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Multicritical absorbing phase transition in a class of exactly solvable models

Arijit Chatterjee* and P. K. Mohanty
CMP Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India

(Received 29 September 2016; published 28 December 2016)

We study diffusion of hard-core particles on a one-dimensional periodic lattice subjected to a constraint that
the separation between any two consecutive particles does not increase beyond a fixed value n + 1; an initial
separation larger than n + 1 can however decrease. These models undergo an absorbing state phase transition
when the conserved particle density of the system falls below a critical threshold ρc = 1/(n + 1). We find that the
φk , the density of 0-clusters (0 representing vacancies) of size 0 � k < n, vanish at the transition point along with
activity density ρa . The steady state of these models can be written in matrix product form to obtain analytically the
static exponents βk = n − k and ν = 1 = η corresponding to each φk . We also show from numerical simulations
that, starting from a natural condition, φk(t)s decay as t−αk with αk = (n − k)/2 even though other dynamic
exponents νt = 2 = z are independent of k; this ensures the validity of scaling laws β = ανt and νt = zν.
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I. INTRODUCTION

The absorbing state phase transition (APT) [1] is the
most studied nonequilibrium phase transition in the past few
decades. Unlike equilibrium counterparts, these systems do
not obey the detailed balance condition, as the absorbing
configurations of the system can be reached by the dynamics
but cannot be left. Thus, by tuning a control parameter
these systems can be driven from an active phase to an
absorbing one where the dynamics cease. On the one hand,
the nonequilibrium dynamics generically make analytical
treatment of these systems highly nontrivial, giving rise to
a varied class of distributions as well as a rich variety of
novel correlations, and, on the other hand, the nonfluctuating
disordered phase being unique to the APT leads to a un-
conventional critical behavior. The most robust universality
class of the APT is directed percolation (DP) [2], which
is observed in the context of synchronization [3], damage
spreading [4], depinning transition [5], catalytic reactions [6],
forest fire [7], extinction of species [8], etc. Recently, DP
critical behavior was observed experimentally [9] in liquid
crystals. It has been conjectured [10] that in the absence
of any special symmetry or quenched randomness, the APT
in systems following short-range dynamics, characterized by
a non-negative fluctuating scalar order parameter, belongs
to DP.

Models involving more than one species of particles can
have interesting features [11,12]. Some of these models also
show multicriticality in a sense that the density of different
species may vanish at the critical point following power laws
with different exponents. In the one-dimensional coupled
directed percolation process [11], where the transmutation
is unidirectional, the order-parameter exponents for different
species are found to be β = 0.27,0.11, . . . , with the first
value being that of DP. A similar feature has been observed
numerically in the roughening transition occurring in growth
models with adsorption, and desorption at boundaries [13].
In the context of equilibrium, multicriticality has also been
seen in models with multiple components, such as the binary
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Ising model [14] and the Potts model [15]. In all these models
the order-parameter field associated with each component
vanishes simultaneously at some critical tuning parameter,
resulting in multicriticality. In this article we aim at studying
multicritical behavior in the context of the absorbing phase
transition. We show that simple diffusion of hard-core particles
on a lattice can undergo a multicritical absorbing phase
transition when additional constraints or particle interactions
are introduced; multiple order parameters turn out to be an
emerging feature of this single-component system.

The model we investigate here is a variant of the assisted
hopping models where hard-core particles hop to one of the
neighbors with rates that generally depend on the distance of
the moving particle from its nearest occupied neighbor [16–
19]; steady-state weights of some of these models are known
exactly [16,20,21]. We restrict the study only to a special case,
where diffusion of particles is additionally constrained not to
increase the interparticle separation beyond a fixed positive
integer n + 1. The steady-state weights of the models in this
class, parametrized by the integer n, can be written in matrix
product form. This helps us obtain the spatial correlation
functions exactly. In particular, the density of 0-clusters of
size 0 � k < n vanishes at the critical point following power
laws with k-dependent exponents. Thus, the cluster density φk

for each k can be considered as order parameters of the system
in addition to the natural order parameter ρa , namely, activity
density. Our careful numerical study of the decay of φk from a
natural initial condition [22,23], which is hyperuniform [24],
shows that the dynamical exponents α, νt , and z do satisfy
scaling relations separately for each k.

II. MODEL

The model is defined on a one-dimensional periodic lattice
of size L with sites labeled by i = 1,2, . . . ,L. Each site can be
occupied by at most one particle and correspondingly there is
a site variable si = 1,0 that represents the presence or absence
of the particle at site i. The dynamics of the model are given
by

10k10m1 →
{

10k+110m−11 for k < n, m � 1
10k−110m+11 for m < n, k � 1,

(1)
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FIG. 1. Schematic description of the model. Particles surrounded
from both sides by other particles, or by 0-clusters of size greater
than or equal to n, are inactive, whereas all other particles are active.
For n = 3, the active particles of a typical configuration are marked
as l, r , and a depending on whether they can move to left, right, or
in both directions. A 0-cluster of size greater than n (marked with
a bracket) can appear in the initial condition of an active phase, but
they eventually disappear as the system reaches the stationary state.

where a particle moves to a vacant nearest neighbor chosen
randomly if the move does not increase interparticle separation
beyond n + 1 (n being a fixed integer parameter of the
model). Clearly, the total number of particles N = ∑L

i=1 si , or
equivalently the density ρ = N/L, is conserved. A schematic
description of the dynamics is given in Fig. 1.

Alternatively, the dynamics of the model can be considered
as constrained diffusion of hard-core particles. The constraint
comes from the fact that the diffusing particle’s distance,
measured from the nearest particle, does not exceed n + 1.
We further refer to this model as the constrained diffusion
model (CDM). In fact, recently, a similar assisted hopping
model was introduced and solved exactly [16], where particle
hopping depends on the interparticle separation, but unlike
CDM particles there can hop by one or more steps across the
empty regions.

In this constrained diffusion model, a particle that is
surrounded from both sides by other particles, or by 0-clusters
of size greater than or equal to n, are inactive as they cannot
move; all other particles are active. Thus, the system has many
absorbing configurations where all particles are inactive. It is
important to note that the dynamics allow a decrement of length
of all 0-clusters but an increment of only those having length
less than n. Thus it is evident that when ρ � 0, i.e., when the
average separation between neighboring particles is large, all
the small 0-clusters (size less than n) of the system tend to grow
in size until they reach a maximum n. In this case, the number
of particles is not enough to reorganize the distances between
the neighboring particles below n + 1, forcing the system to
fall into an absorbing configuration. On the other hand, for
high density the system has a large number of clusters of size
less than n that would grow at the expense of the larger ones,
but all of them cannot reach the maximum value n. Thus, all
large clusters (size greater than n), if present in the initial state,
would eventually be destroyed and the system remains active
forever; this is surely the case when ρ > 1

n+1 . Clearly, one
expects an absorbing phase transition to occur at some density
ρ � 1

n+1 . We see later [in Eq. (14)] that the critical density is
in fact ρc = 1

n+1 .
Let us consider the system with ρ > 1

n+1 where the steady
state is certainly active. The initial configurations of the system
in this case may consist of several 0-clusters of size greater than
n, but all these configurations are nonrecurring as the system
leaves these configurations by destroying the large clusters
and never visits them again. The stationary state of the system
only consists of configurations that are recurring, where all
0-clusters are of size n or less. Thereby in the steady state, if

the dynamics (1) allow a particle to move from left to right they
also allow the reverse, i.e., a move from right to left. Since both
hopping rates are unity, the steady state satisfies the detailed
balance condition with a stationary weight w(C) = 1 for all
recurring configurations. Thus, representing the configurations
as C ≡ {10m1 10m2 · · · 10mN }, we have

w({10m1 10m2 · · · 10mN }) =
{

1 ∀mi � n

0 otherwise, (2)

where the second step ensures that the steady-state weight
of the nonrecurring configurations is zero. The corresponding
probability is then

PN ({si}) = w({si})
�N

, �N =
∑
{si }

w({si})δ
(∑

i

si − N

)
.

(3)
Here �N is the number of recurring configurations of a system
of size L having N particles. It is customary to work in the
grand canonical ensemble (GCE) where the density of the
system can be tuned by a fugacity z; the partition function in
the GCE is Z = ∑∞

N=0 �NzN . To proceed further, we make
an ansatz that the steady-state weights of the configurations
can be expressed in the matrix product form

w({10m1 10m2 · · · 10mN }) = Tr[DEm1 · · · DEmN ], (4)

where matrices D and E represent 1 and 0, respectively. All
that we need for a matrix formulation to work is to find a
representation of D and E that correctly generates the steady-
state weights given by Eq. (2). The matrix formulation is very
useful here, as one can simply set

Em = 0 for m > n (5)

to ensure that the probability of all nonrecurring configurations
is 0. Further, let us assume that the matrix D = |α〉〈β|, where
|β〉 and 〈α| are yet to be determined. Now the recurring
configurations are equally likely if

〈β|Em|α〉 = 1 for 0 � m � n. (6)

Together, Eqs. (5) and (6) are satisfied by the (n + 1)-
dimensional matrices

E =
n∑

k=1

|k〉〈k + 1|, |α〉 =
n+1∑
k=1

|k〉, |β〉 = |1〉,

D = |α〉〈β|. (7)

Now we can write a grand canonical partition function

ZL(z) = Tr[T (z)L] for T (z) = zD + E, (8)

where the fugacity z controls the particle density ρ. The weight
of the configuration having no particles is Tr[EL] = 0 for
L > n [from Eq. (6)]. Thus, ZL(z) is the sum of the weights
of all other configurations that have at least one particle,

ZL(z) = z

L∑
k=1

Tr[Ek−1DT L−k] = z

L∑
k=1

〈β|T L−kEk−1|α〉.

(9)

For any specific n, ZL(z) can be calculated explicitly. We
prefer to use a generating function [or partition function of the

062141-2



MULTICRITICAL ABSORBING PHASE TRANSITION IN A . . . PHYSICAL REVIEW E 94, 062141 (2016)

system in the variable length ensemble (VLE)]

Z (z,γ ) =
∞∑

L=1

γ LZL(z) = 〈β| γ z

I − γ T

1

I − γE
|α〉

= γ z
g′(γ )

1 − zg(γ )
,

g(x) =
n∑

k=0

xk+1 = x
xn+1 − 1

x − 1
, (10)

which, together with z and γ , determines the macroscopic
variables

〈L〉 = γ

Z

∂Z

∂γ
= 1 + γ z

g′(γ )

1 − zg(γ )
+ γ

g′′(γ )

g′(γ )
,

〈N〉 = z

Z

∂Z

∂z
= 1

1 − zg(γ )
. (11)

The thermodynamic limit 〈L〉 → ∞, where the VLE is
expected to be equivalent to the GCE, corresponds to z →
1/g(γ ). Also in this limit the particle density is

ρ(γ ) = 〈N〉
〈L〉 = 1

γ

g(γ )

g′(γ )
. (12)

Since both g(γ ) and γg′(γ ) are polynomials of order n + 1
the density ρ must be finite as γ → ∞, which corresponds to
the limit z → 0, as z = 1/g(γ ),

lim
z→0

ρ(z) ≡ lim
γ→∞ ρ(γ )

= 1

n + 1
+ 1

(n + 1)2

1

γ
+ O

(
1

γ 2

)
. (13)

This proves that the critical density is

ρc = 1

n + 1
(14)

and the system goes to an absorbing state when ρ < ρc.
Further, Eq. (13) indicates that, near the absorbing transition,

γ −1 � (n + 1)2(ρ − ρc). (15)

In Fig. 2(a) we have plotted ρ as a function of γ −1 for n =
2, with the inset showing z ≡ g(γ )−1 as a function of γ −1.
Figure 2(b) shows the plot of ρ(z). Clearly, both in the limit
z → 0 or equivalently when γ → ∞, ρ → 1

3 , indicating that
an absorbing phase transition occurs at ρc = 1

3 .
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FIG. 2. (a) For n = 2, the density ρ and the fugacity z = g(γ )−1

(inset) are shown as a function of γ −1 following Eq. (27). (b)
Parametric plot of ρ as a function of z.

III. MULTICRITICALITY

At the critical density ρc all 0-clusters are of length n.
Thus, as ρ → ρc from above, i.e., in the active phase ρ > ρc,
the number of 0-clusters having size k < n must individually
vanish. Defining the density of such clusters as φk , we have

φk = 〈10k1〉 = γ k+2z2

Z (z,γ )
Tr

[
DEkD

1

I − γ T

]

= γ k+2z2

Z (z,γ )
〈β|Ek|α〉〈β| 1

I − γ T
|α〉 = ρzγ k+1 (16)

for 0 � k < n. Here, in the last step we have used the fact that

〈β| 1

I − γ T
|α〉 = g(γ )

γ − γ zg(γ )
, 〈β|Ek|α〉 = 1. (17)

In the thermodynamic limit z → g(γ )−1, we have

φk = ρ
γ k+1

g(γ )
= γ k

g′(γ )
(18)

and in the critical limit γ → ∞ [where g(γ ) � γ n+1],

φk � γ k−n � (n + 1)3−2k(ρ − ρc)βk , βk = n − k. (19)

In Fig. 3(a) we have plotted φk for n = 2 as a function of
density ρ. Both φ0 and φ1 vanish as ρ → ρc = 1

3 and thus each
of them can be considered as an order parameter that describes
the APT. However, φ2 does not vanish and at the critical point
φ2 = (1 − ρc)/2 because there is an exact correspondence 1 −
ρ = ∑n

k=0 kφk that holds for any n and γ . Also at γ = 1, which
corresponds to the density 2

n+2 [from Eq. (12)], all φk take the
same value 2

(n+1)(n+2) [from Eq. (16)]. Thus, for n = 2, the

φk cross each other at ρ = 1
2 . In Fig. 3(b) we show φk as a

function of ρ − 1
3 in logarithmic scale; both φ0 and φ1 show

power laws as a function of � = ρ − ρc in logarithmic scale,
suggesting that φ0,1 ∼ �β0,1 with β0 = 2 and β1 = 1.

Returning to the general n, all the φk with k = 0,1, . . . ,n −
1 vanish as ρ → ρc following φk � (ρ − ρc)βk with exponents
βk = n − k. The natural question is then whether other
exponents associated with the φk will be modified such that
the standard scaling relations are obeyed. The answer is
affirmative, which we will discuss in detail. However, let
us recall that, besides these n observables φk , there is a
natural order parameter ρa , the density of active particles, that

0.5 1ρ
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ρ −ρ
c
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-2
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0.2 ρ
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φ2 φ1

φ0

φ0
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φ2

FIG. 3. (a) For n = 2, φk = 〈10k1〉 are shown as functions of
ρ for k = 0,1,2. Clearly, φ0,1 vanishes as ρ → ρc = 1/3, whereas
φ2 → (1 − ρc)/2. (b) Logarithmic-scale plot of φ0,1,2 as a function
of ρ − ρc with slope βk = 2 − k. The dashed line corresponds to the
near critical approximation of φk , given by Eq. (19).
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conventionally characterizes the APT. Since in the steady state
inactive particles are surrounded from both sides by 0-clusters
of size 0 or n, the density of active particles is

ρa =
n∑

k1,k2=0

ψk1,k2 − ψ0,0 − ψn,n

for ψk1,k2 = 〈10k1 10k2 1〉 = ρz2γ k1+k2+2, (20)

where 0 � k1 and k2 � n. Now, for a thermodynamic system
z → 1/g(γ ) and in the critical limit (as γ → ∞),

ρa = ρ

g(γ )2
[g(γ )2 − γ 2 − γ 2n+2]

∼ ρc(ρ − ρc) + O((ρ − ρc)2).

Thus, the natural order-parameter exponent associated with ρa

is β = 1.
To calculate other static exponents ν and η we study the

correlation functions, first the density correlation function

C(r) = 〈sisi+r+1〉 − ρ2

= γ 2z2

Z (z,γ )
〈β|(γ T )r |α〉〈β| 1

I − γ T
|α〉 − ρ2

= ργ

g(γ )
〈β|(γ T )r |α〉 − ρ2. (21)

Similarly, the correlation of the order parameters can be
calculated using a variables sk

i that takes a nonzero value 1
only when the ith site is occupied and exactly k neighbors to
its right are vacant (thus φk = 〈10k1〉 = 〈sk〉),

Ck(r) = 〈
sk
i s

k
i+r+1

〉 − φ2
k = γ 2k+4z4

Z (z,γ )
〈β|Ek|α〉2

×〈β|(γ T )r |α〉〈β| 1

I − γ T
|α〉 − φ2

k

= ργ 2k+3

g3(γ )
〈β|(γ T )r |α〉 − φ2

k . (22)

Clearly, the r dependence of C(r) and Ck(r) comes from
the same factor 〈β|(γ T )r |α〉 and the detailed structure of
these correlation functions would depend on the nature of the
eigenvalues of T .

Eigenvalues can be calculated explicitly for any given n,
but first let us extract some general results. The characteristic
equation for the eigenvalue equation for T is

λn+1 − z

n∑
k=0

λk = 0, (23)

which is equivalent to zg(λ) = λn+2. Since g(x) satisfies an
identity g( 1

x
) = g(x)

xn+2 , using z = g(γ )−1 one can check that
λ = γ −1 is one of the solution of the characteristic equation.
Again, since the characteristic equation changes sign once,
from Descartes’ sign rule we conclude that there is exactly
one positive real eigenvalue; thus the largest eigenvalue of T is
λ1 = 1/γ . Assuming that the eigenvalues {λk} are ordered such
that λ1 < |λ2| � · · · |λn+1| (the modulus is taken as generically

the eigenvalues could be complex), we write

〈β|T r |α〉 = A1

(
λr

1 +
n+1∑
k=2

Akλ
r
k

)
,

where Ak are constants, independent of r . Since, the correlation
function C(r) vanishes in the limit r → ∞, we must have
A1 = ρg(γ )/γ , which results in the asymptotic form of the
correlation function as

C(r) � ρ2A2(γ λ2)r , Ck(r) � φ2
kA2(γ λ2)r . (24)

If λ2 is complex, then λ3 must be λ∗
2, because complex roots of

real-value polynomials appear pairwise. Taking λ2,3 = λ̄e±iθ ,
the correlation functions can be written as

C(r) � ρ2A2(γ λ̄)r cos(rθ ),

Ck(r) � φ2
kA2(γ λ̄)r cos(rθ ). (25)

Let us calculate the correlation functions explicitly for n =
2, where the eigenvalues of the transfer matrix T = zD +
E, with z−1 = g(γ ) = γ + γ 2 + γ 3 and D and E given by
Eq. (7) are

λ =
{

1

γ
,λ̄e±iθ

}
, λ̄ = γ

g(γ )
,

tan(θ ) =
√

3 + 2γ + 3γ 2

1 + γ
. (26)

This leads to

ρ = 1 + γ + γ 2

1 + 2γ + 3γ 2
, φk = γ k

1 + 2γ + 3γ 2
. (27)

Thus, in this case the spatial correlation functions would show
damped oscillations of period 2π/θ . We calculate the density
correlation functions of the CDM with n = 2 at density ρ =
10
29 � 0.345, which is close to the critical density ρc = 1/3, and
plot C(r) as a function of r in Fig. 4. We compare this with
the analytic results, using γ = 10.8 [corresponding to ρ = 10

29
in Eq. (25)]. The oscillations are consistent with θ = 1.03
calculated from Eq. (26).

It is important to note that, for any n, all Ck(r)s have
the same r dependence, suggesting a unique length scale

0 5 10 15 20r

-0.2

-0.1

0

0.1

0.2

C
(r

)

FIG. 4. For n = 2, the density correlation function C(r) calcu-
lated from Monte Carlo simulations for ρ = 10

29 � 0.345, a value
closer to the critical density ρc = 1/3, is compared with the analytical
results calculated using Eqs. (25)–(27).
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ξ = 1/ ln(γ λ̄). At the critical point γ → ∞, the eigenvalues
λk approach 1

γ
e2πik/(n+1) and thus |λk|/λ1 → 1, resulting in

a diverging correlation length ξ . Near the critical point, we
may write, to leading order, γ λ̄ − 1 ∝ 1

γ
; thus, the correlation

length ξ ∼ γ ∼ (ρ − ρc)−ν , with ν = 1. Also, since the
correlation functions are expected to decay as r−(d−2+η), for
this one-dimensional model (d = 1) we get η = 1.

Now let us turn our attention to the dynamic exponents at
the critical point. At the critical point, every particle has exactly
n vacant sites to their right. If we add an extra particle, it will
break one of the 0-clusters into two, each having size less than
n, creating some active particles in the system. It is easy to see
that these active particles would perform an unbiased random
walk, exploring a typical region of size

√
t in time t . Thus,

the dynamic exponent is z = 2. Now assuming that the scaling
relations νt = νz, we expect νt = 2.

Since the φk vanish at the critical point, it is natural to
expect that their decay from an active initial condition follows
a power law

φk(t) ∼ t−αk , αk = β

νt

= n − k

2
. (28)

Of course, we have assumed scaling relations to hold here,
while their validity is doubted [17,23,25] in similar models.
Thus it is necessary that we verify from numerical simulations
whether the scaling relations are indeed valid here.

To measure the decay exponents at the critical density ρc

corresponding to any φk , one must carefully choose initial
configurations with some nonzero φk that possesses natural
correlations of the critical state. It has been argued [22,24] and
verified in many models of the APT [23,26] that the critical
absorbing state is hyperuniform, i.e., the variance of density in
the critical state is sublinear in volume (here length L). Usually
densities in hyperuniform states are anticorrelated and thus it is
useful to study decay from configurations that already possess
the natural correlations of the critical state. Such natural initial
conditions can be generated following the prescriptions given
in Ref. [22]. In the restricted diffusion model, starting from the
absorbing configuration, 1s separated by 0s, we allow particles
to diffuse stochastically for a very short time (say, 0.1 Monte
Carlo step ) to create an active state and then turn on the
dynamics. The decay of φk(t) for n = 2 and 3 is plotted in
Figs. 5(a) and 5(b), respectively, in logarithmic scale; they
show that αk = (n − k)/2 consistently.

We also calculate the dynamical exponent z from the finite-
size corrections. At the transition point,

φk(t,L) = t−αFk

(
t

Lz

)
. (29)

Starting from the natural initial condition, we measure φk(t,L)
for different L and plot φk(t,L)tαk as a function of t

Lz in
Figs. 6(a) and 6(b), respectively, for k = 0 and 1, taking
z = 2. A good data collapse confirms that z = 2. Note that
the fluctuations and a small deviation of α0 = 1.02 from the
expected value 1 can be blamed on the small numerical value
of φ0.
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FIG. 5. At the critical point the order parameters φk(t) for k =
0,1 . . . ,n − 1 decay as t−αk , where αk = n−k

2 . The decay of φk(t),
from a natural initial condition (see the text for details), is shown for
(a) n = 2 and (b) n = 3 for system size 3 × 214 and 216, respectively.

IV. MAPPING TO THE MISANTHROPE PROCESS

We must mention that the CDM can be mapped to the
misanthrope process in one dimension [27], where particles
do not obey the hard-core restriction and hop, one at a time,
from a site (usually called a box) to one of the neighbors
with a rate that depends on the occupation number of both
the departure and the arrival site. In this mapping, 1s are
considered as boxes carrying exactly as many particles as the
number of vacant sites in front them. Thus, the dynamics of the
CDM translates to hopping of a single particle from a box to a
neighbor with a restriction that the hopping must not increase
the occupation of the target box beyond n. Thus the system
falls into an absorbing state (where all boxes contain n or
more particles) when particle per box η = (L − N )/N exceeds
ηc = n. Thus, in the active phase all boxes contain less than
or equal to n particles and the partition function in the GCE
is Z(x) = F (x)L, where F (x) = ∑n

k=0 xk . The corresponding
density is then η(x) = 1

F (x)

∑n
k=0 kxk . The order parameters

φk are simply the steady-state probability that a box contains
k particles; φk = xk/F (x) vanish as xk−n in the limit x → ∞,
or equivalently φk ∼ (n − η)n−k as in this limit η ∼ n − 1/x.
Although the φk can be calculated efficiently in the box
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FIG. 6. Scaling collapse of order parameters φ0,1 for n = 2
following Eq. (29). At the critical critical point, φk(t)tαk is a universal
function of tL−z. Data collapse is shown for (a) k = 0 and (b) k = 1
for system size L = 300 × (1,2,4,8). Here we take z = 2 and use αk

as a fitting parameter. data collapse is observed for (a) α0 = 1.02 and
(b) α1 = 0.5.
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particle picture, it is rather difficult to calculate the correlation
functions in general, as the information about particle ordering
is lost in the mapping. In such cases, it is useful to write the
steady state in matrix product form [28], whenever possible.

V. SUMMARY

We have studied diffusion of hard-core particles on a
one-dimensional periodic lattice, where particle movement
is constrained such that the interparticle separation is not
increased beyond n + 1. Thus particles that are surrounded
from both sides either by other particles or by 0-clusters
of size greater than or equal to n are immobile or inactive,
whereas all other particles are active. Thus the initial distances
between two neighboring particles, if larger than n + 1, can
only decrease if one of the particle is active. This constrained
diffusion model undergoes an absorbing state phase transition
when the density is lowered below a critical value ρc = 1

n+1 .
Interestingly, besides the activity density ρa , the APT here can
be characterized by the steady-state densities of 0-clusters of
size 0 � k < n (i.e., φk = 〈10k1〉 = 〈sk

i 〉) that vanish simulta-
neously at ρc. We show that the steady state of the CDM can
be written as a matrix product, which helps us obtain the static
critical exponents exactly: ρ approaches ρc from the active
side, ρa ∼ (ρ − ρc)β with β = 1, and other order parameters
vanish as φk ∼ (ρ − ρc)βk with βk = n − k. This multicritical
behavior is characterized by correlation exponents ν = 1 = η,
which are the same for all φk as 〈sk

i s
k
i+r〉 ∼ e−r/ξ with ξ ∼

(ρ − ρc)−1. The steady-state dynamics of the CDM in the
active phase is only unbiased diffusion of particles, leading to

an dynamical exponent z = 2. Thus, assuming that the scaling
relations νt = zν and α = β/νt hold, one expects that νt = 2
is independent of k whereas α ≡ αk = (n − k)/2. We verified
the scaling relations explicitly from careful Monte Carlo
simulations of the model by measuring z and αk for n = 2,3.
In these simulations, the major difficulty is to choose initial
conditions that retain natural correlations of the stationary
state, which we overcome by using natural initial conditions
[22].

Multicritical phase transitions are not specific to absorbing
phase transitions. It has been observed in many other contexts,
like in eight-vertex and solid-on-solid models [29,30], the
N -state chiral Potts model [31], antiferromagnetic spin chains
[32], etc. Also, this has been observed in the multispecies
directed percolation process [11] and in growth models with
adsorption [13]. In all these models, the critical point could be
characterized by many order parameters, each corresponding
to a particular kind of order, but they all vanish at the
same critical point. Exactly solvable models are a step
forward in understanding the nature of the transition. It would
be interesting to look for perturbations that could produce
different ordered phases of the CDM at different densities.

ACKNOWLEDGMENTS

The authors acknowledge Amit K. Chatterjee for helpful
discussions. P.K.M. thankfully acknowledge financial support
from the Science and Engineering Research Board, India
(Grant No. EMR/2014/000719).

[1] M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium
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