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Dissipative stochastic sandpile model on small-world networks:
Properties of nondissipative and dissipative avalanches
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A dissipative stochastic sandpile model is constructed and studied on small-world networks in one and two
dimensions with different shortcut densities φ, where φ = 0 represents regular lattice and φ = 1 represents
random network. The effect of dimension, network topology, and specific dissipation mode (bulk or boundary)
on the the steady-state critical properties of nondissipative and dissipative avalanches along with all avalanches
are analyzed. Though the distributions of all avalanches and nondissipative avalanches display stochastic scaling
at φ = 0 and mean-field scaling at φ = 1, the dissipative avalanches display nontrivial critical properties at
φ = 0 and 1 in both one and two dimensions. In the small-world regime (2−12 � φ � 0.1), the size distributions
of different types of avalanches are found to exhibit more than one power-law scaling with different scaling
exponents around a crossover toppling size sc. Stochastic scaling is found to occur for s < sc and the mean-field
scaling is found to occur for s > sc. As different scaling forms are found to coexist in a single probability
distribution, a coexistence scaling theory on small world network is developed and numerically verified.
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I. INTRODUCTION

Power-law scaling in many natural phenomena such as
earthquakes [1], forest fires [2], biological evolution [3],
droplet formation [4], superconducting avalanches [5], etc.,
are due to the existence of self-organized criticality (SOC) [6]
in these systems. SOC refers to the intrinsic tendency of a
wide class of slowly driven systems to evolve spontaneously
to a nonequilibrium steady state. At the same time, self-
organization on complex structures or networks is found
to appear very often in nature, for example, the avalanche
mode of activity in the neural network of the brain [7],
earthquake dynamics on the network of faults in the crust
of the Earth [8], rapid rearrangement of the coronal magnetic
field network [9], the propagation of information through a
network with a malfunctioning router causing the breakdown
of the Internet network [10], blackout of the electric power
grid [11], and many others. On the other hand, the small-world
network (SWN) [12] not only interpolates between the regular
lattice and the random network but also preserves both the
properties of regular lattice and random network, namely
high “clustering-coefficient”(concept of neighborhood) and
“small-world effect” (small average shortest distance between
any two nodes), respectively. It is always intriguing to study
the models of SOC on networks such as SWN.

Sandpile is a prototypical model to study SOC introduced
by Bak, Tang, and Wiesenfeld (BTW) [13]. Though BTW
on regular lattice gives rise to anomalous (multi) scaling
[14,15], it shows a mean-field scaling [16–19] when studied
on a random network. A transition from noncritical to critical
behavior was reported in a BTW-type sandpile model on
SWN in one dimension (1D) [20], whereas a continuous
crossover to mean-field behavior was reported for the same
model on SWN in 2D [21]. However, recent study of the BTW
model on SWN in 2D shows the coexistence of more than
one scaling form in the distributions of avalanche properties
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[19]. On the other hand, stochastic sandpile models (SSM)
on regular lattice, which incorporates random distribution of
sand grains during avalanche, exhibit a scaling behavior with
definite critical exponents that follows finite-size scaling (FSS)
and defines a robust universality class called the Manna class
[22]. More insight in avalanche size distribution statistics were
obtained by classifying the avalanches into dissipative and
nondissipative avalanches. The size distribution of dissipative
avalanches of BTW sandpile in 2D was found to follow
power-law scaling with a definite exponent that does not obey
FSS [23]. Later, Dickman and Campelo [24] showed both in
one and two dimensions that the dissipative and nondissipative
avalanches of SSM on regular lattice obey different FSS
behavior with certain logarithmic correction beside the power-
law scaling with different exponents. However, there are
not many studies that report the critical behavior of SSM
and specifically that of the stochastic dissipative avalanches
on networks. It is then intriguing to study avalanche size
distribution of dissipative and nondissipative avalanches of a
stochastic sandpile model on SWN which interpolates regular
lattices and random networks and verify whether all such
scaling forms would be preserved under bulk dissipation mode.

In this paper, a dissipative stochastic sandpile model
(DSSM) is constructed on SWN and studied as a function
of shortcut density φ in both one and two dimensions. The
distribution functions of the steady-state avalanche properties
as well as those of dissipative and nondissipative avalanches on
regular lattice (φ = 0) and random network (φ = 1) are found
to display several interesting nontrivial features. Moreover, in
the small-world regime with intermediate φ (≈2−12 to 2−3)
[25], the steady-state avalanche properties exhibit coexistence
of the SSM scaling and the mean-field scaling in a single
distribution depending on the avalanche sizes. A coexistence
scaling theory is developed and numerically verified.

II. THE MODEL

SWN is generated both on a 1D linear lattice and on a 2D
square lattice by adding shortcuts between any two randomly
chosen lattice sites which will be referred to as nodes later.
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The shortcut density φ is defined as the number of added
shortcuts Nφ per existing bond [dLd bonds are present in a
d-dimensional lattice of linear size L with periodic boundary
conditions (PBC) and without shortcuts] and is given by
φ = Nφ/(dLd ). Care has been taken to avoid self-edges of
any node and multiedges between any two nodes. To study
sandpile dynamics on an SWN, first an SWN is generated for
a particular value of φ and it is then driven by adding sand
grains, one at a time, to randomly chosen nodes. If the height
hi of the sand column at the ith node becomes greater than
or equal to the predefined threshold value hc, which is equal
to 2 here, then the ith node topples and the height of the
sand column of the ith node will be reduced by hc. The sand
grains toppled are then distributed among two of its randomly
selected adjacent nodes which are connected to the toppled
node either by shortcuts or by nearest-neighbor bonds. During
distribution of the sand grains PBC is applied. Hence, there
is no open boundary in the system where dissipation of sand
grains could occur. A dissipation factor εφ is then introduced
during transport of a sand grain from one node to another to
avoid overloading of the system. The toppling rule of the ith
critical node in this DSSM on SWN then can be represented
as

hi → hi − hc,

and hj =
{
hj + 0 if r � εφ

hj + 1 otherwise
, (1)

where j is two randomly selected nodes of ki adjacent nodes of
the ith node, and r is a random number uniformly distributed
over [0,1]. In this distribution rule, an adjacent node may
receive both the sand grains. If the toppling of a node causes
some of the adjacent nodes to be unstable, subsequent toppling
follows on these unstable nodes. The process continues until
there is no unstable node present in the system. These toppling
activities lead to an avalanche. During an avalanche no sand
grain is added to the system.

For a given SWN, εφ is taken as 1/〈nφ〉, where 〈nφ〉 is
the average number of steps required for a random walker
to reach the lattice boundary (without PBC) starting from an
arbitrary lattice site. There exits a characteristic length ξ ∼
φ−1/d where d is the dimensionality of the lattice, below which
SWN belongs to the “large world,” the regular lattice regime,
and beyond which it behaves as “small world,” the random
network regime [26,27]. The asymptotic behavior of 〈nφ〉 with
φ and L is given by

〈nφ〉 ∼
{
L2, φ → 0
Lφ−1/d , φ → 1

(2)

for a d-dimensional SWN. It has diffusive behavior for φ → 0
and superdiffusive behavior for φ → 1. The above scaling
form is numerically verified in Ref. [19]. The dissipation factor
εφ = 1/〈nφ〉 for a given φ is determined using numerically
estimated values of 〈nφ〉. A few values of εφ are listed in
Table I for 1D and 2D lattices.

III. RESULTS AND DISCUSSION

Extensive computer simulations are performed to study the
dynamics of DSSM on SWN in 1D and 2D. After a transient
period, the system evolves to a steady state which corresponds

TABLE I. Dissipation factor εφ for selected values of φ on 1D
lattice of L = 8192 and 2D square lattice of size L = 1024.

εφ

φ d = 1,L = 8192 d = 2,L = 1024

0 8.94 × 10−8 6.83 × 10−6

2−9 5.10 × 10−7 6.34 × 10−5

2−8 9.72 × 10−7 9.12 × 10−5

2−7 1.81 × 10−6 1.34 × 10−4

2−6 3.60 × 10−6 1.99 × 10−4

2−5 7.10 × 10−6 2.96 × 10−4

1 1.27 × 10−4 2.06 × 10−3

to equal currents of sand influx and outflux resulting constant
average height of the sand columns. Critical properties of
DSSM on SWN are characterized studying various avalanche
properties in the steady state at different values of φ and
system size L. The maximum lattice size used for 1D is
L = 8192 and that for 2D is L = 1024. Data are averaged
over 32 × 106 avalanches collected on 32 different SWN
configurations for a given φ and L. The information of an
avalanche is kept by storing the number of toppling of every
node in an array Sφ[i],i = 1, . . . ,Ld which was set to zero
initially. All geometrical properties of an avalanche such as
avalanche size s, avalanche area a, etc., can be estimated in
terms of Sφ[i] as

s =
Ld∑
i=1

Sφ[i], a =
Ld∑
i=1

1 (3)

for all Sφ[i] �= 0.

A. Toppling surface

The values of the toppling number Sφ[i] of an avalanche at
different nodes of SWN define a surface called toppling surface
[28] which serves as an important geometrical quantity to
visualize an avalanche. The toppling surfaces for typical large
avalanches in the steady state, generated on a 1D lattice of
size L = 256, are presented for φ = 0 and φ = 1, respectively
in Figs. 1(a) and 1(b). Toppling surfaces generated on a 2D
square lattice of size L = 256 are presented in Fig. 1(c) for
φ = 0 and for φ = 1 in Fig. 1(d). In both dimensions, the
maximum height of the surfaces on regular lattice (φ = 0) is
much higher than that on random network (φ = 1). Though
the maximum height is much smaller in 1D for φ = 1, all the
lattice site toppled more than once, whereas in 2D, the toppling
surface on random network consists of mostly singly toppled
sites, and only 0.06% of the sites toppled more than once. The
toppling surfaces differ considerably on regular lattice and
random network in different dimensions.

B. Moment analysis at φ = 0 and 1

The critical steady state of the sandpile model is mostly
characterized by power-law scaling of the probability distribu-
tions of avalanche size (s) occurring in the steady state. For a
given φ and L, the probability to have an avalanche of size s is
given by Ns,φ/Ntot, where Ns,φ is the number of avalanches of
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FIG. 1. The toppling surfaces of typical large avalanches of
DSSM on SWN are shown. The toppling surface of an avalanche
generated on a 1D lattice of size L = 256 for φ = 0 is shown in
(a) and for φ = 1 is shown in (b). The surface generated on a 2D
square lattice of size L = 256 for φ = 0 is shown in (c) and for
φ = 1 is shown in (d). The size (s) and area (a) of the corresponding
avalanches are presented in the respective plots.

size s of the total number of avalanches Ntot generated at the
steady state. The distribution of s follows a power-law scaling
with a well-defined exponent τ and obeys FSS [14]. The FSS
form of the probability distribution of s in DSSM is given by

Pφ(s,L) = s−τ fφ

[
s

LD

]
, (4)

where fφ is a φ-dependent scaling function and D is the
capacity dimension. Very often the power-law scaling is found
to sustain over a short range of avalanche sizes and hinders
precise extraction of the exponent τ from the slope of the plot of
Pφ(s,L) against s in double logarithmic scale. A more reliable
estimate of the exponent can be made employing moment
analysis [15,29]. For a given φ, the qth moment of s is defined
as

〈sq(L)〉φ =
∫ ∞

0
sqPφ(s,L)ds ∼ Lσφ (q), (5)

where

σφ(q) = D(q − τ + 1) (6)

is the moment scaling function for q > τ − 1 [for q < τ − 1,
σφ(q) = 0]. Values of σφ(q) are estimated from the slope of the
plots of 〈sq(L)〉φ versus L in double logarithmic scale for 400
equidistant values of q between 0 and 4. The value of D can be
measured from the saturated value of ∂σφ(q)/∂q in the large-q
limit. The derivative ∂σφ(q)/∂q is determined numerically by
the finite-difference method. Once D is known the exponent τ

can be estimated from Eq. (6) using the value of σφ(1).

1. All avalanches

Pφ(s,L) of all the avalanches for various values of L are
presented in Fig. 2 for 1D and 2D for φ = 0 and 1. Reasonable
power-law scaling is observed for these extreme values of φ

in both the dimensions. The flat tail in Pφ(s,L) for φ = 1
in 1D is due to large dissipative avalanches, which will be
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FIG. 2. Plot of Pφ(s,L) of all the avalanches for φ = 0 (a) for
1D and (b) for 2D. Pφ(s,L) for φ = 1 are plotted in (c) and (d) for
1D and 2D, respectively. Different curves correspond to different
system size L as, for 1D, L = 210 (©), L = 211 (�), L = 212 (♦),
and L = 213 (
), whereas for 2D they are L = 27 (©), L = 28 (�),
L = 29 (♦), and L = 210 (
). Upper inset in each figure shows the
plot of ∂σφ(q)/∂q against q, whereas the lower inset shows the
corresponding FSS data collapse.

discussed later separately. Employing moment analysis, values
of D and τ are estimated for all four situations. For φ = 0,
estimates of D are found to be 2.21 ± 0.02 and 2.76 ± 0.02
for 1D and 2D, respectively. Since for φ = 0, σφ(1) ≈ 2 in
both the dimensions, the values of τ estimated from Eq. (6)
are 1.09 ± 0.02 in 1D and 1.28 ± 0.01 in 2D. As expected,
the exponents are found very close to the reported values
for SSM on regular lattice in respective dimensions, for
instance, τ = 1.112 ± 0.006, D = 2.253 ± 0.014 in 1D and
τ = 1.273 ± 0.002, D = 2.750 ± 0.006 in 2D [30], whereas
for φ = 1, the values of D are found to be 1.39 ± 0.02 and ≈2
in 1D and 2D, respectively. In 2D, the avalanches on random
network (φ = 1) consist mostly of single toppled nodes, and
hence D ≈ 2 is expected, whereas the value of D > 1 in 1D
suggests that the avalanches consist of multiple toppled nodes.
In both the dimensions, the value of τ for φ = 1 is ≈1.50, the
mean-field value as obtained in branching processes [16–18].
The values of the exponents are listed in Table II. The FSS
form of Pφ(s,L) is verified by plotting the scaled distribution
Pφ(s,L)LDτ against the scaled variable s/LD in the respective
lower inset of Fig. 2 using the respective values of the critical
exponents obtained.

2. Nondissipative and dissipative avalanches

Avalanches are now classified into nondissipative and
dissipative avalanches. During the evolution, a dissipative
avalanche must dissipate at least a sand grain once, whereas
no sand grain be dissipated in a nondissipative avalanche. The
avalanche size distribution Pφ(s,L) can be written in terms of
Pφ,nd(s,L) and Pφ,d (s,L), the distributions of nondissipative
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TABLE II. Best estimated values of D and τ for DSSM in 1D and
2D at φ = 0 and at φ = 1 for nondissipative avalanches, dissipative
avalanches, and all avalanches. As the values of D is estimated from
∂σφ(q)/∂q the error in determination of D is 2�q, i.e., ±0.020. The
number in the parentheses is the uncertainty of last digit of the value
τ determined from the scaling relations.

Nondissipative Dissipative all

Dnd = 2.009 Dd = 2.214 D = 2.215
φ = 0

τnd = 1.11(2) τd = 0.14(1) τ = 1.09(2)1D
Dnd = 1.022 Dd = 1.402 D = 1.395

φ = 1
τnd = 1.52(2) τd = 0.54(2) τ = 1.50(1)

Dnd = 2.004 Dd = 2.791 D = 2.764
φ = 0

τnd = 1.29(1) τd = 0.40(2) τ = 1.28(1)2D
Dnd = 1.013 Dd = 2.023 D = 2.008

φ = 1
τnd = 1.54(5) τd = 1.45(3) τ = 1.51(2)

and dissipative avalanches, as

Pφ(s,L) = Pφ,nd(s,L) + Pφ,d (s,L) (7)

with

Pφ,nd(s,L) = ns,nd

Ntot
and Pφ,d (s,L) = ns,d

Ntot
, (8)

where ns,nd and ns,d are number of nondissipative and
dissipative avalanches of size s of a total of Ntot avalanches.
First, the analysis of nondissipative avalanches is given and
then that of dissipative avalanches is presented.

The FSS form of the distribution Pφ,nd(s,L) is assumed to
be

Pφ,nd(s,L) = s−τndfφ,nd

[
s

LDnd

]
, (9)

where fφ,nd is a scaling function and τnd and Dnd are the
respective exponents. Pφ,nd(s,L) for φ = 0 and 1 are plotted
in Fig. 3 for several values of L for both 1D and 2D. Performing
moment analysis, the values of Dnd are found as Dnd ≈ 2 for
φ = 0 and Dnd ≈ 1 for φ = 1 in both 1D and 2D. It could
be recalled here that the dissipation factor is chosen from the
inverse of 〈nφ〉. On an average the avalanche of size s > 〈nφ〉/2
must dissipate at least one sand grain (the factor 2 is for
one toppling consists two sand transfer). Since 〈nφ〉 ∼ L2 as
φ → 0 due to diffusive behavior of random walker on regular
lattice and 〈nφ〉 ∼ L as φ → 1 for superdiffusive behaviour
of random walker on random network [19], the cutoff of
Pφ,nd(s,L) must scale with L in the same way as 〈nφ〉 scales
with L. Knowing the values of Dnd and σφ,nd(1), the values of
τnd are estimated. The values of σφ,nd(1) are found as 1.78 for
φ = 0 and 0.48 for φ = 1 in 1D. Accordingly, τnd = 1.11(2)
for φ = 0 and τnd = 1.52(2) for φ = 1 in 1D. The power-law
scaling of Pφ,nd(s,L) is found similar to that of Pφ(s,L) as
the values of τ and τnd are found more or less same for both
the distributions for φ = 0 and 1, whereas, in 2D, the values
of the exponents are found as τnd = 1.29 ± 0.01 for φ = 0
[since σφ,nd(1) = 1.4] and τnd = 1.54 ± 0.05 for φ = 1 as
σφ,nd(1) = 0.5. On regular lattice it is the SSM result, whereas
on random network it is the mean-field result. The values of
Dnd and τnd for nondissipative avalanches are listed in Table II.
Using the values of τnd and Dnd, a reasonable data collapse is
obtained for Pφ,nd(s,L) as shown in the lower insets of Fig. 3.
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FIG. 3. Plot of Pφ,nd(s,L) for different L (with same symbol as
in Fig. 2) for φ = 0 in (a) for 1D and in (b) for 2D. For φ = 1 the
same has been plotted in (c) and (d) for 1D and 2D, respectively.
Insets in each figure are same as that of Fig. 2 but for nondissipative
avalanches.

The size distribution of dissipative avalanches Pφ,d (s,L) for
several values of L are presented in Fig. 4 for φ = 0 and 1 in
both the dimensions. Interestingly, the distributions Pφ,d (s,L)
are very different in nature than the corresponding Pφ,nd(s,L).
Preliminary estimate of the size distribution exponent τd by
linear least-squares fit to the data points in double-logarithmic
scale reveals that τd < 1 except for φ = 1 in 2D. Following
Christensen and coworkers [31], a new scaling form of
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FIG. 4. Plot of Pφ,d (s,L) for various L (with same symbol as in
Fig. 2) for φ = 0 in (a) for 1D and in (b) for 2D. For φ = 1 the
same has been plotted in (c) and (d) for 1D and 2D, respectively.
Upper insets: (a)–(c) show the plot of Pφ,d (1,L) against L, and (d)
shows variation of ∂σφ,d (q)/∂q against q. Lower insets shows the
corresponding FSS data collapse (see text).
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Pφ,d (s,L) is proposed as

Pφ,d (s,L) = s−τd LDd (τd−1)fφ,d

[
s

LDd

]
, (10)

where fφ,d is a new scaling function and τd and Dd are
exponents for dissipative avalanches. The moment of such
a distribution is obtained as 〈sq(L)〉φ,d ∼ Lσφ,d (q), where
σφ,d (q) = qDd . Noticeably, the moment exponent σφ,d (q)
becomes independent of the size distribution exponent τd .
Performing moment analysis for both 1D and 2D, the values of
Dd for dissipative avalanches are found close to that of the all
avalanches as presented in Table II. In the limit s/LDd →
0, the scaling function fφ,d [s/LDd ] becomes a constant
and the distribution is given by Pφ,d (s,L) ≈ s−τd LDd (τd−1).
Consequently, Pφ,d (1,L) ∼ LDd (τd−1) for s = 1. The exponent
τd is then estimated from the slope of the plot of Pφ,d (1,L)
vs L in double logarithmic scale as presented in the upper
insets of Figs. 4(a)–4(c). The values of τd are estimated as
0.14 ± 0.01 for φ = 0 and 0.54 ± 0.01 for φ = 1 in 1D. It is
interesting to note that such a flat distribution (i.e., τd → 0 for
φ = 0 in 1D) is also reported by Amaral and Lauritsen [32] for
the dissipative avalanches of a 1D rice pile model. In contrast
to the present observation, Dickman and Campelo [24] found
a power-law scaling of Pd (s,L) with exponent τd = 0.637 for
SSM with boundary dissipation on 1D regular lattice. In 2D,
the exponent τd is obtained here as 0.40 ± 0.02 for φ = 0,
whereas Dickman and Campelo [24] reported τd = 0.98 for
SSM on a 2D regular lattice with boundary dissipation.
Thus the scaling behavior of dissipative avalanches of DSSM
differs substantially from that of dissipative avalanches of
SSM with boundary dissipation in both the dimensions at
φ = 0. Such difference in the scaling behavior for dissipative
avalanches with different modes of dissipation is probably
due to different topological properties of network in the bulk
and at the boundary because the degree of a node at the
boundary differs from that of a node in the bulk. Moreover,
it should be noted that for the model of boundary dissipation,
Dickman and Campelo introduced a logarithmic correction in
the distribution of dissipative avalanches and the distribution
was given by

Pdc(s,L) = s−τd [ln(s)]ηfdc

[
s

LD

]
, (11)

where η is an another exponent. In order to verify the presence
or absence of such a correction to scaling in the present
model with bulk dissipation, the scaling function fφ,d given
in Eq. (10) for φ = 0 is plotted in Figs. 5(a) and 5(b) for
1D and 2D, respectively. For comparison, the scaling function
fdc of the model with boundary dissipation given in Eq. (11)
is also plotted in the respective plots. It can be seen that
without any correction, the scaling function fφ,d is reasonably
constant over a wide range of s in double logarithmic scale in
the case of bulk dissipation, whereas it requires a correction
to scaling, [ln(s)]η, in the case of boundary dissipation for
d = 2 (η = 0.5), as observed by Dickman and Campelo [24].
Hence the scaling forms considered here for the model with
bulk dissipation are not subject to any logarithmic correction.
However, the scaling behavior of all avalanches are found to
be same for both the models as reported in Ref. [33]. This is
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FIG. 5. Plot of fφ,d (= Pφ,d (s)sτd ) (in solid black line) and fdc(=
Pφ,d (s)sτd [ln(s)]−η) (in dashed red line) against s for 1D, L = 8192,
in (a) and for 2D, L = 1024, in (b). The values of the τd and η for
fdc are taken from Ref. [24]. Since the plots are for a given L, the L

dependency of the argument is dropped.

because the leading singularity is provided by nondissipative
avalanches. In order to verify the form of the scaling function
given the Eq. (10), data collapse has been performed by
plotting Pφ,d (s,L)LDd against s/LDd for different values of L.
Reasonable data collapse for different Pφ,d (s,L) are obtained
as shown in the respective lower insets of Fig. 4. For φ = 1
in 2D, the FSS form of the distribution Pφ,d (s,L) is expected
to follow the usual distribution as given in Eq. (4). From the
plot of ∂σφ,d (q)/∂q vs q as given in upper inset of Fig. 4(d),
Dd is found to be 2.023 ± 0.020, again close to the value of
all avalanches. The value of τd is estimated from Eq. (6) as
1.45 ± 0.03, which is a little less than mean-field result as
obtained for the all avalanches. However, taking τd = 3/2 and
Dd = 2.023 the best data collapse is obtained, given in the
lower inset of Fig. 4(d), which confirms the respective form
of the scaling function. It should be noted here that the value
of Dd for dissipative avalanches are very close to the value
of D of the all avalanches for both the extreme values of φ

in both the dimensions because the large avalanches which
are responsible for cutoff of the distribution of all avalanches
are mostly dissipative, and in the moment analysis the leading
contribution comes from those large dissipative avalanches.

C. Small-world regime

1. Scaling properties

Since SWN preserves both the characteristics of regular
lattice and random network, it is important to study the
critical properties of the avalanche size distribution in the
SWN regime, 2−12 < φ < 0.1. The size distribution Pφ(s)
of all the avalanches are plotted in Fig. 6(a) for 1D and in
Fig. 6(b) for 2D. In Figs. 6(c) and 6(d), Pφ,d (s) are plotted
for 1D and 2D, respectively. For 1D and 2D, the values of φ

used are 2−6 and 2−8, respectively, for both the distributions.
Interestingly, both the distributions Pφ(s) and Pφ,d (s) exhibit
their respective scaling forms on regular lattice (φ = 0) and
random network (φ = 1) in the same distribution. The straight
lines with respective slopes in these plots are guides to the eye.
The crossover from one scaling form to other occurs at their
respective crossover avalanche size sc for Pφ(s) and Pφ,d (s).
For s < sc, the avalanches are small, compact, and mostly
confined on a regular lattice, whereas for s > sc they are large,
sparse, and mostly exposed to random network. Since Pφ,nd(s)
and Pφ(s) have similar scaling behavior, Pφ,nd(s) display a
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FIG. 6. Plot of Pφ(s) against s in (a) for 1D with φ = 2−6 for L =
8192 and in (b) for 2D with 2−8 for L = 1024. The corresponding
Pd (s,φ) is shown in (c) for 1D and in (d) for 2D. The solid lines
with the required slope through the data points are guide to eye. The
variation of sc with φ is shown in the respective inset. The error in
estimation of sc is of the order of the symbol size.

similar crossover scaling as that of Pφ(s). The coexistence
of more than one scaling form in the same distribution of
avalanche properties for different sandpile models has been
already reported in the literature [19,20,34]. The crossover
scaling is found to occur for a wide range of φ within the
SWN regime for both Pφ(s) and Pφ,d (s). As one expects the
scaling form of regular lattice as φ → 0 and that of random
network as φ → 1, the value of sc is found to depend on φ for
both the distributions. The dependence of sc on φ is assumed
as

sc ∼ φ−α, (12)

where α is an exponent. The value of α for all avalanches
can be obtained by simple arguments. From the conditional
expectation of avalanche size for a fixed avalanche area, one
expects sc ∼ a

γsa
c ≈ ξdγsa , where ac is the average avalanche

area for the avalanches of size sc, γsa is an exponent [16], and
ξ is the crossover length scale below which SWN behaves as
regular lattice [26,27]. As ξ ∼ φ−1/d , one obtains sc ∼ φ−γsa

and has α = γsa . However, a dissipative avalanche occurs only
after a required number of toppling equivalently 〈nφ〉. As
〈nφ〉 ∼ φ−1/d in the large-φ limit corresponding to random
network, one expects sc ∼ φ−1/d with α = 1/d. For a given
φ the value of sc is estimated from the intersection point of
the straight lines with required slope in the respective regions.
The estimated values of sc is then plotted against φ in double
logarithmic scale in the respective insets of Fig. 6. It can be
seen that in all cases sc shows a reasonable power-law scaling
with φ. By linear least-squares fit through the data points the
values of α for all avalanches are found to be 1.92 ± 0.01
for 1D and 1.24 ± 0.01 for 2D which are very close to the γsa

values at φ = 0 in both dimensions [35,36]. On the other hand,
for dissipative avalanches it is found that α = 1.07 ± 0.02 for
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FIG. 7. Scaled probability distribution (for all avalanches) against
scaled variable is plotted for selected values of φ in (a) for 1D with
L = 8192 and in (b) for 2D with L = 1024 to verify the scaling
forms given in Eq. (14). The same has been verified for dissipative
avalanches in (c) for 1D and in (d) for 2D.

1D and α = 0.54 ± 0.03 for 2D, again close the inverse of
respective dimensions.

2. Coexistence scaling

Since FSS forms of Pφ(s,L) and Pφ,d (s,L) are found to be
satisfied both on regular lattice and on random network, they
should also be satisfied on SWN. Instead of FSS form, the φ

dependence of these distributions are then verified on SWN
for a fixed L. A generalized scaling form for P (s,φ) for the all
avalanches on SWN is proposed as

P (s,φ) =
{

s−τ1 f
(

s
sc(φ)

)
for s � sc

s−τ2g
(

s
sc(φ)

)
for s � sc

, (13)

where f and g are the respective scaling functions and τ1, τ2 are
the corresponding critical exponents in the s < sc and s > sc

regions, respectively. At s = sc for a given φ, the limiting
values of P (s,φ) from both the regions must be the same. As
sc ∼ φ−α , then one should have φτ1αf(1) = φτ2αg(1). Hence,
the φ-independent scaled distribution can be obtained as

P (s,φ)φ−ατ1 =
{

(sφα)−τ1 f(sφα) for s � sc

(sφα)−τ2 f(sφα) for s � sc

, (14)

in terms of a single scaling function f [19]. Such a scaling form
is also found to exist in the dynamic scaling of roughness of
fractured surfaces [37]. To verify the scaling forms given in
Eq. (14), the scaled probabilities for all avalanches are plotted
against the scaled variable in Figs. 7(a) and 7(b) for 1D and
2D, respectively, taking α = γsa . It can be seen that a good
data collapse is obtained using γsa = 2, τ1 = 1.1 for 1D and
using γsa = 1.26, τ2 = 1.28 for 2D. The straight lines with
required slopes in the respective regions are guide to eye. It
confirms the validity of the proposed scaling function form
given in Eq. (13). Similarly, a generalized size distribution
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function can be written for dissipative avalanches around its
crossover size sc taking α = 1/d. The scaled probabilities for
Pd (s,φ)φ−1/d for dissipative avalanches are plotted against
the scaled variable sφ1/d in Figs. 7(c) and 7(d) for 1D and 2D
respectively. Reasonable data collapse is obtained as expected.
It is then important to notice that if a dynamical model like
sandpile is studied on SWN, multiple scaling forms of an event
size will coexist in the distribution of the same.

IV. SUMMARY AND CONCLUSION

A dissipative stochastic sandpile model is developed and
its critical properties are studied on SWNs both in 1D and
2D for a wide range of shortcut density φ. The nondissipative
avalanches display usual stochastic scaling of SSM on regular
lattice (φ = 0) and mean-field scaling on random network
(φ = 1) as that of all avalanches. However, the dissipative
avalanches represent a number of novel scaling properties on
regular lattice as well as on random network in both 1D and 2D.
The scaling behavior of these avalanches on regular lattice is
found to differ considerably from Dickman-Campelo scaling
as observed with the open boundary in both dimensions.
The bulk dissipation is found to have a nontrivial effect
on dissipative avalanches over the boundary dissipation. No
logarithmic correction to scaling is found to occur as it was
required for these avalanches on regular lattice with boundary

dissipation. A set of new scaling exponents are found to
describe the scaling of dissipative avalanches on regular lattice
and random network. On SWN, in the intermediate range of
φ, the model exhibits coexistence of more than one scaling
form in both 1D and 2D around a crossover size sc(φ).
For nondissipative and dissipative avalanches, however, the
crossover size sc scales with φ with two different exponents.
The small, compact avalanches of size s < sc mostly confined
on regular lattice are found to obey the usual SSM scaling,
whereas the large, sparse avalanches of size s > sc exposed
to random network are found to obey mean-field scaling. A
coexistence scaling form of the avalanche size distribution
function around sc is proposed and numerically verified.
Therefore, SWN can be considered as a segregator of several
scaling forms that appear in the event size distribution in a
dynamical system.
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