVIEW E 94, 062149 (2016)

Zero-temperature directed polymer in random potential in 4 + 1 dimensions

Jin Min Kim"
Department of Physics and Research Institute for the Origin of Matter and the Evolution of Galaxies,
Soongsil University, Seoul 156-743, Korea
(Received 22 August 2016; published 29 December 2016)

Zero-temperature directed polymer in random potential in 4 + 1 dimensions is described. The fluctuation
AE(t) of the lowest energy of the polymer varies as t# with 8 = 0.159 4 0.007 for polymer length ¢ and AE
follows AE(L) ~ L* at saturation with o = 0.275 = 0.009, where L is the system size. The dynamic exponent
z ~ 1.73 is obtained from z = «/B. The estimated values of the exponents satisfy the scaling relation o« + z =2
very well. We also monitor the end to end distance of the polymer and obtain z independently. Our results show
that the upper critical dimension of the Kardar-Parisi-Zhang equation is higher than d = 4 + 1 dimensions.
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I. INTRODUCTION

Over the past 30 years there have been considerable
studies on the problem of directed polymers (DPs) in random
potentials [1-7]. Through various mappings, it is related
to many other physical problems such as the Eden model
[8], the restricted solid-on-solid (RSOS) model [9], ballistic
aggregation [10], domain walls in the two-dimensional ran-
dom bond Ising model [1], Burgers’ equation [11], and the
Kardar-Parisi-Zhang (KPZ) equation [12]. The KPZ equation
describes the evolution dynamics of the interface

ah A .
a5 = vW2h + E(Vh)z +n(F,1), (1)

where h(x,t) is the local height at time ¢ and the random white
noise 7 satisfies

(n(F, O’ 1)y =2DS(F —F)8(t — t'). 2)

The directed polymer in the random potential problem
[3,4,6,7] is one of the simplest models described by the KPZ
equation. Because the polymers are directed, it allows only
paths in the forward direction with no reverse step. A simple
directed polymer model in random potential in lower dimen-
sions was studied before [4]. For completeness, we briefly
describe the model here. Consider a directed polymer on a
discrete hypercubic structure. The random potentials p(x,?)
are assigned to each site where x and ¢ are the (d — 1)-
dimensional transverse vector and the longitudinal length of
the polymer, respectively. The energy of a polymer

dx\>
E :/dt[y(Z) +y,(x,t):| 3)

is given by following the path. There are two competing terms:
One is a bending energy forcing the polymer straight and
the other is the random potential (£(x,#) making the polymer
deformed through lower potential sites. A polymer starts from
the substrate at t = 0 and its path is restricted by |x(¢) — x(¢ +
1) = 0 or 1. There is a bending energy y, which represents
the stretching energy of the polymer against a transverse
jump |x(#) — x(¢ + 1)] = 1. The initial condition is given as
E(x,0) = 0. At zero temperature, the minimum energy E(X,?)
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among all the paths arriving at (x,7) can be obtained recur-
sively, for example, ind = 1 + 1, [4]

Ex,t)=min[E(x— 1, — 1)+ ux— 1, —1)
+v,Ext—D+uxt—1),Ex+1,t—1)
+ux+ 1, — 1)+ yl, 4

where min[A, B,C] takes the minimum value among A, B,
and C.

One of the interesting quantities of the directed polymer
problem is the standard deviation AE(¢) of the minimum
energy E(x,t),

AE(t) = (E — EY)'/% )

Here E(¢) is the spatial average of the minimum energy at ¢,
(- - -) denotes the average over various samples, and AE(t) is
an order parameter similar to the surface width characterizing
the roughness of the interface in the surface problems [2,13].
Starting from a flat substrate in a finite system of lateral size
L, the mean-square energy fluctuation A E(¢) scales as [13]

wof P, L
AEM =L f(?) - {L" 1> L ©

where o and z are the roughness and the dynamic exponents,
respectively. The scaling function f(x) is x# for x <« 1 and
constant for x >> 1. The dynamic exponent z describing the
polymer dynamics follows the relation z = /8.

There has been much theoretical effort to study the universal
properties of the KPZ equation. Due to the invariance of
the KPZ equation under an infinitesimal tilt of the interface,
there exists the scaling relation @ 4+ z = 2 [12]. Most of the
recent works have been devoted to determining these critical
exponents. Despite the simple mathematical representation of
the directed polymer problem, it is not completely understood
except in two dimensions. In d = 1 4+ 1 dimensions, where
there is one transverse and one longitudinal direction, the expo-
nents are known [12]tobe 8 = 1/3 and z = 3/2 and extensive
numerical work has confirmed them [2]. Also, recent studies
of the largest eigenvalue of a random matrix have shown
the exact probability distribution for the height of the KPZ
equation [14]. There is some variation among the values of the
exponents quoted by various authors in higher dimensions [2].
Based on the numerical simulation results of the RSOS growth
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model, we suggested 8 = # [9]; however, this seems to be
consistent with neither the large-scale numerical simulation
results [4,6,15-20] nor the analytic calculations [21-23],
which actually disagree with each other. So far, there is no clear
understanding of the values of the exponents in the higher di-
mension. Ind = 3 + 1 dimensions it is generally believed that
a phase transition exists between a strong-coupling fixed point
and an Edwards-Wilkinson-type trivial point. This transition
was tested numerically and the critical coupling constant at the
transition point was discussed [4,17,24-27]. Also, there is a
controversy about the existence of the upper critical dimension
of the KPZ equation [28-32]. Above the critical dimension,
the exponents take the values z =2 and 8 = 0. Most of the
analytic studies including the mode-coupling-type approaches
of the KPZ equation suggest that the upper critical dimension
is less than or equal to 4 + 1 [21,22,28-30,32]. However, the
numerical studies of the RSOS growth model and the directed
polymer problem, which belong to the KPZ universality class,
show the existence of a strong-coupling regime in 4 + 1
dimensions [15,16,18,20]. The existence of an upper critical
dimension is still under debate [15,16,18,20-22,28-32].
Recently, we studied the roughening properties of the
discrete growth model [15,16] with the RSOS condition

Vh = |h(r)—h(@)| <N, (7N

where N is a restriction parameter confining the height
difference between the nearest neighbors. In general, the RSOS
model shows good scaling behavior of the KPZ universality
class [9]. Through numerical simulations, we have shown that
the model with the restriction parameter N = 1 in higher
dimensions suffers from an artifact induced by the discrete
nature of the model. This is due to the small width in
comparison with the unit of the discrete height [15,16]. To
avoid this artifact, we consider a directed polymer problem
where the energy parameter can take a continuum value.

Here we present a more detailed analysis of the directed
polymer problem in random potentials in particular in d =
4 4 1 dimensions. We employ a transfer-matrix method for
the model and obtain 8 & 0.159. The other exponents « and z
are also estimated independently.

II. NUMERICAL SIMULATION OF THE DP PROBLEM AT
ZERO TEMPERATURE AND THE SCALING EXPONENTS

Starting from a four-dimensional hypercubic substrate of
linear dimension L with periodic boundary conditions in the
transverse directions, the random site potential £ (X,?) is drawn
uniformly from the interval (0,1) and the bending energy
y =1 is chosen. The time ¢ is defined as the longitudinal
length of the polymer. At zero temperature, the minimum
energy E(x,t) among all paths arriving at (x,f) is obtained
recursively following Eq. (4).

To determine the exponent 8 governing the growth rate
of the energy fluctuation, A E(¢) is monitored as a function
of ¢ for system size L = 170 with y = 1.0 averaged over
320 different realizations of the random potentials. At zero
temperature, A E(¢) grows as t2# at the beginning, as shown
in Fig. 1. From the least-squares fit of the data we obtain

B =0.159 £ 0.07. (®)
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FIG. 1. Mean-square deviation (AE)? as a function of ¢ plot-
ted on a log-log scale for the system size L =170 in 441
dimensions.

To measure the roughness exponent « describing the energy
fluctuations in the late-time region, we monitor the energy
fluctuations for the various system sizes L in the saturated
region as shown in the inset of Fig. 2. By fitting the data to the
relation (AE)*(L) ~ L%,

a =0.275 £ 0.009 9)

is estimated. We obtain the dynamic exponent z =~ 1.73
from z = a/B with the values of 8 and «. Our results
show o + z & 2.01, which is consistent with the scaling
relation « + z = 2. The scaling plot of (AE)*/L* as a
function of ¢/L* with the measured exponents o = 0.275 and
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FIG. 2. Plotof (AE)*(L,t)as a function of  on alog-log scale for
the various system sizes L = 16, 22, 32, 46, and 64 from the bottom
to the top. In the inset, the variation of polymer energy (AE)*(L) at
saturation is plotted as a function of L in 4 4+ 1 dimensions.
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FIG. 3. Scaling plot of(AE)Z(L,t)usingoe =0.275andz = 1.73
for various system sizes L = 16, 22, 32, 46, and 64.

z = 1.73 is shown in Fig. 3. A good data collapse is obtained,
indicating that (AE)*(L,t) follows the scaling formula very
well. Our obtained values 8 ~ 0.159 and o =~ 0.275 are in
good agreement with the recent results for the RSOS growth
model in 4 + 1 dimensions [15].

Another interesting quantity is the end-to-end transverse
distance A X(¢) of the minimum energy path, which is defined
as

AX (1) = ([x(1) — x(0)]%) /2. (10)

The angular brackets denote the average over many different
realization of the random site energies. The advantage of our
study in the DP problem is that not only the exponents 8 and
« but also the dynamic exponent z can be obtained directly. To
determine z independently, we also monitor A X(¢) averaged
over 320 different realization of the random site energies with
system size L = 170. Here AX(¢) is expected to increase
as t'/% with t for t < L?. As shown in Fig. 4, the plot of
log[ A X (#)]? against log(¢) is a straight line. Using the relation
AX(t) ~ t'/7, we obtain z = 1.75 £ 0.02. It is slightly larger
than but consistent with z &~ 1.73 (with an error of less than
2%) indirectly estimated from 8 and «.
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FIG. 4. Mean-square end-to-end distance (A X)?(¢) as a function
of ¢ plotted on a log-log scale for the system size L = 170 in4 + 1
dimensions.

III. CONCLUSION

We have presented a numerical analysis of directed
polymers in 4 + 1 dimensions. It is known that the directed
polymer problem in random potential belongs to the KPZ
universality class. We obtained g ~ 0.159, o =~ 0.275, and
z &~ 1.73, which are in good agreement with the recent results
of B~ 0.158 and o ~ 0.273 from the RSOS model in 4 + 1
dimensions. The estimated S is slightly less than but close to
our conjectured value of 1/6. Considering the finite-size effect,
our numerical results do not exclude 1/6. We also estimated
z = 1.75 £ 0.02 independently by measuring the end-to-end
distance of the polymer. Because the obtained z is less than 2,
the transverse walk of the polymer becomes superdiffusive,
implying that the upper critical dimension is higher than
d =4+ 1. Further analytical and numerical studies are
required to define precisely the critical values of the exponents.
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