
PHYSICAL REVIEW E 94, 062137 (2016)

Phase separation transition in a nonconserved two-species model
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A one-dimensional stochastic exclusion process with two species of particles, + and −, is studied where
density of each species can fluctuate but the total particle density is conserved. From the exact stationary state
weights we show that, in the limiting case where density of negative particles vanishes, the system undergoes a
phase separation transition where a macroscopic domain of vacancies form in front of a single surviving negative
particle. We also show that the phase-separated state is associated with a diverging correlation length for any
density and that the critical exponents characterizing the behavior in this region are different from those at the
transition line. The static and the dynamical critical exponents are obtained from the exact solution and numerical
simulations, respectively.
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I. INTRODUCTION

Driven diffusive systems have been a recent topic of interest
because of their intriguing properties and varied range of
applications [1]. One of the special features is that these
systems can undergo phase transition, even in one spatial
dimension. These nonequilibrium phase transitions are of
various kinds and relevant in wide range of physical and
biological systems [2]. A prototypical model for studying these
kinds of driven systems in one dimension is the asymmetric
exclusion process (ASEP)[3,4], which describes stochastic
motion of particles on a lattice with a bulk drive and hard
core exclusion. It is well known that ordinary ASEP shows
a phase transition on an open geometry [5]. However, many
generalizations of ASEP with multiple species of particles,
disordered hopping rates, or kinetic constraints have been
explored where phase transition occurs also on a ring [6–12].

Of particular interest is the exclusion process with two
species of particles, which has been studied with various
sets of dynamical evolution rules both with and without
density conservation. Some models in the first category show
transitions to a phase-separated state where the particles,
irrespective of species, cluster together [12,13]. Yet other
models have been studied where only a single “second
class” particle is present; these systems often show jammed
states where a macroscopic number of ordinary particles are
accumulated next to the second class particle [6,14,15]. On
the other hand, new phases and critical behavior might emerge
when particle conservation is broken. Examples include a
discontinuous transition to a completely vacant state from a
homogeneous phase [16] and a continuous transition to a phase
where the density of vacancies vanishes [17].

In the present work, we study a two-species exclusion
process in the context of a phase separation transition. The
dynamics conserves the total number of particles although
the number of particles for individual species can fluctuate.
We show that this system undergoes a transition from a
homogeneous liquid phase to a phase-separated state, where
the vacancies form a macroscopic domain, as the density of
particles is changed. We also show that the phase-separated
state is always “critical”: it is associated with a diverging
correlation length for any density beyond the critical one.
The corresponding exponents turn out to be different from

those on the critical line bounding this region. The sets
of critical exponents characterizing the critical line and the
phase-separated state are obtained exactly.

The paper is organized as follows. The model is defined in
the next section with a brief discussion of its phenomenological
behavior. We use the exact solution and the matrix product
form to study spatial correlations and behavior of the system
near criticality in Sec. III. Mapping to a zero-range process is
exploited to study the phase-separated state from the canonical
point of view. The dynamical relaxation along with the finite
size scaling behavior is investigated in Sec. IV. We conclude
with a general discussion in Sec. V.

II. THE MODEL AND PHENOMENOLOGY

The model is defined on a periodic one-dimensional lattice
with L sites, labeled by i = 1,2, . . . L. Each site can be vacant
or occupied by either a + (positive) or a − (negative) particle.
A generic configuration of the system is thus described by the
set {si} where si = +,− or 0. A particle attempts to hop to its
right neighboring vacant site with a rate α±, which depends on
the type of the particle. However, if the right neighboring site
is occupied, the particle can change its type with some rate p±.
A Schematic representation of the model is shown in Fig. 1.
The complete dynamics can thus be summarized as

±0
α±−→ 0±; + ± p−�

p+
− ± . (1)

The number M± of particles of each type ± can fluctuate, but
the total number of particles M = M+ + M− or, equivalently,
the number of vacancies N0 = L − M is conserved by this
dynamics. We choose the conserved density of vacancies
ρ0 = N0/L and the average density of negative particles ρ− =
〈M−〉/L to be the relevant macroscopic variables describing
the state of the system. Clearly these two quantities also fix the
density of positive particles ρ+ = 1 − ρ− − ρ0 on the lattice.

The dynamics (1) is a special case of the asymmetric
exclusion process with internal degrees of freedom introduced
earlier [18]. The macroscopic densities of positive and negative
particles and the nearest neighbor correlations for this system
have been calculated using the exact stationary state weights.
However, the possibility of a phase transition in this system
has not yet been explored.
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FIG. 1. Schematic representation of the two-species exclusion
model. Positive and negative particles have different hopping rates
α±. A particle can change its type if its right neighboring site is
occupied.

In this work we use the exact solution obtained in Ref. [18]
to study a phase transition that occurs for p+ = 0. We
will show that in this limit the system exhibits a transition
from a homogeneous state to a phase-separated one where a
macroscopic number of vacancies cluster together in front of
a negative particle. That the system admits the possibility of
such a phase can be understood as follows. Let us suppose that
the negative particles have a slower hopping rate α−, compared
to positive particles, and then these particles would also have
longer lifetimes since the particle can change its type only
when there is no vacancy in front of it. If, additionally, the rate
p+ of creation of the negative particles is also vanishingly
small, then, for a large enough density of vacancies ρ0,

the system can be in a state where there are only a few
negative particles with a large number of vacancies clustering
in front of them. From this heuristic argument one can expect
that, for small p+, a transition to such a phase-separated
state from a liquid phase, where the particles are distributed
homogeneously, can occur either by increasing the density or
by decreasing the hopping rate α−. Figure 2 shows typical
snapshots of time evolution of the system in different regions
of the phase space. The vertical direction represents time, and
it runs downwards. As expected, for small p+ and high ρ0,

only a microscopic number of negative particles survive, and

FIG. 2. Typical snapshots of time evolution of the system for
α+/α− = 2 at different points in the parameter space. The positive
and negative particles are marked by red (medium gray) and blue
(dark gray) pixels, respectively, whereas light gray pixels denote the
vacancies. The upper panel corresponds to ρ0 = 0.75, which is larger
than the critical density ρc = 0.5, and the lower panel corresponds to
ρ0 = 0.25 < ρc. The left, middle, and right columns correspond to
p = p+/p− = 0, 10−4, and 10−1, respectively.

the vacancies show a tendency to conglomerate in front of
these few negative particles.

A generalized version of this model, where the total
number of particles is not conserved, has been studied in
Ref. [16], which also shows a phase transition. However, the
corresponding state space in the nonconserved model is very
different, and the transition occurs from a homogeneous phase,
with equal densities of both kinds of particles, to a completely
empty state.

In the following section we study the phase separation in
the conserved model in detail using the exact stationary state
weights.

III. EXACT RESULTS

The nonequilibrium steady state of the model (1) can most
conveniently be expressed in a matrix product form [18,19],
which we discuss here briefly for the sake of completeness.
Following the matrix product ansatz [20], the stationary state
weight of a configuration {si} is written as

P ({si}) = Tr

[
L∏

i=1

Xsi

]
, (2)

where Xsi
is the matrix corresponding to the state variable

si at the ith site. For this model, the ansatz demands that
the matrices must satisfy the following set of algebraic
relations [18]:

α+DA = −ÃD + AD̃ = D̃A − DÃ,

α−EA = −ÃE + AẼ = ẼA − EÃ,
(3)

p+DD − p−ED = −ẼD + ED̃ = D̃D − DD̃,

p+DE − p−EE = −ẼE + EẼ = D̃E − DẼ,

where X+ = D,X− = E and X0 = A, and D̃,Ẽ, and Ã are
auxiliary matrices required to satisfy the matrix product ansatz.
It turns out there is a two-dimensional representation for these
matrices:

D =
(

1 0
1 0

)
; E =

(
0 p

0 p

)
; A =

(
1 0
0 α

)
(4)

and

D̃ = D; Ẽ = E; Ã

(
1 − α+ 0

0 α(1 − α−)

)
, (5)

where p = p+/p− and α = α+/α− are the ratios of the flip
rates and the hopping rates, respectively. The state of the
system is completely specified by the three parameters, ρ0, α,
and p, as the auxiliary matrices do not affect the stationary
state weight of the configurations.

To calculate spatial correlation functions it is convenient to
work in the grand canonical ensemble where a fugacity z, asso-
ciated with the As, fixes the average density of vacancies (i.e.,
0s). The corresponding grand canonical partition function, for
a system of size L, is

ZL = Tr[(D + E + zA)L] = Tr[T L],

where we have defined the transfer matrix T = D + E +
zA = (1 + z p

1 p + zα). Thus, ZL = λL
+ + λL

−, where λ+ and λ−
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denote the larger and smaller eigenvalue of T , respectively,

λ± = 1
2 [1 + p + z + αz

±
√

(1 + p + z + αz)2 − 4z(α + p + αz)].

The matrix product formalism allows for simple calculation of
expectation values of observables. For example, the density of
negative particles, in terms of the fugacity z, is given by [18]

ρ− = 1

L
〈M−〉 = 1

ZL

Tr[ET L−1] � p(λ+ − z)

λ+(λ+ − λ−)
, (6)

where the last expression is valid in the thermodynamic limit
L → ∞.

A typical observable used to detect a phase separation
transition is the domain size of particles or, in this case, of
vacancies. A domain of vacancies is defined as an uninter-
rupted sequence of 0s bound by particles on both sides. In
particular, we will be interested in domains which precede
negative particles. The average size of such a domain per
negative particle can be defined as 〈N−〉/〈M−〉 where 〈N−〉
is the expected value of the total number of vacancies in front
of negative particles. To calculate it we note that the matrices A

and E, as given in Eq. (4), have the property EAn = αn( 0 0
0 1 ):

each sequence of n uninterrupted 0s in front of a negative
particle contributes a factor αn in the stationary state weight
of the corresponding configuration. Hence,

〈N−〉 = α

ZL

d

dα
ZL � αL

λ+

dλ+
dα

. (7)

The correlation between positive particles separated by r

lattice sites is given by

V+(r) ≡ 〈+i+i+r〉 − 〈+〉2

= 1

ZL

Tr[DT r−1DT L−r−1] − ρ2
+

= p

λ+λ−

z(α − 1)

(λ+ − λ−)2

(
λ−
λ+

)r

. (8)

Again, the last expression is obtained in the thermodynamic
limit. The correlation decays exponentially with the distance
r and the correlation length

ξ = −
(

log

∣∣∣∣λ−
λ+

∣∣∣∣
)−1

. (9)

The above form for the correlation length is typical of systems
with a two-dimensional matrix representation and appears
in all other correlation functions, for example, the correla-
tion between positive and negative particles separated by a
distance r :

V+−(r) ≡ 〈+i−i+r〉 − 〈+〉〈−〉

= −p(λ+ − z)

λ+λ−

(λ+ − αz)

(λ+ − λ−)2

(
λ−
λ+

)r

. (10)

To express the observables in terms of the conserved density
ρ0, Eqs. (6)–(10) are to be supplemented with the density-
fugacity relation

ρ0(z) = z

L

d

dz
log ZL � z

d

dz
log λ+. (11)

FIG. 3. Density ρ0(z) versus the fugacity z for different values of
p = 0, 10−3, and 10−2 for α = 2. The density shows a discontinuous
jump at z∗ = 1 for p = 0.

In the thermodynamic limit L → ∞, the canonical system
with a fixed density of vacancies ρ0 corresponds to a
particular value of the fugacity, which is obtained by solving
Eq. (11). The invertibility of the above relation to obtain a
unique fugacity z = z(ρ0) for any density ρ0 guarantees the
equivalence of the canonical and grand canonical ensembles.
Figure 3 shows plots of ρ0(z) versus z for different values of p

for a fixed α, which is a smooth function of z for any p > 0.

A. Phase separation transition: p = 0

Let us focus on the p = 0 plane. In that case the eigenvalues
λ± take the simple form

λ+ = 1 + z, λ− = αz (12)

and cross each other at z∗ = 1
α−1 for any α > 1. Crossing

of eigenvalues is a standard signature of the presence of a
singularity in the system, which is reflected as a discontinuity
in the density-fugacity relation:

ρ0(z) =
{ z

1+z
for z � z∗,

1 for z > z∗.
(13)

Clearly, for a canonical system with fixed density larger than
ρ0(z∗) = 1/α no grand canonical correspondence is possible.
This breaking of ensemble equivalence indicates a transition:
for p = 0 there is a phase separation transition when the
density ρ0 is increased beyond its critical value ρc = 1/α for
any α > 1. The phase-separated state exists only on the p = 0
plane, bounded by the critical line ρ0 = 1/α (see the phase
diagram in Fig. 4). In fact, no transition is possible for any
finite p > 0 or α � 1 since the eigenvalues λ± of T cannot
cross for any p > 0 or α � 1 and there the system is always
in a homogeneous phase.

In the low-density regime, i.e., for ρ0 < ρc, the stationary
state becomes particularly simple for p = 0. Let us remember
that p = 0 implies p+ = 0: no negative particles are created,
but they can convert to positive particles with rate p−, and
hence the number of negative particles can only decrease.
Consequently, as is clearly seen from Eqs. (6) and (7) (recall
that λ+ = 1 + z here), both ρ− and 〈N−〉 vanish in the
stationary state for any density ρ0 < ρc.
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FIG. 4. Phase diagram: The phase separation transition occurs
in the p = 0 plane only. The critical line (red curve) separates the
phase-separated region (green shaded region) from the homogeneous
one in the ρ0 – α plane; there is no transition for α � 1.

The particle correlations V+(r) and V+−(r) [from Eqs. (8)
and (10)] also vanish for p = 0. In fact, it is easy to see
that all spatial correlations become zero on this plane. This
is not surprising since when negative particles are absent,
the dynamics is identical to that of ASEP on a ring with a
single species particle density ρ+ = 1 − ρ0, which is known
to have no spatial correlations in the thermodynamic limit. The
average current of the positive particles also takes the usual
ASEP form [4], for p = 0:

J+ = α+〈+0〉 = α+
ZL

Tr[DAT L−2]

= α+(1 − ρ0)ρ0.

It is still useful to look at the correlation length ξ, as defined
in Eq. (9); for p = 0,

ξ = −
[

log
αz

1 + z

]−1

= −[log αρ0]−1, (14)

where Eq. (13) has been used in the last step. Near ρc = 1/α,

ξ ∼ (ρc − ρ0)−1. (15)

On the p = 0 plane, the phase transition is thus associated
with a diverging length scale as the critical line is approached
from the low-density regime.

In the high-density, i.e., ρ0 > ρc regime, the ensemble
equivalence breaks down, and the phase-separated state cannot
be described within this formalism. We have performed Monte
Carlo simulations to investigate this regime, which shows that
for a large enough system there is typically a single negative
particle surviving (see Fig. 2 for a typical snapshot). Even
though the macroscopic density ρ− � 1/L still vanishes in
the thermodynamic limit the system goes to a very different
state in this regime. A domain of vacancies of macroscopic
size 〈N−〉 [defined in Eq. (7)] forms in front of this particle;
the rest of the system is expected to remain homogeneous
with vacancy density ρc. This in turn implies, for ρ0 > ρc, the
average fraction κ of sites occupied by the domain,

κ = 1

L
〈N−〉 = (ρ0 − ρc)

(1 − ρc)
, (16)

FIG. 5. (a) The density of negative particles ρ− versus ρ0 for
different values of p. (b) Domain size κ versus ρ0 for different
values of p. For p = 0 the domain size obtained from Monte Carlo
simulation (blue symbols) of a system of size L = 104 is compared
with the prediction in Eq. (16) (solid line). Here α = 2.

which increases linearly with the distance from the critical
line. This prediction is verified in Fig. 5(b) where the domain
size κ obtained from the numerical simulations of a system
of size L = 104 (blue symbols) is plotted as a function of ρ0,
which matches excellently with the prediction of the above
equation (solid line).

A comment is in order about the effect of the finite system
size on this phenomenon. The formation of the macroscopic
domain is stable only when 〈N−〉 
 1. In other words, to
observe the macroscopic domain of vacancies for a fixed
density ρ0, the system size L must be large enough so that
L 
 (1 − ρc)/(ρ0 − ρc) is satisfied [from Eq. (16)].

In Sec. III C we will revisit the phase-separated state within
the canonical formulation and discuss its connection with a
condensate in an equivalent zero-range process.

B. Approach to p = 0 plane: Off-critical behavior

The parameter p can be thought of as another control
parameter, and it is instructive to look at the behavior of
observables as p approaches the critical value 0, keeping the
density fixed. In fact, as we will see below, the p direction
provides access to the nontrivial aspects of the critical behavior.

Moving away from the p = 0 plane the ensemble equiv-
alence is restored, and all the static observables can be
calculated analytically. The strategy is the same as before,
using the solution z = z(ρ0; p) of Eq. (11); both ρ− and 〈N−〉,
as defined in Eqs. (6) and (7), are obtained as a function of ρ0

and p.

FIG. 6. Off-critical behavior: The density of negative particles ρ−
(a) and average cluster size κ (b) plotted against p for three different
values of ρ0: below, at, and above critical density ρc = 0.5.
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Figure 5(a) shows a plot of ρ− as a function of ρ0 for
different (small) values of p; it increases slowly up to ρ0 ∼ ρc

and shows sharp growth after that. Figure 5(b) shows the same
plot for κ , which remains vanishingly small up to the critical
density and increases linearly thereafter.

The qualitatively different nature of the two regimes is also
reflected in the approach to the p = 0 plane. Below the critical
density ρc, the system is regular, both the density of negative
particles ρ− and κ vanish linearly as p → 0.

At the critical density, i.e., for ρ0 = ρc, both ρ− and κ

show singular behavior, but with different exponents. A series
expansion around p = 0 yields, to the leading order:

ρ−(p) ∼ (α − 1)

α4/3
p2/3,

κ(p) ∼ 1

α2/3
p1/3.

The average domain size of vacancies per negative particle
κ/ρ− ∼ p1/3.

Yet a different behavior is seen in the high-density regime
ρ0 > ρc; to the leading order:

ρ−(p) ∼
√

(αρ − 1)(1 − ρ)

α

√
p.

Figures 6(a) and 6(b) show plots of ρ− and κ as a function
of p at the critical point, below, and above it. The series
expansion for κ could not be done for ρ0 > ρc. However,
an exact numerical value of κ can be computed for any p > 0
using Mathematica from Eqs. (11) and (7). This is plotted for
a fixed ρ0 > ρc (green diamonds) in Fig. 5(b) and strongly
suggests

κ(p) − κ(0) ∼ p1/2,

κ(0) being given by Eq. (16). In fact, κ shows same behavior
for any ρ0 in this high-density regime.

To summarize, near the plane p = 0, for fixed ρ0,

the density of negative particles vanishes with a critical
exponent β,

ρ−(p) ∼ pβ, (17)

where

β =
{

2/3 for ρ0 = ρc,

1/2 for ρ > ρc.

Surprisingly, the singular behavior is present even deep inside
the high-density phase, far from the critical point. Note that,
for a finite system size L, this behavior can be observed only
for p 
 L−1/β . Otherwise, negative particles do not survive,
and the system becomes homogeneous.

To gain more insight about the phase-separated regime we
take a look at the correlation length, as defined in Eq. (9). At
ρ0 = ρc, for small p,

λ−
λ+

= 1 − α − 1

α2/3
p1/3 + O(p2/3). (18)

This in turn implies, as p → 0, the spatial correlation length
diverges as

ξ ∼ p−1/3.

FIG. 7. Correlation length ξ plotted as a function of p : (a) At
the critical point ρc = 1/α for three different values of α. ξ diverges
with exponent ν⊥ = 1/2. (b) For two different densities ρ0 above
the critical density for α = 2. In this case ν⊥ = 1/2. The solid lines
provide a guide to the eye for the corresponding power laws.

The associated critical exponent is thus ν⊥ = 1/3. The exact
numerical values of ξ, as obtained from Eq. (9), are plotted in
Fig. 7(a) as a function of p, for different values of ρc = 1/α.

The analytical expansion is not possible for the high-density
regime. However, as before, for any p > 0 the numerical value
of ξ can be calculated using Eqs. (9) and (11). This is plotted
in Fig. 7(b) for different values of ρ0 above the critical value
and suggests that

ξ ∼ p−1/2,

i.e., ν⊥ = 1/2 for ρ0 > ρc, different from that at the critical
point.

It appears that the whole phase-separated regime is “criti-
cal”: for all densities above ρc the system is associated with
a diverging correlation length as p → 0. Moreover, the set of
critical exponents characterizing the phase-separated regime
are different from those on the boundary line ρ0 = 1/α.

C. Canonical ensemble: Mapping to a zero-range process

The study of the actual phase-separated state is not
possible within the grand canonical scheme since the ensemble
equivalence breaks down. However, it is also possible to study
the phenomenon directly within the canonical ensemble using
a mapping of the exclusion dynamics to a zero-range process,
which we discuss in this section.

A zero-range process (ZRP) describes stochastic motion
of particles on a lattice where each site, also referred to as a
box, can accommodate an arbitrary number of particles and
the hopping rate depends on the number of particles in the
departure box only [21]. The stationary state for any generic
ZRP has a factorized form where the lattice sites become
independent.

The exclusion dynamics (1) discussed in Sec. II can be
mapped to a ZRP with constant particle hopping rates by
identifying positive and negative particles as two different
kinds of boxes τ = ±, respectively [18]. An uninterrupted
sequence of n number of 0s on the lattice to the right of a
+(−) particle denotes a +(−) box containing n particles (see
Fig. 1 for a schematic representation). In this ZRP picture
particles from a + (respectively −) box hop to the left box
with a constant rate α+ (respectively α−), and an empty +
(or −) box can alter its state with rate p+ (or p−). Note that
even though the total number of boxes M and particles N0 is
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conserved in the ZRP, the number of boxes of each kind and
particles in them can fluctuate.

Following the result of Ref. [18], the stationary state weight
of a generic configuration {niτi} in this ZRP has a product
structure

P ({niτi}) ∼
∏

i

fτi
(ni)

with fτi
(n) being the weight that the ith box in the state τi

contains n particles. It turns out that

f+(n) = 1; f−(n) = pαn,

where, of course, only the ratios of the flip rates p and hopping
rates α appear.

Writing the formal canonical partition function is now
straightforward:

ZL,N0 = L

L − N0

N0∑
N−=0

L−N0∑
M−=0

C
N++M+−1
N+

×C
N−+M−−1
N− C

L−N0
M+ pM−αN− ,

where N+ (N−) denotes the total number of particles in positive
(negative) boxes with N+ + N− = N0. The combinatorial
factors count the number of ways this partitioning can be
done. Since the transition occurs for p = 0, and the number
of negative box becomes O(1) in that limit, an even simpler
scenario can be used to capture the basic physical picture. We
take the case where there is only one negative particle in the
system, i.e., M− = 1, which, as we will see below, turns out
to be enough to explore the condensate phase.

The canonical partition function for this case reduces to

ZL,N0 = (L − N0)
N0∑

N−=0

C
L−N−−2
N0−N− αN− .

Note that this partition function corresponds to a system where
the second part of the dynamics (1) is absent, i.e., boxes cannot
change their type. So the above partition function corresponds
to a specific conserved sector of the original configuration
space with a single negative particle and M − 1 positive
particles.

This is nothing but a disordered ZRP with a single defect,
and it is already known that a condensation transition can
occur if the defect box has a smaller hopping rate than the
other boxes [21]. This condition translates to α > 1 in the
present case, the same as what we have obtained in Sec. III.

The asymptotic behavior of ZL,N0 in the limit L,N0 → ∞
but fixed ρ0 = N0/L can be investigated using the method of
steepest descent [21]:

ZL,N0 �
{

(L − N0)CL
N0

(1−ρ0)2

(1−αρ0) for ρ0 < 1
α
,

(L − N0) αL−1

(α−1)L−N0−1 for ρ0 > 1
α
.

Clearly, this conserved system undergoes a phase transition
at ρ0 = 1/α, the same as the original system at p = 0. For
ρ0 > 1/α, a macroscopic condensate is formed in the negative
box: equivalent to the domain forming in front of the negative
particle in the exclusion process.

The size of the condensate, which corresponds to the
domain size in the exclusion picture, is nothing but the average

number of particles contained in the negative box, and turns
out to be

〈N−〉 = α
d

dα
log ZL,N0 =

{ αρ0

1−αρ0
for ρ0 < ρc,

L
(αρ0−1)
(α−1) for ρ0 > ρc.

This estimate, as expected, is identical to the previous result
Eq. (16) in the condensate phase. Note that, in contrast to the
original dynamics, the negative box is still present even below
the critical density, and hence 〈N−〉 gets a nonzero value in
this “reduced” ZRP.

On the other hand, the prediction from the single defect ZRP
is expected to work for any value of density for observables
which do not involve the negative particle in the original
process. For example, the current of positive particles is given
by

J+ = α+〈+0〉
= α+

(1 − ρ0)

ZL,N0

(L − N0 − 1)S, (19)

where

S =
N0∑

N+=1

C
L−N0−3+N+
N+−1 αN0−N+ .

As before, the combinatorial factors correspond to the number
of ways the particles can be distributed under the relevant
conditions.

Once again, we use the method of steepest descent to
compute the asymptotic behavior:

S �
{

CL
N0

ρ0

1−αρ0
(1 − ρ0)2 for ρ0 < 1

α
,

αL−2

(α−1)L−N0−1 for ρ0 > 1
α
.

Combining the above equation with Eq. (19), we get

J+ =
{

α+ρ0(1 − ρ0) for ρ0 < 1
α
,

α+
α

(1 − ρ0) for ρ0 � 1
α
.

(20)

FIG. 8. Current of positive particles J+ for p = 0, as a function
of density ρ0 for different values of α = 1, 2, and 4, obtained from
numerical simulation of a system of size L = 104. The hopping rate
for positive particles is α+ = 1 here.
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FIG. 9. Scaling collapse for the density of negative particles ρ−(t)
as a function of tpν‖ for different values of p. (a) At ρ0 = ρc:
corresponding ν‖ = 2/3, δ = 1. (b) ρ0 > ρc: corresponding ν‖ =
1/2, δ = 1/2. The insets show the unscaled data in both cases; the
value of p increases from upper to lower curves. Here α = 2 so that
ρc = 0.5. The system size L = 103.

The form of the current is same as in ASEP for the
homogeneous phase; in the condensation regime it decreases
linearly with density. Note that the current is a continuous
function of the density ρ0, but its derivative is discontinuous
at ρ0 = 1/α.

Figure 8 shows a plot of J+, as obtained from numerical
simulation for p = 0, for different values of α. For α = 1,

there is no transition, and the current follows the ASEP form
for all values of density. In fact, this is true for any α � 1. For
α > 1 the current exactly matches the prediction in Eq. (20),
with a sharp change in behavior across ρc. This provides an
additional confirmation that the reduced ZRP picture with a
single defect box adequately describes the phase-separated
state that appears in the p = 0 limit.

IV. RELAXATION DYNAMICS

For a complete characterization of the phase transition one
also needs to explore the dynamical behavior of the system
for which we take recourse to Monte Carlo simulations.
The temporal decay of ρ−(t) is measured starting from a
homogeneous configuration with equal numbers of positive
and negative particles for different values of p > 0 at and
above the critical density ρc.

FIG. 10. Finite size scaling at p = 0: (a) Plot of ρ−(t)t δ versus
t/Lz at the critical point ρc = 0.5 for different lattice sizes L = 29

to 212, the lowest curves corresponding to the smallest system size.
The best data collapse is obtained for z = 1. (b) A similar plot in
the high-density regime for ρ0 = 0.75 using ρ̃− = ρ− − 1/L; in this
case z = 2. Insets show the unscaled data. Here α = 2.

TABLE I. Summary of the critical exponents associated with the
phase separation transition.

β ν⊥ δ z

ρ0 = ρc 2/3 1/3 1 1
ρ0 > ρc 1/2 1/2 1/2 2

At the critical point (p = 0,ρ0 = 1/α) the density ρ−(t)
is expected to show a power law decay with some exponent
δ. For small p > 0 at the critical density ρ− saturates to the
stationary value ∼ pβ , and the phenomenological scaling form
can be expressed as

ρ−(t) = t−δF(tpν‖), (21)

where ν‖ = β/δ is another critical exponent characterizing the
temporal correlation length andF is a scaling function. In fact,
for this system, a similar scaling form is expected to hold even
deep inside the high-density regime since both ρ− and ξ show
signatures of criticality for any density above ρc, possibly with
a different exponent and a different scaling function.

Figures 9(a) and 9(b) show the scaling collapse of the
numerical data according to Eq. (21) for ρ0 = ρc and ρ0 > ρc

respectively. The best data collapse occurs for δ = 1,ν‖ = 2/3
at the critical point ρc and δ = 1/2,ν‖ = 1 for ρ0 > ρc: the
dynamical behavior is distinctly different in the high-density
regime.

A. Finite size scaling

Finally, to investigate the finite size scaling behavior of the
system we measure the temporal decay of ρ−(t) for different
values of the system size L at p = 0. The phenomenological
scaling form, in this case, is given by

ρ−(t) = t−δG(t/Lz),

where z is the dynamical exponent G is the finite size scaling
function. The same homogeneous initial condition is used here.

Figures 10(a) and 10(b) show the scaling collapse of the
numerical data according to the above scaling form for ρ0 = ρc

and ρ0 > ρc respectively. For the latter case we have used
ρ̃−(t) = ρ−(t) − 1/L since one negative particle survives in
the stationary state. In this regime the best collapse is obtained
for z = 2. At the critical density ρc = 1/α, however, the
scaling collapse clearly suggests z = 1 (see Table I for a
summary of the exponents).

V. CONCLUSION

We study a phase separation transition in a one-dimensional
exactly solvable driven diffusive system with two species of
particles, referred to as positive and negative. The dynamics
does not conserve number of particles of individual species,
but the total number of particles remains fixed. It is shown
that, in the limiting case p = 0, when negative particles are
not allowed to be created, the system shows a transition from
a homogeneous state to a phase-separated one when the total
density is changed. The phase-separated state is characterized
by presence of a microscopic number of negative particles and
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formation of macroscopic domains of vacancies in front of
these.

Surprisingly, the phase-separated state appears to be always
critical, associated with a diverging correlation length for
any density above the critical value ρc. The corresponding
exponents are obtained by studying the behavior of the system
in the limit p → 0 for a fixed density ρ0. Both the static and
the dynamic exponents are obtained from the exact solution
and Monte Carlo simulations. These exponents turn out to be
different when ρ0 = ρc and ρ0 > ρc.

This scenario is similar to a continuous phase transition
where the terminal point of a critical line separating two phases
shows a universal behavior which is different than on the line.
Some examples in the nonequilibrium context are absorbing
state transitions observed in Domany-Kinzel model [22] and
self-organized criticality in the sticky grain model [23] where
the critical line showing the directed percolation behavior ends
at a special fixed point, namely, compact directed percolation.
Usually a different critical behavior at the end point is the
outcome of an additional symmetry (particle-hole symmetry
in the above examples). In the present study, however, it is not
clear what is the underlying feature that makes the critical
behavior different at ρ = ρc from that in the high-density
regime.

The model can be mapped to a zero-range process, and the
phase separation is nothing but a condensation transition in

this picture. The connection between exclusion process and
zero-range process has been exploited in deriving a general
criterion for phase separation transition for driven diffusive
systems [24]. This usual classification of phase separation
using mapping to single species ZRP relies on the generic
condition of condensation transition in ZRP, which does not
occur for constant hopping rates. This is not the case here,
however; the corresponding zero-range process is a disordered
one where phase transition can occur even with constant
rates [21,25].

The examples of phase separation transition in one-
dimensional nonequilibrium systems known so far are either
fully conserved, and particles (irrespective of species) form
large domains or with a single second class particle, or, in
the case of nonconserved dynamics, particles of both species
form separate domains. The model studied here provides
a different example of an exactly solvable driven diffusive
system where particle number for each species can fluctuate
and the vacancies form the macroscopic domain.
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