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Relaxational processes in ordered phases of one-dimensional Ising models with long-range interactions
are investigated by Monte Carlo simulations. Three types of spin model, the pure ferromagnetic, the diluted
ferromagnetic, and the spin glass models, are examined. The effective dimension of the one-dimensional systems
are controlled by a parameter σ , which tunes the rate of interaction decay. Systematical investigations of droplet
dynamics, from the lower to the upper critical dimension, are conducted by changing the value of σ . Comparing
numerical data with the droplet theory, it is found that the surface dimension of droplets is distributed around
the effective dimension. The distribution in the surface dimension makes the droplet dynamics complex and
extremely enhances dynamical crossover.
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I. INTRODUCTION

Probing dynamical properties is an indispensable mean to
investigate magnetic and/or dielectric materials. To extract the
dynamical properties, several methods (e.g., x-ray scattering,
neutron scattering, nuclear magnetic resonance, electron spin
resonance, muon spin resonance, etc.) are adopted in various
research fields. While a couple of one-shot experiments
could extract characters of a material, a large number of
experiments on a group of similar substances will be required
to acquire a fundamental understanding of an intriguing
phenomenon. In order to obtain an organized view on the
phenomenon, an effective framework that visualizes relations
between corresponding experiments is important. The Cole-
Cole plot [1] is an example of such a framework. It is a plot
of the real part and the imaginary part of the permittivity,
which visualizes dielectric relaxation of a substance and
makes it easier to classify dielectric materials by comparing
each Cole-Cole plot. Another example is the Angell plot for
glass-forming liquids [2]. It plots a viscosity of a substance
as a function of scaled temperature and visualizes whether
it is a fragile or strong liquid. These frameworks categorize
dynamics of various substances in a simple manner, and we
need a theory that integrates the findings of the dynamics
in many-body systems into a unified perspective. Though
dynamics at criticalities are well studied [3,4], dynamics in
ordered phases are not clarified sufficiently.

The droplet theory is one of the theories dealing with
dynamics in ordered phases of many-body systems. The
droplet theory has succeeded in explaining dynamics of
pure ferromagnetic models [5,6], ferromagnetic models with
randomness [5], and the spin-glass model [7,8]. The droplet
model assumes a shape of the free-energy landscape of
droplets, which are domains of an ordered state, and deduces a
relaxational behavior of the system. Dynamical properties re-
late closely to the shape of droplets, which depends on both the
dimensionality of the system and the type of the interactions.
To develop understanding of ordered states, a comprehensive
study on relations between dynamical properties and the
shape of droplets is required. The one-dimensional (1D)
Ising model with long-range interactions [Eq. (1)] provides
a suitable test ground for the comprehensive study. Though
the spin model looks simple, it exhibits pure ferromagnetic,

ferromagnetic with randomness, and spin-glass phases by
changing the distribution of interactions and tuning the rate
of interaction decay. Tunable long-range interactions of the
model enables us to investigate the relaxational processes
in a continuous manner from the lower to the upper critical
dimension. Through numerical analyses of the 1D Ising model,
we examine the droplet theory as a suitable framework to
describe the mechanism of various dynamics in many-body
spin systems.

This paper is organized as follows: In Sec. II, we briefly
review preceding studies on the 1D Ising model with long-
range interactions and the droplet theory. Details on numerical
calculations are given in Sec. III. Section IV presents results
obtained by Monte Carlo simulations of the 1D Ising model.
Section V is devoted to the discussion. The summary of this
paper is presented in Sec. VI. A detail explanation of O(N )
Monte Carlo method [9–11], which is a key algorithm to
achieve numerical calculations of systems with long-range
interactions with reasonable computational cost, is given in
the Appendix A.

II. REVIEWS OF THE 1D ISING MODEL
WITH LONG-RANGE INTERACTIONS

AND THE DROPLET THEORY

This section presents brief reviews on the 1D Ising model
with long-range interactions and the droplet theory.

The Hamiltonian of the 1D Ising model is given by

H = −
∑
i<j

Jij

rσ
ij

SiSj . (1)

Here, Si(∈ {1,−1}) represents the Ising spin variable at site
i, Jij is the exchange interaction between i and j , rij is the
distance between i and j , and σ is the tuning parameter of
long-range interaction. Despite its dimensionality and simple
appearance, the model possesses various features that are
controlled by the model parameters: the complexity of the
interactions, Jij , and the tuning parameter of the interaction
decay, σ .

The section consists of three subsections. In the first
subsection, we review preceding studies on pure ferromagnetic
models. The second subsection gives reviews on diluted
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ferromagnetic models. Spin-glass models are reviewed in the
third subsection.

A. Pure ferromagnetic model

The pure ferromagnetic model is characterized by a uniform
ferromagnetic interaction:

Jij = J (>0) (for any i and j ). (2)

The interaction decay with increasing distance between spin
pairs is tuned by the parameter σ : The long-range interaction
is irrelevant when σ > 2, and the system does not exhibit
the ferromagnetic order at any finite temperature. The critical
phenomena of the system belong to the universality class
of the mean-field model, when σ � 3/2. At σ = 2, the
Kosterlitz-Thouless (KT) transition [12–14] appears at a finite
temperature. In the range 3/2 < σ < 2, the universality class
of the ferromagnetic phase transition depends on the value of
σ . Therefore, by varying σ from 2 to 3/2, we can continuously
survey the Ising model from the lower critical [d(σ = 2) = 1]
to the upper critical [d(σ = 3/2) = 4] dimension. It should be
noticed that the 1D Ising model on the trace of the effective
dimension [d(σ )] does not correspond to the nearest-neighbor
model. For example, the 2D nearest-neighbor model exhibits
a logarithmic divergence of the specific heat while the critical
exponent of the specific heat of the 1D model is positive in the
range of 3/2 < σ < 2.

While we have little analytical results on dynamics of the
Ising model, rigorous results of dynamics in the paramagnetic
phase are given by Glauber [15]. Using his results, the time-
delayed correlation function C(k; t) is given by

C(k; t) = 〈S̃−k(0)S̃k(t)〉 (3)

= ξ (k) exp[−t/τ (k)], (4)

where S̃k(t) is the Fourier transform of the Ising spin at time
t , ξ (k) is the correlation length for the wave number k, τ (k) is
the lifetime for the wave number k, and T is the temperature
(the Boltzmann constant kB is set to unity). The angle brackets
〈· · · 〉 denote a thermal average. The Fourier transform of the
Ising spin S̃k(t), the correlation length ξ (k), and the lifetime
τ (k) are, respectively, given by

S̃k(t) = 1

L

∑
r

Sr (t)eikr , (5)

ξ (k) = [cosh(2J/T )(1 − γ cos k)]−1, (6)

τ (k) = [a(1 − γ cos k)]−1, (7)

where L is the number of spins, γ = tanh 2J/T , and a is a
nonuniversal constant. The result shows that the correlation
function in the paramagnetic phase decays exponentially with
time, and the lifetime is proportional to the correlation length.

The correlation function of the Ising model in the mean-
field region is given by several authors [16–18]. The time-
delayed correlation function C(t) in the ordered phase is

C(t) = 〈S(0)S(t)〉 ∼ C2
0

(C0/C∞)2 − [(C0/C∞)2 − 1]e−t/τ
,

(8)

where C0 and C∞ are nonuniversal constants. The result shows
that the correlation function in the ordered phase shows an
exponential convergence as well as in the paramagnetic phase.

In the intermediate dimension (1 < d < 4), there is no
rigorous result of dynamics in the ordered phase, but deduced
forms of the autocorrelation function by the droplet theory are
available. When the spatial dimensionality d is sufficiently low
(d < 3) in the nearest-neighbor interaction model, Huse and
Fisher have shown that the autocorrelation function Ci (t) at site
i shows the Kohlrausch-Williams-Watts stretched exponential
decay as [5]

Ci(t) = 〈Si(0)Si(t)〉 − 〈Si〉2 ∼ exp[−(t/τ )(d−1)/2]. (9)

This stretched exponential decay comes from the emergence
of large-scale droplets. Since a lifetime of large-scale droplet is
long, the excited droplets dominate the dynamics of the system.
On the other hand, such large-scale droplets do not emerge at
a high dimensionality. Larger droplets are much more affected
by thermal fluctuations since the surface area of droplets
increases proportionally with the linear size l to the power of
d − 1, ld−1. For d > 3, fluctuations of average-size droplets
dominate the correlations, and the system shows a simple
exponential decay, Ci(t) ∼ exp[−(t/τ )]. The prediction of the
droplet theory indicates that the 1D Ising model will show a
simple exponential decay in high enough dimension. In other
words, there is a critical value of σc [d(σc) = 3], where the
form of the autocorrelation function changes.

B. Diluted ferromagnetic model

The diluted ferromagnetic model possesses randomness
without frustration, and it serves a suitable test ground to study
effects of randomness. There are two types of dilution, site
dilution and bond dilution. In the present paper, we deal with
a bond-dilution model whose Hamiltonian is given by Eq. (1)
with randomly diluted interactions,

Jij =
{
J (>0) (with probability 1/2),
J ′(=0) (with probability 1/2). (10)

The value of the diluted interaction is chosen so as to maximize
effects of randomness. The disconnections of the interaction
(J ′ = 0) bring a lowering of a transition temperature, and the
ordered state in a low temperature is strongly affected by the
geometry of the interaction network. The geometrical effect
is stronger at larger σ since the phase transition temperature
decreases as σ increases. The details of the effect is discussed
in Sec. V.

The phase diagram of the diluted model (J ′ � 0) is almost
the same as the pure model. However, according to the Harris
criterion [19], the universality class of the diluted model in
the range of 3/2 < σ < 2, where the critical exponent of
the specific heat of the pure model α is positive, is altered
by the dilution. On the other hand, the critical exponent α

is zero when σ = 2 and σ � 3/2, and the dilution will be
irrelevant to the universality class. For systems that exhibit
the KT transition, it will not be a trivial question whether
the dilution alters the universality class or not, but it seems
irrelevant regarding numerical studies of the two-dimensional
diluted XY model [20,21].
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By assuming the dilution being not so strong, Huse and
Fisher derived that the autocorrelation function shows a power-
law decay,

Ci(t) ∼ t−x(T ), (11)

where the overbar denotes the sample average of the interaction
realization. The exponent x(T ) will depend on the temperature
and nonuniversal details of the system [5]. The arrangement
of diluted bonds could strongly affect the relaxation at low
temperatures (T � Tc), since the exponent x(T ) depends
on the rate of the creation and the annihilation of large
droplets. However, thermal fluctuations blur the details of
the arrangement of diluted bonds, and x(T ) presumably
approaches a universal value near the transition temperature.

C. Spin-glass model

Interactions of the spin-glass model consist of ferro-
magnetic and antiferromagnetic bonds, and the random ar-
rangement of bonds brings about frustration in the system.
In the present paper, we deal with a random bond model
whose Hamiltonian is given by Eq. (1) with randomly mixed
interactions,

Jij =
{
J (with probability 1/2),
−J (with probability 1/2). (12)

Though the bimodal distribution in the exchange interaction
does not bring about frustration in the 1D model when nearest-
neighbor interactions are dominance, frustration emerges
when interactions are sufficiently long-ranged. Kotliar,
Anderson, and Stein showed that the spin-glass phase appears
when σ < 1: the universality class of the model belongs to
that of the mean-field for σ < 2/3, and that depends on σ for
2/3 < σ < 1 [22].

As in the diluted model, the relaxation of the system is
altered further by frustrated interactions. Fisher and Huse
derived the logarithmic decay of autocorrelation function,

C(t) ∼ [ln(t/τ0)]−φ, (13)

where τ0 and φ are, respectively, a microscopic time scale and
a nontrivial exponent [7,8]. The logarithmic decay originates
from the distributions of the droplet free energy FL and the
droplet barrier for annihilation of droplets BL. Both of the
two distributions have broad distribution and different size
dependencies, FL ∼ Lθ and BL ∼ Lψ . The exponent φ in
Eq. (13) is the ratio of the exponents, φ = θ/ψ .

In the mean-field regime, the time-delayed correlation
function at site i in the spin-glass phase, Ci(t), is given by [23]

Ci(t) = 1 − C0

(1 + at)1/2
+ C0, (14)

where a and C0 are constants. Unlike the case of the ferro-
magnetic model, the correlation function shows the power-law
decay with an exponent 1/2.

III. METHOD

While the 1D Ising model with long-range interactions is a
suitable spin model for analytical studies, the large computa-
tional cost of scanning all the interactions proportional to the

square of the system size, O(L2), hampers numerical studies.
To overcome the numerical difficulty in systems with long-
range interactions, Fukui and Todo proposed the O(N ) cluster
Monte Carlo (MC) method [9]. The O(N ) cluster MC method
was successfully applied to study the single-spin-flip dynamics
in 1D Ising models with power-law-decaying interactions and
nontrivially frustrated systems [10] and 2D Heisenberg dipolar
lattices [11]. The details of the algorithm are given in the
Appendix.

To eliminate the edges of the system, the periodic boundary
condition is imposed to all simulations. For the pure and the
diluted ferromagnetic models, all of the contributions from
supercells are summed up. When σ > 1, the summation is
easily executed as

1

r̃σ
ij

=
∞∑

n=−∞

1

(rij + nL)σ

= 1

Lσ
[ζ (σ,rij /L) + ζ (σ,(L − rij )/L)], (15)

where r̃ij and ζ (σ,r) are, respectively, the effective distance
between sites i and j and the Hurwitz ζ function,

ζ (σ,r) =
∞∑

n=0

1

(n + r)σ
. (16)

However, the summation does not converge when σ � 1. In
order to implement the periodic boundary condition when
σ � 1, the chord distance [24] is implemented in the spin-glass
model: We place a spin Si equidistantly on a ring of length L,
and the distance rij is described by

rij = L

π
sin

(
π |i − j |

L

)
. (17)

The slow decay of the interaction causes a large transition
temperature. Therefore, we rescale the interaction J to
c(σ,L)J as

c(σ,L) =
√

L

2J
∑

i<j r−2σ
ij

. (18)

This rescaling adjusts the transition temperature at σ = 0 to
unity and makes the transition temperature to be moderate
for σ > 0. In the MC simulation, the interactions considered
above are employed.

To investigate the dynamical properties, we calculate time-
delayed correlation functions. In the pure and the diluted
ferromagnetic models, the correlation function is calculated by
Eq. (3). The time-delayed correlation function in the spin-glass
model is defined as

C(k; t) = 〈q̃−k(0)q̃k(t)〉, (19)

where q̃k(t) is the Fourier transform of the Edwards-Anderson
order parameter [25] at time t , which is given by

q̃k(t) = 1

L

∑
r

S(1)
r (t)S(2)

r (t)eikr . (20)

Here, the superscript suffixes (1) and (2) denote the replica
indexes. The time-delayed correlation function [Eq. (19)] is
different from the autocorrelation function considered in the
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droplet theory [5,7,8]. Whereas the droplet theory deals with
the time-delayed correlation of a local spin at site i, Eq. (19)
deals with that of the macroscopic order parameter.

IV. RESULTS

In this section, results obtained by Monte Carlo simulations
on three different models, pure ferromagnetic, dilute ferromag-
netic, and spin glass, are shown. In what follows, we use J as
a unit of temperature. Error bars of obtained data are omitted
since large error bars impair the visibility of figures. Large
statistical errors of the data mainly come from small values of
observables. Though statistical errors at each point are large,
trends of decay in autocorrelations are clearly observed as we
see below.

A. Pure ferromagnetic model

This subsection gives results obtained by Monte Carlo
simulations of the 1D pure ferromagnetic model. Monte
Carlo simulations are executed for several values of σ , a
parameter of long-range interactions. The system size is set as
L = 220(	1.0×106). The system is equilibrated by combina-
tion use of annealing and a cluster flip update [9]. 107 Monte
Carlo steps are executed for measurement of autocorrelation
functions, and 10 independent samples are simulated for
obtaining good statistics.

As reviewed in Sec. II A, the pure ferromagnetic model
shows the KT transition at a finite temperature when σ = 2.
Autocorrelation functions would exhibit simple exponential
decays even below the transition temperature since there is no
true long-range order. Unlike those in normal paramagnetic
phase, the autocorrelation function in the KT phase at time t ,
C(k; t), depends on a power of a wave number k,

C(k; t) ∝ k−η exp[−t/τ (k)], (21)

where η is the critical exponent of the correlation function and
τ (k) is the lifetime for k. The autocorrelation functions in the
KT phase (T = 1.78) obtained by Monte Carlo simulation are
plotted in Fig. 1(a). Wave numbers in Fig. 1(a) are zero and
k̃ = 2n(n = 0,1,2, . . . ,19), where k̃ denotes scaled wave num-
ber, k̃ = Lk/2π . Curves of the autocorrelation functions at
t = 0 (MCS = 0) ought to be equally spaced in the logarithmic
scale if their relaxations are described by Eq. (21). But
Fig. 1(a) show distances between neighboring curves become
wider as k̃(�1) increases. To examine the k-dependence of
autocorrelation functions at t = 0, I assumed a k-dependence,

C(k̃; 0) = C1
k−η

1 + (k/κ)φ
+ C2, (22)

rather than Eq. (21). Constants C1, C2, and κ are nonuniversal
constants. It is known that η = 0 and φ = 2 when the system is
in the mean-field region [26]. The formula, Eq. (22), conforms
to Eq. (21) at t = 0 when φ = 0. The result is shown in
inset of Fig. 1(a). Estimated values are η = 0.10, φ = 1.1,
and κ = 2.0×10−3. The result indicates that the system seems
to be in the KT phase in the range of k < κ , whereas the
system seems to be in an ordered state in the range of k > κ .
The emergence of the ordered state can be explained by the
characteristic length of ferromagnetic clusters of Ising spin.
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FIG. 1. Autocorrelation functions of the pure ferromagnetic
model at (a) σ = 2, (b) σ = 1.8, and (c) σ = 1.6. Topmost lines in
each figure are autocorrelation functions of k = 0. Following to the
function of k = 0, autocorrelation functions of log2 k̃ = 0,1,2, . . .

align from top to bottom in almost ascending order. Inset shows
k-dependence of the autocorrelation functions at σ = 2 and t = 0.

At a low enough temperature, larger ferromagnetic clusters
are more stable than smaller ones. Because of the discreteness
of the Ising spin, there is little cluster whose size is smaller
than 1/κ at such a low temperature. Therefore, the system
seems ordered in the range of k > κ .

As mentioned in Sec. II A, the relaxation of autocorrelation
function depends on the dimensionality of the droplet, which
is directly affected by the parameter σ . According to the
results by Tang, Nakanishi, and Langer [6], there will be
a critical parameter σc: A stretched exponential decay will
be observed when σc < σ < 2, while a relaxation will be
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simple exponential decay when σ < σc. Figures 1(b) and 1(c)
show exponential decays observed in an ordered phase T =
2.48 at σ = 1.8 and T = 3.50 at σ = 1.6, respectively. In
order to examine forms of relaxations of order parameter,
multiparameter fittings are performed while assuming a fitting
form,

C(k; t) = C0 exp[−(t/τ (k))β(k)] + C∞, (23)

where β(k) is a stretching exponent for k and C0 and C∞
are nonuniversal constants. The fitting form Eq. (23) well fits
data when σ � 1.7, but the form is not good enough to fit
data when σ � 1.6. By adding another exponential term to
the form, fitting results are fairly improved. The fitting form
applied to systems with σ � 1.6 is

C(k; t) = C0 exp[−(t/τ (k))β(k)]

+ C2 exp[−(t/τ2(k))β2(k)] + C∞, (24)

where β(k) and β2(k) are stretching exponents for k, τ (k),
and τ2(k)(> τ (k)) are lifetimes for k, and C0, C2, and C∞ are
nonuniversal constants. The necessity of two exponential terms
means that there is another non-negligible mode in relaxational
processes when σ � 1.6. The origin of the two nonnegligible
modes is discussed in Sec. V.

The stretching exponents and lifetimes are plotted in Fig. 2.
The exponents β(k) at σ = 2.0 are almost independent of k.
The value of β is unity when the long-range order is absent.
Therefore, values of β(k) are expected to be unity since the KT
phase does not have the true long-range order. The obtained
values of β(k) are, however, slightly smaller than unity. This
would be caused by the finiteness of the system size. The
correlation length is larger than the system size, so that the
system seems as if it has true long-range order.

The values of β(k) at σ = 1.9 and σ = 1.8 increase and
asymptotically approach unity as k increases. According
to the droplet theory, β is an increasing function of the
dimensionality, β = (d − 1)/2. That is, the value of β ought
to be small at σ � 2, but numerical data are inconsistent with
the droplet theory. This inconsistency is discussed in Sec. V.

The dependence of β on k is altered between σ = 1.8 and
1.7. While β changes continuously with k when σ � 1.8, β

shows a discontinuous change at a certain point when σ � 1.7.
This intrinsic change in the k-dependence of β corresponds to
an outcome of the droplet theory: The density of relaxational
modes switches from continuous to discrete at d = 3 as
increasing d. The droplet theory also declare that the relaxation
is a simple exponential when d > 3. The discrepancy between
the simple exponential and stretched exponential decays in the
systems at σ � 1.7 is discussed in Sec. V.

B. Diluted ferromagnetic model

This subsection gives results of the 1D diluted ferromag-
netic model. The system size L and the parameter σ ’s are the
same as in the pure ferromagnetic model. The equilibration
method is also the same; the combination use of annealing and
a cluster flip update is employed. The number of Monte Carlo
steps is reduced to 106 steps per sample, while the number of
random samples is increased to 100 for σ = 2.0, 1.9, 1.8, 1.7,
and 1.4 and 200 for σ = 1.6 and 1.5, respectively.
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FIG. 2. (a) Lifetimes for several σ ’s as functions of k̃. Lifetimes
tend to decrease as k̃ increases; lifetimes of small droplets are shorter
than those of larger ones. (b) Stretching exponents for several σ ’s
as functions of k̃. The exponents are nearly continuous functions of
k̃ when σ � 1.8, whereas they have a discontinuous jump at k̃ ∼ 5
when σ � 1.7.

As mentioned in Sec. II B, we expect that the topology
of the phase diagram is the same as that of the pure
ferromagnetic model. Though the ordered phase is simple
ferromagnetic, the dilution could change dynamical properties
of the model. In fact, Huse and Fisher showed that excited large
ferromagnetic droplets emerged by quenched bond disorder
bring about a power-law decay [5]. The relevance of the
bond dilution can be estimated by the Harris criterion [19].
Since, based on the Harris criterion, the critical exponent
of the specific heat α of the pure ferromagnetic model is
positive in 3/2 < σ < 2 [10,27,28], autocorrelation functions
are expected to show the power-law decay in the range of
σ . On the other hand, we expect the exponential decay in
the mean-field region (σ � 3/2) and the KT phase (σ = 2)
because the critical exponent α is zero in the region of σ .

Autocorrelation functions at σ = 2.0, 1,8, 1.6, and 1.4 are
plotted in Fig. 3. Using a fitting function,

C(k; t) = C0
exp[−t/τ2(k)]

[1 + t/τ1(k)]x(k)
+ C∞, (25)

I estimate characteristic times, τ1(k) and τ2(k), and the
exponent of the power-law function, x(k). The parameter τ1(k)
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FIG. 3. Autocorrelation functions of the diluted ferromagnetic
model at (a) σ = 2, (b) σ = 1.8, (c) σ = 1.6, and (d) σ =
1.4. Insets show k-dependence of the autocorrelation functions
at t = 0.

provides an indication of the waiting time for starting the
power-law decay. As Fig. 3 shows, autocorrelation functions
of small k decrease little at the beginning, and they start
exhibiting power-law decay at t ∼ O(τ1). The introduction of
the waiting time τ1(k) in Eq. (25) overcomes the difficulty to fit
the data which show power-law decay after a certain waiting
time. The parameter τ2(k) is the thermal relaxation time of the
autocorrelation function; the function nearly reaches thermally
equilibrium value C∞ at t ∼ O(τ2). Autocorrelation functions
at σ � 3/2 are well fitted by Eq. (25).

The critical exponent α is zero at σ = 2 [27,28], so that
the random dilution is irrelevant and does not change its
universality class, Kosterlitz-Thouless phase, according to the
Harris criterion [19]. But the autocorrelation functions are
apparently different from the pure system at σ = 2. And the
data are well fitted by the power-law fitting form, Eq. (25). It
seems inconsistent with the analytical results but it is consistent
if we consider that the long-range order exists in the pure
system at σ = 2 due to the finite-size effect. Therefore, the
finiteness of the system brings about pseudo-long-range order
at the marginal point (σ = 2), and the dilution gives rise to the
power-law decay of pseudo-long-range order.

The parameters τ1(k), τ2(k), and the power-law exponent
x(k) are plotted in Fig. 4. There are autocorrelation functions
that hardly decay within the prepared time window, and
estimated values of τ2(k) of such functions are larger than
104. The estimated values of τ2 larger than 104 are not precise,
and it means that the exponential term in Eq. (25) have little
contribution to the fitting analysis.

Both τ1(k) and x(k) are small when k̃ is large (k̃ � 16).
The reason of small τ1(k) is that small droplets in metastable
state do not need long time to surmount free energy barrier
and immediately start power-law relaxation to the stable
states. Such small droplets frequently come out, and the
autocorrelation functions of small k̃ count up multiple power-
law decays with various onset time. This overlap of droplet
relaxations causes small power-law exponent x(k) at large k̃.

The parameter τ1(k) is large when k̃ is small (k̃ � 4). This
result is reasonable because the lifetime of metastable states of
large droplets is long. Excited large droplets, therefore, do not
relax readily, and we observe autocorrelations of small k are
almost flat in the range of t < O(τ1). The multiple parameter
fitting with Eq. (25) erroneously infers that the exponent x(k)
is small when k̃ is small. The reason of the improper inference
is that the autocorrelation functions hardly exhibit power-law
decay within the time window, and the exponent is estimated to
be smaller than real value. In fact, the autocorrelation functions
of small k̃ exhibit power-law decay with x(k) ∼ 1 when the
system size is small enough [29].

A marked feature of the autocorrelation functions of the
diluted system is that they are placed with roughly equal
intervals. Since scaled wave numbers k̃ are chosen from the
power-of-two, the functions are approximately described by

C(k̃; t) ∼ k̃−yC(k̃ = 1; t), (26)

where y is a constant. The fact that the autocorrelation function
is roughly proportional to the power of k̃ means excited
droplets have a fractal-like structure. The autocorrelation
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FIG. 4. (a) Waiting times τ1 for several σ ’s as functions of k̃. At
the points k̃ = 16 and 17 data of τ1 of σ = 1.5 are not plotted since
they are almost zero. (b) Lifetimes τ2 for several σ ’s as functions of
k̃. (c) Exponents of the power-law decay for several σ ’s as functions
of k̃.

functions at t = 0 are plotted the insets of Fig. 3 as functions
of k̃. It can be seem from the insets that the profiles are quite
similar to that of the pure system at σ = 2, which is located
in KT phase. However, the origin of the KT phase like feature
in diluted systems is different from that of the pure system.
Details of the origin will be discussed in Sec. V.

The autocorrelation functions at σ = 1.4 [Fig. 3(d)] do not
exhibit power-law decay but the functions are well described
by the sum of two stretched exponential functions [Eq. (24)].
The change from the power-law to the stretched exponential

decay is expected since randomly placed diluted interactions
are averaged out in the mean-field limit. Contrary to the relax-
ation process, the autocorrelation functions still have a fractal-
like structure. It means that the shape of excited droplets still
keeps a fractal-like structure though their dynamics are altered.

C. Spin-glass model

The results of the spin-glass model are presented in
this subsection. The system size and Monte Carlo steps
are significantly reduced since the decay of the long-range
interactions is slow (the range of the interaction parameter
is σ � 1) comparing to the pure and diluted ferromagnetic
models. The system size is set as L = 213(=8192). During
the equilibration, spins are updated by the single-spin-flip
algorithm because the simple cluster flip update does not
work in frustrated spin systems. To accelerate relaxation the
replica exchange Monte Carlo method is used [30]. For the
measurement of autocorrelation functions, 106 Monte Carlo
steps are executed. The number of random samples is 100.

At the lower critical value of σ (=1), Moore showed that
there is no spin-glass phase at a finite temperature [31].
However, we observe a pseudo-spin-glass transition at a finite
temperature, which seems to be independent from the system
size since the correlation length diverges extremely rapidly as
lowering the temperature. Figure 5 shows the autocorrelation
functions at σ = 0.9, 0.7, and 0.6. Autocorrelation functions
of k > 0 are omitted since they are fairly small comparing
to that of k = 0. The autocorrelation function at σ = 0.9
shows typical spin-glass behaviors [32]: It shows a ballistic
relaxation at the beginning, and go into a plateau regime,
β-relaxation regime, through a small dip, boson peak. At
the end, it shows a slow relaxation, α-relaxation regime,
which is well described by a stretched exponential form
[Eq. (23)]. Curves in Figs. 5(a) and 5(b) show fitting results for
α-relaxation. The boson peak disappears when σ � 0.8, and
the autocorrelation decays right after the ballistic relaxation.
Though the microscopic origin of the boson peak has been
a debating issue, it relates to relaxations in locally restricted
area. At σ = 0.6, the mean-field region, the correlation hardly
decays at the beginning, and suddenly start decaying around
t ∼ 1000. While the autocorrelation function cannot be fitted
by exponential and power functions, the Havriliak-Negami-
type [33] fitting function,

C(t) = C0

[1 + (t/τ )γ ]x
, (27)

well fits the data. The resulting parameters are τ = 4.58×103,
γ = 1.69, and x = 4.24, respectively. The autocorrelation
functions of the spin glass model are different from those
suggested by the droplet theory [see Sec. II C]. Reasons are
considered in the next section.

V. DISCUSSION

In this section, we first examine reasons of discrepancies
between the droplet theory and numerical data of pure
ferromagnetic model shown in Sec. IV A. In Sec. IV B,
autocorrelation functions of the diluted ferromagnetic model
exhibit KT-like features, the power-law decay and a power-law
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FIG. 5. Autocorrelation functions of the spin glass model at (a)
σ = 0.9, (b) σ = 0.7, and (c) σ = 0.6. Stretching exponential curves
in (a) and (b) are fitting results of the α-relaxation regime. Curve in
(c) is obtained by using the Havriliak-Negami-type fitting function.

form of the structure factor. Considering the origin of KT-like
features, though the ordered phase of the system seems KT
phase, it is revealed that the origin of the KT-like features
is a crossover effect caused by randomly diluted lattice. The
discrepancy between droplet theory and numerical data in the
spin-glass model is discussed in the last part of this section.

First, we consider the reason why two exponential functions
are required when we attempted to figure out what the
function form describes well numerical data of the pure
ferromagnetic model in σ � 1.6. The function form in the
region does not conform a result from the droplet theory,
that the autocorrelation function is described by the simple
exponential function when d � 3. This threshold dimension

 0.5
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FIG. 6. Plot of stretching exponents β and β2 at σ = 1.6. While
two stretching exponential functions are needed to fit data in k̃ � 4
[Eq. (24)], preparing a stretching exponential function is sufficient to
fit data in k̃ � 5.

is lower than the upper critical dimension, du = 4, and the
corresponding value of σ , therefore, would be slightly larger
than σu = 3/2. The value of σ at the threshold, σc, is
presumably close to 1.6, and it is probable that the change of
the function form relates to the intrinsic change of the function
form at the threshold.

The function form is the simple exponential function in
the mean-field model because the model reduces a many-body
dynamics to a one-body dynamics. Therefore, it is naively
expected that autocorrelation functions are simple exponential
when σ � σu. However, autocorrelation functions at σ = 1.4
and 1.5 (not shown) are essentially the same as those at
σ = 1.6. Figure 6 shows β(k̃) and β2(k̃) at σ = 1.6. β2

is nearly unity when k̃ is small, it decreases as increasing
k̃, and it merges to β at k̃ = 5. The stretched exponential
function with β seems an extra relaxation function if we
assume the stretched exponential function with β2 is derived
from the simple exponential function predicted by the droplet
theory. The extra unexpected relaxation would come from the
ununiformity in interactions which form surface of droplet.
While the droplet theory supposes the surface dimension of
droplets is d − 1, the surface dimension of droplets in our
1D model is not obvious; a plausible definition is a value of
integral of interactions which extend outward from a droplet,

I =
∫

i∈C∧j /∈C

J

rσ
ij

drij , (28)

where i runs from one end of the droplet to the other end, and
j runs all over the sites except on the droplet. If the droplet
consists of a sequentially aligned Ising spins, the integral value
is proportional to c2−σ , where c is a volume of the droplet.
Assuming the volume is proportional to the power of d, the
surface dimension of the droplet is estimated as d(2 − σ ). The
result seems reasonable at both extremities of σ ; the integral
value is equal to a constant at σ = 2 and is proportional to
d at σ = 1. However, the value is unexpectedly small at the
marginal boundary of the mean-field region, σ = 3/2. At the
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boundary the effective dimension of the volume of droplets is
four, so that we obtain d(2 − σ ) = 2 as the surface dimension.
If the surface dimension is strictly d(2 − σ ), the dynamics
should change at σ = 3/2; the system exhibits the stretched
exponential decay in σ > 3/2, the simple exponential decay
in σ < 3/2, respectively. However, numerical data are incon-
sistent with the result. The inconsistency is probably caused
by the fluctuation of the surface dimension of droplets. The
surface dimension, d(2 − σ ), is estimated by assuming that
droplets consist of sequentially aligned Ising spins. Actually
most of droplets consist of a lot of fractions of sequential Ising
spin sites, so that the surface dimension of these droplets are
larger than the estimated value. Additionally, relatively small
fractions of Ising spin sites contribute to lowering the effective
surface dimension because their surfaces are softer and fluctu-
ate widely. As a result, effective surface dimension of droplets
has a distribution even though the value of σ is fixed. The
distribution brings about two relaxation forms, the simple and
the stretched exponential forms near the boundary (σ = 3/2).

Next we consider reasons that the disagreement in the
stretching exponent β between numerical data and the droplet
theory at σ � 2. While the droplet theory gives β = (d − 1)/
2 (�0 at σ � 2), numerically obtained β’s are fairly larger than
the expected value. An apparent disagreement in numerical
data is that the relaxation at the beginning is considerably slow.
According to the droplet theory, the logarithmic derivative of
the function is

d

dt
ln C(k; t) ∝ −β

(
t

τ

)β−1

. (29)

Therefore, the slope of the autocorrelation function should be
steep at the beginning (t � τ ) if β is nearly zero as given by
the droplet theory. The absence of the steep decay is caused by
the discreteness of the Ising variable. As shown in the inset of
Fig. 1(a), the emergence of small sized droplets are suppressed,
though the phase is supposed to be in the KT phase at σ = 2.
While the continuous spin variable as in the XY model is able
to contribute to the steep decay by creation and annihilation
of spin waves, these small energy contributions are absent in
the Ising spin system. The effect of the discreteness is reduced
when the temperature is close enough to the critical point; that
is, thermal fluctuations blur the discreteness of Ising spin, so
that the structure factor is expressed by the power of the wave
length. In such a nearly critical system, the steep decay, which
coincides with a power-law decay at the criticality, should
be observed since large k droplet excitations decay at the
beginning. Since the system at σ = 1.9 has the true long-range
order, the tail of the structure factor is not long as that of
the KT phase. However, a small stretching exponent would
be observed if the temperature of the ordered phase is high
enough to blur the discreteness of the Ising spin.

The autocorrelation functions of the diluted model show
the power-law decay and the fractal-like structure though the
system is in the ferromagnetic ordered state. It is known that
these pseudo-critical features are caused by randomly diluted
lattice [34]. When the degree of dilution is slightly lower than
the critical point, the correlation length between lattice sites is
given by

ξp ∼ (p − pc)−νp , (30)

where p is the concentration of lattice sites, pc is the critical
concentration of lattice sites, and νp is the critical exponent
of the percolation correlation length. The ordered region is
proportional to the number of lattice sites, when ferromagnetic
regions are larger than ξp. On the other hand, the ordered
region forms a fractal structure, when ferromagnetic regions
are smaller than ξp. Thus, while the structure factor shows the
Lorentzian peak shape in k < 1/ξp, it shows the power-law
shape in k > 1/ξp. The structure factor of the diluted model
seems to be classified into three regions. As an example, the
structure factor at σ = 1.6 in the inset of Fig. 3(c) is classified
as follows: (i) it is suppressed by the discreteness of Ising
spin in k̃ � 12, (ii) it is almost a constant in k̃ � 2, and (iii) it
shows the power-law shape in 2 < k̃ < 11. This classification
indicates the percolation correlation length is estimated as
roughly L/8 when σ = 1.6. The relaxation also depends on
k; relaxations of autocorrelations in k̃ � 2 are considerably
slower than those in k̃ > 2 [see Figs. 3(c) and 4(c)]. Essentially
the same behaviors are also observed at σ = 1.4. Though
effects of the random dilution is averaged out in the mean-field
limit, as discussed above, fractal-like features still remain at
σ = 1.4 due to the distribution of the surface dimension of
droplet. Whereas slow decay in autocorrelation functions of
k̃ < 1/ξp is observed at σ � 1.6, there is no such a signal
at σ > 1.6. The difference is caused by that ξp becomes
larger as increasing σ . The transition temperature decreases
as increasing σ , and thermal fluctuations become weaker.
The system comes close to the percolation transition point
as decreasing the transition temperature, and the approaching
to the point causes the growth of ξp. As a result, the
autocorrelation functions at σ > 1.6 seems like fractal in all
the region of k̃.

The fractal-like features are also observed in disor-
dered ferroelectrics. Koreeda and collaborators observed the
power-law distribution in the quasielastic light scattering
in Pb(Mn1/3Nb2/3)O3, and they also observed the power
exponent of the spectrum depends on temperature [35]. Their
observations are indeed the same as those of results that the
droplet theory gives. Dynamics of disordered ferroelectrics
are not understood well. To study of the dynamics, spin
glass models are often employed since they exhibit spin
glass like behaviors, extremely slow dynamics which involve
aging, memory effect, frequency dependence of the AC
susceptibility, et al. However, considering the experimental
results by Koreeda and collaborators and the results from
diluted ferromagnetic models, it should be examined which
models is proper to describe phenomena of interest.

Autocorrelation functions of the spin-glass model obtained
by the numerical simulation are quite different from those
given by the droplet theory. While their decay form is given
by the power of logarithmic function of time according to the
droplet theory, numerical data exhibit the stretched exponential
decay in the range of 0.7 � σ � 1 and Havriliak-Negami
type relaxation at σ = 0.6 [Eq. (27)]. The disagreement
would come from an intrinsic difference between microscopic
and macroscopic variables, which makes little difference
in ferromagnetic phase. While, in this paper, the Edwards-
Anderson (EA) order parameter [25] [Eq. (20)] is employed as
a macroscopic variable to investigate dynamical properties,
the droplet theory gives the time-delayed correlation of a
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local spin variable. The EA order parameter measures a
similarity between replicated systems which have the same
set of interactions {Jij }. Therefore, the autocorrelation of the
EA order parameter measures the time-delayed correlation of
the similarity. On the other hand, the time-delayed correlation
of a local spin variable measures a local spin dynamics in a
sample. Thus, autocorrelations of the two observables exhibit
different relaxations.

VI. SUMMARY

In this paper, Monte Carlo simulations on 1D Ising models
with long-range interactions are executed, and the numerical
data are compared with results given by the droplet theory.
Essentially consistent results are obtained in the pure and the
diluted ferromagnetic models, though disagreements caused
by the discreteness of Ising spin and the distribution of the
surface dimensionality are also observed. Numerical results in
the spin glass model are different from results given by the
droplet theory. This means that dynamics of the macroscopic
variable are essentially different from those of the microscopic
variable analyzed in the droplet theory.

It is shown that combined use of the droplet theory
and numerical simulation helps us to understand nature of
ordered states. Applying the results to investigations of non-
trivial phases as in disordered ferroelectrics [35] or frustrated
magnets [36] could advance understanding of ordered states.
To extend the range of applicable fields, clarifying relations
between ordered states and its dynamics in other fundamental
spin models is required.
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APPENDIX: O(N) MONTE CARLO METHOD

The main idea of the O(N ) MC method is to estimate a
molecular field at site i by sampling interacting sites. The
Hamiltonian of the Ising model with long-range interactions
is given by

H = −
∑
i<j

JijSiSj . (A1)

The summation in Eq. (A1) runs over every pair of interactions:
therefore, interactions Jij should not be those of bare but of
rescaled when the periodic boundary condition is imposed.
We suppose all the interactions are ferromagnetic (Jij � 0)
for convenience in explaining. The extension to spin glass
model is given at the bottom of the appendix.

The Boltzmann weight WB({S}) for site i is given by

WB({S}) =
∏
j (�=i)

exp(βJijSiSj )

=
∏
j (�=i)

[
1 + SiSj

2
eβJij + 1 − SiSj

2
e−βJij

]
, (A2)

where {S} represents a spin configuration. By introducing
an auxiliary parameter α(>0), we are able to deactivate

interactions stochastically, and the deactivation reduces the
computational cost with the stochastic legitimacy. After
introducing the parameter α, the resulting WB({S}) is written
by [10]

WB({S}) ∝
∑
{k}

P (λtot; ktot)f ({k}; {λ})w({k}; {λ}; {S}). (A3)

Here, P (λtot; ktot), f ({k}; {λ}), and w({k}; {λ}; {S}) are the
Poisson probability mass function, the multinomial probability
mass function, and a weight function, respectively. The explicit
forms of functions are as follows:

P (λtot; ktot) = e−λtot
λ

ktot
tot

ktot!
, (A4)

f ({k}; {λ}) = ktot!
∏
j (�=i)

[
1

kij !

(
λij

λtot

)kij
]
, (A5)

w({k}; {λ}; {S}) =
∏
j (�=i)

[
1 + SiSj

2
+ 1 − SiSj

2

(
α

λij

)kij
]
,

(A6)

where λij = 2βJij + α, λtot = ∑
j (�=i) λij , and ktot =∑

j (�=i) kij . The variable kij is a number of activated bonds
between i and j , and a set {k} represents an activated bond
configuration.

P (λtot; ktot) gives a stochastic weight of a number of total
bonds, ktot, whose mean value is λtot. The constant λtot is the
summation of an effective interaction λij . In the O(N ) MC
method, an effective interaction λij appears as a summation of
the bare interaction βJij and an auxiliary tunable interaction
α. The auxiliary parameter α determines the efficiency of the
O(N ) MC method. Decreasing the value of α decreases the
number of active bonds, and it reduces the computational cost
relating to the bond activation. However, small α brings about a
low acceptance ratio for a spin flip. Indeed, in the limit of α = 0,
the O(N ) MC method corresponds to the Swendsen-Wang
cluster MC method [38]. Conversely, increasing the value of
α raises an acceptance ratio for a spin flip, but it also raises the
number of active bonds and the computational cost. In fact, the
limit of α = ∞ reduces the O(N ) method to the Metropolis
method. The dynamics of the simulation is optimized by tuning
the parameter α. A reasonable choice of α is

αij = 2βJij α̃, (A7)

where α̃ is a constant. This choice makes λij proportional to
βJij as

λij = 2βJij (1 + α̃); (A8)

this means that all of the bonds are activated with proba-
bilities proportional to the bare interaction βJij . Using the
choice, functions f ({k}; {λ}) and w({k}; {λ}; {S}) are rewritten,

062142-10



RELAXATIONAL PROCESSES IN THE ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 94, 062142 (2016)

respectively, by

f ({k}; {λ}) = ktot!
∏
j (�=i)

[
1

kij !

(
Jij

Jtot

)kij
]
, (A9)

w({k}; {λ}; {S}) =
∏
j (�=i)

[
1 + SiSj

2
+ 1 − SiSj

2
κkij

]

=
∏

j∈(Sj �Si )

κkij , (A10)

where Jtot = ∑
j (�=i) Jij and κ = α̃/(1 + α̃), and the product

in Eq. (A10) runs over antiparallel spin pairs. Equation (A9)
gives a stochastic distribution so that kij ∝ Jij . A stochastic
weight of a spin configuration {S} in a bond configuration {k}
is given by Eq. (A10).

Using the Eqs. (A4), (A9), and (A10), a pseudocode
of a heat-bath spin update with the O(N ) MC method is
implemented as follows:

p := 1

q := 1

c�

p := 2α̃ + 2

c�

q := 2α̃

c�

p := 2α̃2 + 2α̃ + 1

c�

q := 2α̃2 + 4α̃ + 1

ktot := Poisson(λtot)

for k = 1 to ktot do

j := Walker({λ})
if Sj = Si then

p := c�

pp

q := c�

qq

else

p := c�

pp

q := c�

qq

end if

end for

if Random() >
p

p+q
then Si := −Si .

A formula a := n means that n is plugged in for a. Poisson(λtot)
generates a random number from a Poisson distribution with
a mean of λtot, Walker({λ}) generates a random number from
a distribution given by Eq. (A9) [39]. Random() generates a
random number from a uniform distribution in the range from
0 to 1.

Since the cost of O(N ) MC method for interaction pairs
which give λij > 1 is more expensive than that of the
conventional MC method, switching the stochastic weight
from the one of the O(N ) MC method to the conventional one
reduces the cost of computation. For the combination use, we
introduce an arbitrary constant c and separate interacting pairs
into {ij}<c, a set of pairs giving λij < c, and {ij}�c, the set of
remaining pairs giving λij � c. Then, the spin flip probability,
p/(p + q), is replaced by p/(p + q exp{−β�E}), where �E

is the single-spin-flip energy difference for {ij}�c.
When an interaction Jij is randomly diluted to γ Jij (0 �

γ < 1), the multinomial probability mass function,
f ({k}; {λ}), becomes dependent on the site i. If we modify
the function for each site i, a large memory area which
is proportional to O(N2) is needed. We can save the large
memory area by changing the multiplicative factors, c’s in the
pseudocode, as

c�

p := 2α̃ + 1 + γ,

c�

q := 2α̃ + 1 − γ,

c�

p := 2α̃2 + (3 − γ )α̃ + 1,

c�

q := 2α̃2 + (3 + γ )α̃ + 1.

The constant γ substitutes the change in f ({k}; {λ}) with
the spin-flip probability. Employing the modification of the
multiplicative factors, we can use the same f ({k}; {λ}) as the
pure system for the diluted spin system.

For the antiferromagnetic system, the satisfied spin config-
uration inverts from parallel to antiparallel, so that the weight
function for the system is converted to

w({k}; {λ}; {S}) =
∏
j (�=i)

[
1 + SiSj

2
κkij + 1 − SiSj

2

]
. (A11)

For the spin glass model, we apply Eqs. (A10) and (A11)
for ferromagnetic and antiferromagnetic interactions, respec-
tively.
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