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Interacting Brownian dynamics in a nonequilibrium particle bath
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We set up a mesoscopic theory for interacting Brownian particles embedded in a nonequilibrium environment,
starting from the microscopic interacting many-body theory. Using nonequilibrium linear-response theory, we
characterize the effective dynamical interactions on the mesoscopic scale and the statistics of the nonequilibrium
environmental noise, arising upon integrating out the fast degrees of freedom. As hallmarks of nonequilibrium,
the breakdown of the fluctuation-dissipation and action-reaction relations for Brownian degrees of freedom is
exemplified with two prototypical models for the environment, namely active Brownian particles and stirred
colloids.
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I. INTRODUCTION

The notion of Brownian motion refers to the thermal
fluctuations of some mesoscopic particles in contact with
a bath of smaller particles. Colloidal beads dissolved in a
simple fluid are the historical paradigm. But the concept
generalizes to any slow mesoscopic degrees of freedom in
contact with a bath of fast microscopic degrees of freedom.
In fact, there are wide-ranging applications of the basic theme
outside the realm of physics [1]. The essential feature is a
scale separation between the Brownian and bath degrees of
freedom that allows for some systematic coarse-graining of
an otherwise intractable many-body system. A convenient
approach to formalize this seminal insight is via (generalized)
Langevin equations, which can be formulated for a wide
variety of phenomena and have helped to rationalize a range
of interesting phenomena from long-time tails [2] to critical
fluctuations [3]. They have therefore become a prevalent tool in
the quantitative description of soft matter and, more generally,
noisy systems.

Even though there exist systematic derivations of such
mesoscopic equations of motion from an underlying micro-
scopic many-body Hamiltonian through the elimination of the
fast degrees of freedom [4–6], one eventually typically appeals
to equilibrium statistical mechanics in order to make the formal
expressions practically useful. Namely, to bypass the explicit
solution of the microscopic dynamic equations, the “noise”
fluctuations that agitate the mesoscopic degrees of freedom are
assigned a weight in accordance with Boltzmann’s principle
[7]. By construction, their correlations then satisfy detailed
balance in the form of a fluctuation-dissipation theorem (FDT)
[8]. This implies, in particular, that they induce mesoscopic
correlations in accordance with equipartition. Moreover, the
average mesoscopic dynamics is found to be a gradient flow
in a convex free-energy landscape. Being derived by such a
(thermodynamic) potential, the mean effective interactions of
the Brownian degrees of freedom themselves obey the action-
reaction principle. In other words, in equilibrium stochastic
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thermodynamics, the symmetries holding on the microscopic
level can essentially be lifted up to the mesoscopic scale. The
theory remains valid even when some of these mesoscopic
degrees of freedom are externally driven out of equilibrium,
as long as local detailed balance persists [9,10], i.e., under
the assumption that the source of nonequilibrium does not
appreciably affect the (many) bath degrees of freedom. For
this reason, the concept of a Brownian scale separation, as
embodied in the Langevin equation, has played a central role in
the development of a framework of stochastic thermodynamics
that reaches out to conditions far from equilibrium [11,12]
and in the study of nonequilibrium fluctuation and work
relations [13].

In contrast, none of the above symmetry properties gen-
erally survives on the Brownian scale if the bath itself is
driven out of equilibrium. Not only is the detailed balance
of the Brownian degrees of freedom then lost, but also
equipartition gives way to a more complex energy partition
rule [14], stochastic forces are no longer of gradient-type
[15], and the action-reaction principle is violated [16]. In
soft matter physics, one finds many examples for interacting
probes in nonequilibrium baths. One may naturally think of a
suspension of colloids immersed in a nonequilibrium solvent,
such as a sheared fluid [17]; a granular [18], glassy [19],
or active-particle suspension [20]; or even the cytoplasm of
a living cell [21]. It would certainly be of great interest
to establish a self-contained coarse-grained description for
the colloids in such situations. Yet, the usual equilibrium
arguments invoked in the construction of a coarse-grained
Langevin description are not any more applicable. So the
reduced stochastic description (assuming it still exists) must be
found by other means, in the worst case by explicitly integrating
out the dynamics of the nonequilibrium environment. It should
go without saying that, for scientifically or technologically
interesting systems, this is almost always an impossible task.

There is thus great interest in defining suitable conditions
and finding general approximate methods [22,23] that allow
for reliable and useful predictions on the Brownian scale, even
if the microscopic degrees of freedom of the environment
are driven far from equilibrium. Among other things, such
methods should enable us to infer the key properties of the
nonequilibrium environment from the observed mesoscopic
dynamics. Ideally, they should moreover help to unravel the
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formal structure of the coarse graining, such that we can iden-
tify the mechanisms underlying the emergent violations of the
detailed-balance and action-reaction principles, which are not
always straightforwardly discernible on the mesoscopic scale.
Finally, this would allow the logical chain of arguments used
to infer environmental conditions from Brownian dynamics
to be reversed, namely to tailor some desired mesoscopic
properties by a fine-tuning of the nonequilibrium driving of
the microstatistics of the environment, with some obvious
technological implications.

A good candidate for such an approximate method for
bypassing the integration of the microscopic dynamics is
suggested by the theory of Brownian motion itself. If the “fast”
bath degrees of freedom of some Brownian system themselves
admit a coarse-grained description by a mesoscopically driven
(generalized) Langevin theory routed in its own equilibrium
bath, the resulting theory fulfills all of the above requirements.
An example for a successful implementation of such a
scheme is provided by the theory of nonequilibrium fluctuating
hydrodynamics [24], on which theories of Brownian dynamics
in nonequilibrium baths can be based [25,26].

In the following, we pursue this idea in a slightly more
abstract and fully particle-based framework, i.e., without
appealing to a hydrodynamic limit for the environment degrees
of freedom. We do assume, instead, that the environment is
made up of some sort of particles that evolve according to
some driven Markovian stochastic dynamics enjoying local
detail balance. In contrast to standard Brownian dynamics, we
thus do not require a direct buffering of the probe degrees
of freedom by some equilibrium thermal reservoir but only
an indirect one, mediated by the nonequilibrium environment
(cf. Fig. 1). Technically, we employ nonequilibrium linear-
response theory [27–35] to derive a Langevin equation for
the interacting probe particles that we assume to be weakly
coupled to the interacting many-body system acting as the
environment. Following [36,37], we then go beyond a merely
static description that would only account for systematic probe
interactions induced by the nonequilibrium environment, such
as nonequilibrium depletion forces [38,39]. We explicitly

FIG. 1. Schematic representation of the three-level scheme em-
ployed by our theory: the probes (blue) representing the system
are embedded in a nonequilibrium environment, e.g., a fluid of
smaller driven particles (red), which are in contact with a stochastic
equilibrium thermal bath (light blue).

look for the fluctuations of such induced forces around their
average values. In Sec. II, we obtain formal expressions for
these fluctuating forces, the friction, and the noise statistics.
When the driving is off, we retrieve the expected detailed
balance condition connecting the noise correlation to the
friction memory kernel. But we can also analyze how this
relation changes when the environment is driven (far) out of
equilibrium and quantify the violations of detailed balance
and the reciprocal relations in terms of both excess dynamical
activity [40–43] and probability currents. The latter result
in the lack of an action-reaction principle for the induced
probe interactions [16,17,44,45]. Section III exemplifies the
theoretical scheme with the help of two paradigmatic examples
that can explicitly be worked out. First, we treat analytically
a single probe linearly coupled to a fluid of self-propelled
particles. This toy model clearly displays the breakdown of
detailed balance and allows us to touch on the scope of
the notion of effective temperature. Secondly, we employ
Brownian dynamics simulations to analyze the effective
friction forces induced between two probes suspended in a
driven fluid. The numerical evaluation of our general analytic
expressions for the time-dependent friction matrix nicely
reveals the expected violations of the action-reaction principle,
as well as the possible appearance of negative mobility. Finally,
in Sec. IV, we conclude with a summary and an outlook.

II. GENERAL THEORY

We consider a d-dimensional system made up of M probe
particles, with mass mi and positions Qi , which interact with
an environment composed of N � 1 degrees of freedom
denoted xk . The environment is in contact with an equilibrium
bath at inverse temperature β. The probes obey Newton’s
equation of motion,

miQ̈i = Ki(Qi) + gi({xk},Qi), (1)

where gi ≡ −λ∂Qi
Ui({xk},Qi) is the interaction force between

the probe i and the environment, with λ a small dimensionless
parameter. All the other forces are incorporated in K , which
are (optional) direct interactions between the probes and
additional external ones. Their specific form is irrelevant in the
following. They are only required to be sufficiently confining
so as to allow for a unique stationary state. Throughout the text,
we use the shorthand {. . .k} to denote the entire set of degrees of
freedom labeled by k. We assume that the environment evolves
according to a Markovian stochastic dynamics, enjoying local
detail balance. Hence, with respect to standard approaches,
we lift such a condition from the dynamics of the system to
that of the environment. For concreteness, we can think of the
overdamped Langevin equations

ẋk = μF − λμ

M∑
i=1

∂xk
Ui +

√
2μ/βξk. (2)

Here F ({xk}) consists of interparticle potential forces
−∂xk

V ({xk}), and external ones that may contain a nonpotential
driving f ({xk}) setting the environment out of equilibrium. The
ξ ’s are centered Gaussian noises, white and uncorrelated.

Let {Yi} be the set of average positions around which the
probes fluctuate as a consequence of the interactions with the
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environment. Here we are concerned with the fluctuations
induced by the presence of the environment, for which we
seek a reduced description. Namely, we aim at integrating
out of (1) the environment coordinates by averaging the
probe-environment coupling with the appropriate distribution
for xk . We expect noise and friction to emerge in this process,
together with indirect forces between the probes, mediated by
the environment. Toward that end, we rewrite Eq. (1) as

miQ̈i = Ki + 〈gi〉 + ηi, (3)

where we split the environment-probe coupling into a system-
atic part 〈gi〉 and a random contribution ηi ≡ gi − 〈gi〉. The
former is defined as the mean force exerted by the environment
on probe i, and it reads

〈gi({xk},Qi)〉≡
∫

d{xk}gi({xk},Qi)ρ({xk}|{Qi}), (4)

with ρ({xk}|{Qi}) the probability density of the environment
conditioned by the probes being in positions {Qi}. We
work under the usual assumptions made in the derivation
of Langevin equations, i.e., a small variation of the probe
momentum after a single particle-probe interaction (large
mass difference), and a weak coupling between probes and
environment. Under these conditions, the fluctuations of probe
i around the preferred state Yi are small, and its force on the
whole environment can be expanded to linear order in the
displacement from Yi :

λ

N∑
k=1

∂xk
Ui = λ

N∑
k=1

∂xk
Ui

∣∣∣∣
Qi=Yi

− [Qi(t) − Yi]
N∑

k=1

∂xk
gi

∣∣∣∣
Qi=Yi

. (5)

Here it is useful to regard gi as an external potential
perturbing the environment, modulated in time via the protocol
Qi(t) − Yi . In view of (5), it is then natural to express the
conditional average (4) in terms of unperturbed averages
〈· · · 〉0, corresponding to all probes sitting in the mean positions
{Yi}. To do so, we make use of the response theory for
perturbations about nonequilibrium states. The linear-response
formula in general reads [46]

〈A(t)〉 = 〈A(t)〉0 + β

2

∑
j

∫ t

t0

ds hj (s)

×
(

d

ds
〈Bj (s);A(t)〉0 − 〈LBj (s);A(t)〉0

)
, (6)

where A is the observable of interest, and Bj are the
perturbation potentials switched on at time t0 and modulated
in time through the protocol hj (s). The operator L and
the average 〈. . . ; . . . 〉0 stand for, respectively, the backward
generator of the unperturbed dynamics and the connected
average with respect to it. In (6) the first integrand is the usual
correlation of the observable with the entropy production, as
appears in the Kubo formula. The second one is a frenetic
contribution that contains the excess dynamical activity, LBj ,
caused by the perturbation. In equilibrium, they make equal

contributions [34]:

d

ds
〈Bj (s);Ai(t)〉eq = −〈LBj (s);Ai(t)〉eq. (7)

Here we are interested in the response of gi({xk},Qi) to the
perturbations in (5). Hence, with the identifications A = gi ,
Bj = gj , and hj = Qj − Yj , (6) becomes

〈gi(t)〉 = 〈gi〉0 +
M∑

j=1

β

2

∫ t

t0

ds[Qj (s) − Yj ]

×
[

d

ds
〈gj (s); gi(t)〉0 − 〈Lgj (s); gi(t)〉0

]
, (8)

where L, the backward generator of the unperturbed dynamics
of the environment, reads for (2)

L = μ

N∑
k=1

⎡
⎣Fk∂xk

− λ

M∑
i=1

∂xk
Ui

∣∣∣∣∣
Qi=Yi

∂xk
+ 1

β
∂2
xk

⎤
⎦. (9)

The summands in (8) are the forces due to the linearized
fluctuations of the probes around their preferred states.
Assuming that the environment was put in contact with the
probes at time t0 = −∞, so that no correlation with the initial
conditions is retained, an integration by parts yields

〈gi(t)〉 = 〈gi〉0 +
M∑

j=1

[
Gij (t) −

∫ t

−∞
ds ζij (t − s)Q̇i(s)

]
.

(10)

Here we defined the memory kernel

ζij (t − s) ≡ β

2

(
〈gj (s); gi(t)〉0 −

∫ s

−∞
du〈Lgj (u); gi(t)〉0

)
,

(11)

which enters both the friction and the statistical forces
mediated by the environment,

Gij (t) ≡ [Qj (t) − Yj ]ζij (0), (12)

including the “self-interaction” (i = j ) and the forces between
different probes (i �= j ).

Equation (12) establishes the connection between the
friction kernel and the fluctuating statistical force, namely

∂Qj
Gij = ζij (0). (13)

For i �= j , Eq. (13) relates environment-mediated interactions
to cross-friction between probes. It was proposed by De Bacco
et al. [47] for equilibrium systems arguing on the basis of
Onsager’s regression principle. Here we gave a formal proof of
this relation that extends its validity to nonequilibrium states.

In equilibrium, where averages are denoted 〈· · · 〉eq, the
frenetic contribution can be eliminated in favor of the entropic
term according to (7),

〈gj (s); gi(t)〉eq = −
∫ s

−∞
du〈Lgj (u); gi(t)〉eq. (14)

We thus retrieve that the friction kernel is a symmetric matrix,

ζij (t − s) = β〈gj (s); gi(t)〉eq = ζji(t − s), (15)
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since correlations are functions of |t − s| only, thanks to
time-reversal invariance. The symmetry (15) translates into the
condition ∂Gij /∂Qj = ∂Gji/∂Qi , which suffices to make gi

derive from an effective (thermodynamic) potential F({Qi}).
That such a potential is the Helmholtz free energy of the
environment,

F ≡ − 1

β
ln

∫
d{xk}e−β(λ

∑N
i=1 Ui+V ), (16)

is easily seen by introducing the Boltzmann factor in (4):

〈gi〉eq = −
∫

d{xk}λ∂Qi
Ui e

−β(
∑N

i=1 Ui+V −F)

= 1

β
eβF∂Qi

∫
d{xk}e−β(λ

∑N
i=1 Ui+V )

= 1

β
eβF∂Qi

e−βF = −∂Qi
F . (17)

This ensues the action-reaction principle for the fluctuating
forces among probes. Contrarily, when the environment is
driven away from equilibrium, (14) is not applicable in general,
as frenetic and entropic terms remain distinct. Hence the
reciprocal relations are not satisfied, ζij �= ζji , which implies
that the action-reaction symmetry is broken.

Now we turn to the random part of the interaction,

ηi ≡ gi({xk},Qi) − 〈gi({xk},Qi)〉. (18)

It has zero mean by definition, and its two-times correlation
is obtained again by application of the response formula (6),
with A = gigj ,

〈ηi(t)ηj (s)〉 = 〈gi({xk(t)},Qi(t)); gj ({xk(s)},Qj (s))〉
� 〈gi(t); gj (s)〉0. (19)

The weak-coupling approximation allowed us to drop higher
orders in λ, so that (19) simplifies to

〈ηi(t)ηj (s)〉 = 2

β
ζij (t − s) +

∫ s

−∞
du

〈
Lgj (u); gi(t)

〉0
. (20)

In general, the noise correlation depends explicitly on the
excess dynamical activity of the environment, Lgi . Yet, in
equilibrium, exploiting again the equality of the frenetic and
entropic term, (20) reduces to the FDT,

〈ηi(t)ηj (s)〉eq = 1

β
ζij (t − s). (21)

Out of equilibrium (20) cannot be simplified further in general,
and the FDT (21) is evidently broken, resulting in asymmetric
noise cross-correlations. Such violation of the FDT appears
more transparent if (20) is written in terms of the state velocity
of the environment, i.e., the vector

v({xk},{Qi}) ≡ j ({xk},{Qi})
ρ0({xk}|{Qi}) , (22)

with j the probability current of the environment, which
vanishes identically in equilibrium. Even though it could be
experimentally estimated [48–52], it has been analytically
solved only in a few simple situations in which the stationary
distribution is known [28,32,53]. From the identity L =
L∗ + 2v · ∇ [28,46,54], where ∇ is the vector of partial

derivatives ∂xk
, and L∗ is the adjoint of L—the forward

generator of the dynamics of the environment—one can easily
prove that

〈Lgi(u); gj (t)〉0 = − d

du
〈gj (u); gi(t)〉0

+ 2〈v · ∇gj (u); gi(t)〉0. (23)

Using Eqs. (11), (20), and (23), the broken FDT reads

〈ηi(t)ηj (s)〉 = 1

β
ζij (t − s) +

∫ s

−∞
du〈v · ∇gj (u); gi(t)〉0,

(24)

where the deviation from the equilibrium Kubo formula
appears explicitly.

In general, the noise (18) will not be Gaussian, and thus
the two-times correlation is not enough to fully characterize
its statistics. Higher moments can be calculated with the same
procedure, though, by successive application of the response
formula (6) together with the weak-coupling assumption.

Finally, we note that the restriction of time-independent
mean states {Yi} can be easily lifted. If, instead, mean
time-dependent trajectories {Yi(t)} are taken, our approach
still holds with the caveat that the perturbation potentials,
gi({xk},Yi(s)), now carry an explicit time dependence via Yi(t)
[cf. Eq. (5)]. An extension of the response formula (6) needs to
be applied [55], which features {Yi(t)} as a quasistatic protocol,
but the remaining procedure is very analogous. Therefore, the
theory naturally extends to probes that are, e.g., acted upon by
external time-dependent forces, or in direct contact with the
equilibrium bath, as well as with the environment.

III. EXAMPLES

In this section, we present two explicative examples. First,
we consider a single probe coupled linearly to a fluid of non-
interacting self-propelled particles. Equations (11) and (20)
are calculated analytically and used to show the breakdown
of (21). Second, we show how to extract from Brownian
simulations the friction memory kernel of two confined
probes immersed in a stirred fluid. We prove numerically the
breakdown of the reciprocal relations, that is, the violation
of the action-reaction principle for the fluid-mediated forces
between the probes.

A. One probe in an active fluid

We consider a two-dimensional system (d = 2) in which a
single probe under harmonic confinement,

K(t) = − κQ[Q(t) − Y ], (25)

interacts via a harmonic potential U (strength constant κ) with
an environment of active Brownian particles [56]. The latter
are not mutually interacting but (internally) driven so that they
display a drift velocity of constant magnitude v0 pointing along
the random particle orientation nk(t), i.e.,

μF ({xk}) = v0nk(t). (26)

Due to rotational Brownian motion, the unit vector nk(t)
diffuses with a persistence time Dr [57]:

〈nk(t)nk′(s)〉 = δkk′ e−Dr |t−s|. (27)
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Therefore, (2) takes the simple form of an Ornstein-Uhlenbeck
process with an additional stochastic drift [58]. Thanks to the
linearity of the system, the systematic part of the interaction,

〈g〉 = −λκ

N∑
k=1

(Q − 〈xk〉), (28)

as well as the stochastic part,

η = −λκ

N∑
k=1

(〈xk〉 − xk), (29)

can be expressed analytically in terms of Q and Y only. Indeed,
the terms in the large square brackets in (8), corresponding to
the response function to a constant force,

Nβλ2κ2

2

[
d

ds
〈xk(s); xk(t)〉0 − v0〈nk(s); xk(t)〉0

+ λκμ〈xk(s); xk(t)〉0

]
, (30)

contain simple correlation functions of the unperturbed
Ornstein-Uhlenbeck steady state. From (11) we thus obtain
the friction kernel

ζ (t − s) = Nλκe−λκμ(t−s), (31)

showing that dissipation happens on the characteristic time
scale that it takes the active particles to relax in the coupling
potential U . In contrast, the energy input due to the noise (29)
is found to occur on multiple time scales,

〈η(s)η(t)〉 = 1

β
ζ (t − s) + 1

2

Nλκv2
0

(λκμ)2 − D2
r

×
[
λκe−Dr (t−s) − Dr

μ
e−λκμ(t−s)

]
. (32)

The disparity of the time scales for noise and friction entails
the breakdown of the FDT, as predicted by (20). One may try
to mend it by introducing an effective temperature [59] via

βTeff(τ ) = 1 + βv2
0

2μDr

(
1 − λκμ

Dr

e−Drτ

)
+ O(λ2). (33)

Thereby, the FDT (21) is formally restored, albeit with the
time-dependent function Teff(τ ) replacing the constant bath
temperature 1/β.

The deviation from equilibrium is seen to be governed by
the two dimensionless numbers βv2

0/2μDr and λκμ/Dr . For
λκμ/Dr → 0, the temperature renormalization becomes time-
independent and independent of the weak-coupling parameter
λ—it thus acquires the status of thermodynamic temperature.
One can then be justified in saying that the probe acts as an ideal
measurement device for the constant effective temperature

Teff ∼ β−1 + v2
0

2μDr

(34)

of the active fluid itself, which coincides with the known value
for a suspension of free active particles [60,61]. The strength
of the temperature renormalization is controlled by the Peclét
number v0(μDr/β)−1/2 that weighs the relative importance

of ballistic versus (translational and rotational) diffusive
motion [62].

To first order in λ, Eq. (33) exhibits a crossover from a short-
time temperature to a long-time temperature. Moreover, Teff

can no longer be interpreted as a property of the particle bath
alone, but it characterizes its interaction with the embedded
probe. In fact, the ratio λκμ/Dr can be interpreted as a
measure for the interference of the coupling potential with
the persistence of the active particle motion. We expect this
particular feature to carry over to more general (strongly
interacting) systems, where it would not be accessible within
the weak-coupling formalism, however. The physical picture
is that the apparent thermalization at the constant effective
temperature (34) takes some finite time to happen. In our
toy model, this “equilibration time” is given by the rotational
diffusion time of the active particles, i.e., the active motion
of the bath particles can only be subsumed into an enhanced
fluid temperature once it has lost its orientational persistence.
This very plausible condition has been pointed out before
(e.g., in [63]), albeit not for the time domain. If (32) is
extrapolated to values of the dimensionless coupling strength
on the order of 1, the temporal growth of the corresponding
effective temperature takes the form

βTeff(τ )
λκμ≈Dr≈ 1 + βv2

0

4μDr

(1 + τDr ). (35)

It may tentatively be interpreted as an indication of the
onset of strong interactions and collective effects, such as a
clustering of the bath particles around the probe, which would
entail a progressive heating of the probe. While quantitatively
inaccessible to the weak-coupling formalism, corresponding
observations have indeed been made in numerical simulations
[60,64].

Summing up, we arrived at the generalized Langevin
equation for the probe,

MQ̈(t) = − κ[Q(t) − Y ] −
∫ t

−∞
ds ζ (t − s)Q̇(s) + η(t),

(36)

where the friction memory kernel and the noise covariance are
given by (31) and (32), respectively. Note that, since nk is not
Gaussian in general, (29) is not Gaussian either. Nevertheless,
in view of the central limit theorem, the probability distribution
of η converges to a normal one for N � 1, {xk} being
independent identically distributed random variables.

B. Two probes in a stirred fluid

We consider a one-dimensional system (d = 1) consisting
of M = 2 probes under harmonic confinement and N = 100
fluid particles moving freely in a periodic domain xk ∈ [0,L],
as sketched in Fig. 2. The fluid is driven out of equilibrium by
an external constant force f that induces a net particle current j
thanks to the periodic boundary conditions. The fluid particles
interact (mutually and with the probes) through the same soft
repulsive potential V ≡ U , such that they experience the total
force

Fk = f −
N∑

k′=1

∂Vk′(xk,xk′)

∂xk

. (37)
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FIG. 2. Schematic illustration of the simulated system, composed
of N + 2 soft spheres in one spatial dimension with periodic
boundary conditions. The probes (blue) have average positions
Yi ∼ Y ∗

i + j
∫ τ

0 dτ ζii(τ )/κQi
resulting from the balance of the drag

force due to the steady current j of fluid particles (red) and to
the harmonic confinement with minimum in Y ∗

i and stiffness κQi

(i = 1,2).

In the following, we present results obtained by using the
Gaussian potential

Vk′(xk,x
′
k) = e

− 1
2σ2 (xk−xk′ )2

, (38)

but we have checked numerically that anharmonic potentials
lead to qualitatively similar results. In particular, we have
calculated the time-dependent entries of the friction kernel
ζij from formula (11) for various values of the external driving
f . This was done by letting the fluid relax from an initial
uniform density, fixing the probes in their preferred positions
Yi , and then performing the steady-state averages in (11) over
2 × 104 independent simulation runs of duration T = 103.

For f → 0, equilibrium conditions are recovered. The
diagonal elements ζii of the friction kernel are positive and
exhibit a monotonic time dependence. The two off-diagonal
elements ζ12 and ζ21, which quantify the mutual frictional
forces between the probes, coincide. As expected, they are
negative and decay to zero at late times. Their negative sign can
be understood on the basis of global momentum conservation.
For example, consider the drag force that probe 1 exerts on
probe 2,

F
drag
1→2 = −

∫ t

−∞
ds ζ21(t − s)Q̇1(s).

It is easy to convince oneself that, given the configuration
sketched in Fig. 2, a positive velocity Q̇1 will on average
cause a positive displacement of the fluid particles surrounding
probe 1. Such perturbation spreads along the coordinate axis
reaching probe 2, ultimately resulting in a positive momentum
transfer F

drag
1→2 > 0. This suggests that ζ21 � 0 for all times.

In contrast, with increasing nonequilibrium force f > 0,
we observe a qualitative modification of the diagonal and
nondiagonal elements of ζij , as exemplified in Figs. 3 and
4, respectively. The diagonal elements ζii develop a non-
monotonic time dependence and eventually turn negative.
Physically, this corresponds to a viscoelastic recoiling of
the individual probe particles. A more dramatic, genuinely
nonequilibrium effect is found for the off-diagonal elements
ζi �=j . As revealed by Fig. 4, the presence of a nonequilibrium
flux in the bath breaks the symmetry of the friction matrix so
that ζij �= ζji , with |ζ21| (|ζ12|) larger (smaller) with respect
to equilibrium. Such an effect arises whenever a spatial
asymmetry is imposed on top of broken detailed balance.
Our periodic system is always spatially asymmetric unless
Y1 − Y2 = L/2. Specifically, in the simulations, the probe

0 0.2 0.4 0.6 0.8 1

0

0.5

1

τ/T

ζ i
i
(τ

)

ζ11, f = 0

ζ22, f = 0

ζ11, f = 1

ζ22, f = 1

ζ11, f = 2

ζ22, f = 2

ζ11, f = 3

ζ22, f = 3

f

FIG. 3. Diagonal elements of the friction kernel ζij (τ ) as a
function of time τ = t − s, obtained by numerical evaluation of
(11) in Brownian dynamics simulations, for various values of the
nonequilibrium driving force f and β = 1, μ = 1, and σ = 1.

reference positions are set to Y1 � L/3 < Y2 � L/2, and,
for convenience, the trap stiffnesses κQi

are chosen large
enough to make the position Yi almost coincide with the trap
minimum Y ∗

i . By increasing L, we checked that interactions
with the periodic image particles are negligible. We conclude
that global momentum conservation does not hold anymore
when the fluid dynamics becomes dissipative. This can be
attributed to the asymmetric propagation (due to the current j )
of fluid perturbations. Namely, downstream propagation is
progressively enhanced by increasing f , while upstream
propagation is suppressed. As a result, the influence of probe
1 (2) on probe 2 (1) gets stronger (weaker) as we increase
the driving. As for the diagonal elements, the sign of ζ12(τ )
is transiently reversed. More remarkably, for sufficiently large
values of f , the response coefficient of probe 2 to a uniform
motion of probe 1, namely − ∫ ∞

0 dτζ12(τ ), turns negative. In
contrast to the mentioned transient elastic recoil embodied in
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τ/T

ζ i
j
(τ

) ζ21, f = 0
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ζ21, f = 1

ζ12, f = 1

ζ21, f = 2

ζ12, f = 2

ζ21, f = 3

ζ12, f = 3

f

f

FIG. 4. Off-diagonal elements of the friction kernel ζij (τ ) as a
function of time τ = t − s, obtained by numerical evaluation of
(11) in Brownian dynamics simulations for various values of the
nonequilibrium driving force f and β = 1, μ = 1, and σ = 1.
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the diagonal terms ζii , this kind of “absolute negative mobility”
[65–68] is strictly forbidden in equilibrium, where dissipative
transport coefficients depend only on the (positive) entropy
production but not on the dynamical activity [69].

IV. CONCLUSION

Employing nonequilibrium linear-response theory, we have
derived generalized Langevin equations for probe particles
interacting with a driven environment. The latter was described
by an explicit interacting many-body theory for overdamped
colloidal particles representing, e.g., active or sheared colloids.
More generally, they can be understood as a set of mesoscopic
degrees of freedom. Also, the theoretical framework developed
above can be easily adapted to cope with different sources of
nonequilibrium (other than the nonconservative force f ), such
as a nonuniform bath temperature field β(xk).

When only conservative forces are present, our theory cor-
rectly reproduces the expected equilibrium properties, i.e., it
fulfils the FDT and conforms to Onsager’s regression principle
relating the fluctuations of statistical forces to the memory
kernel. In general, it extends the Langevin approach into the
nonequilibrium realm, predicting the violation of the FDT
and the action-reaction law for the fluctuating effective forces.
The breaking of these dynamical symmetries is traced back
to the mismatch between the excess entropy and dynamical
activity induced by probe fluctuations around their preferred
states, or, equivalently, to the existence of dissipative currents
in the environment. We have shown that these phenomena
appear already in simple systems, unless special symmetries
are present. Namely, noise and friction felt by a single probe in
an active medium do not obey the FDT, except if the relaxation
time scales of the system and the fluid are properly tuned, in
which case a constant effective temperature can be defined.
Also, the cross-frictions between two confined probes in a
stirred periodic fluid are dissimilar, and they even change
sign with respect to equilibrium whenever the probe reference
positions break the spatial symmetry.

The theory allows us to obtain quantitative information
about the parameters of the environment from measuring
average properties of the probes. For example, from (31) and
(32)—which are accessible by measuring, e.g., the spectral
density of the probe fluctuations in the trap and its response
to a small external kick—the values of the relaxation times
μκ and Dr can be inferred. Conversely, one may even

speculate that some mesoscopic parameters [e.g., ζij (0)] might
be fixed at will by properly designing the nonconservative
driving. This is feasible in principle since formal procedures
are available [70] that determine an appropriate environment
dynamics conditioned on prescribed mean values [e.g., those
entering (11)].

Finally, a remark on the status of the approximation of weak
coupling to the nonequilibrium environment seems warranted.
In a particle-based theory such as the one we employed, this
approximation is explicitly enforced by introducing a small
coupling constant λ. Physically, the appropriate values λ may
depend on the average number of bath particles with which
the probes interact. This should be clear from the example in
Sec. III A, where the limit N → ∞ produces an unphysical
divergence of friction and noise strength if λ is not properly
scaled. However, in practical applications, the weak coupling
is often a dynamical, emergent, property resulting from the
scale separation between the probe-particle system and the
environment. For example, colloidal particles suspended in
simple fluids are well described by a linear hydrodynamic
theory, although the microdynamics of the fluid molecules
is highly nonlinear. This feature is expected to be robust
and to survive even far from equilibrium, as long as the
driving energy input does not exceed the bath thermal energy
[26]. Indeed, the peculiar feature of a time-dependent noise
temperature, discovered within the weak-coupling approach
mentioned above, was already explicitly demonstrated (and its
time dependence analytically computed) in this setting [25].

Recently, new theoretical investigations [71,72] have been
spurred by a surge of experimental interest in systems with
strongly coupled components, such as in active nonlinear
microrheology [73], single-molecule (force spectroscopy)
experiments [74], and work extraction from active fluids [75].
Hence, it would be desirable to extend the above analysis
to different dynamical descriptions of the environment, i.e.,
in terms of (hydrodynamic) fields or discrete-state variables.
This may provide more versatile formal tools to account more
reliably for the weak coupling and to address the strong-
coupling problem in a larger variety of stochastic systems.
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K. Gawȩdzki, Phys. Rev. Lett. 103, 040601 (2009).

[53] M. Baiesi, S. Ciliberto, G. Falasco, and C. Yolcu, Phys. Rev. E
94, 022144 (2016).

[54] T. Speck and U. Seifert, Europhys. Lett. 74, 391 (2006).
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