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Equilibrium dynamical correlations in the Toda chain and other integrable models

Aritra Kundu* and Abhishek Dhar†

International Centre for Theoretical Sciences (TIFR), Survey No. 151, Shivakote, Hesaraghatta Hobli, Bengaluru—560 089, India
(Received 19 September 2016; published 20 December 2016)

We investigate the form of equilibrium spatiotemporal correlation functions of conserved quantities in the
Toda lattice and in other integrable models. From numerical simulations we find that the correlations satisfy
ballistic scaling with a remarkable collapse of data from different times. We examine special limiting choices of
parameter values, for which the Toda lattice tends to either the harmonic chain or the equal mass hard-particle
gas. In both these limiting cases, one can obtain the correlations exactly and we find excellent agreement with
the direct Toda simulation results. We also discuss a transformation to “normal mode” variables, as commonly
done in hydrodynamic theory of nonintegrable systems, and find that this is useful, to some extent, even for
the integrable system. The striking differences between the Toda chain and a truncated version, expected to be
nonintegrable, are pointed out.
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I. INTRODUCTION

There has been a lot of recent interest in equilibrium correla-
tions of conserved quantities in one-dimensional Hamiltonian
systems, in particular in the form of the temporal-relaxation
for a system in equilibrium. Remarkable predictions have
been obtained for the form of spatiotemporal correlations
in systems of one-dimensional fluids and anharmonic chains,
using the framework of fluctuating hydrodynamics [1–4]. For
generic nonlinear systems with three conserved quantities
(mass, momentum, energy), it has been predicted that there
are two sound modes that exhibit correlations as those in the
Kardar-Parisi-Zhang (KPZ) equation, and a single heat mode
showing characteristics of a Levy walk. These predictions
have been verified in many systems [5–7]. These studies
of equilibrium fluctuations of conserved quantities have led
to some progress in resolving the longstanding puzzle of
anomalous heat transport in one-dimensional systems [8–10].
The general consensus from about two decades of theoretical
and numerical studies is that in one-dimensional momentum
conserving nonintegrable systems, the heat transport is anoma-
lous, that is the heat conductivity (κ) diverges with system
size (κ ∼ Nα , where 0 � α � 1). The decay of equilibrium
fluctuations shows similar anomalous features, which lead
to an understanding of the nonequilibrium state via linear
response.

An important aspect, which affects transport and fluctu-
ations in a many-body system, is the integrability of the
Hamiltonian. It is widely believed that if we apply different
temperatures to the two ends of an integrable system, then
the energy current would not decay with system size (for
large systems). This is referred to as ballistic transport. It
is expected in nonintegrable systems that typical nonlinear
interactions should lead to sufficient effective stochasticity in
the dynamics, which should then cause a decay of the heat
current with system size. Similarly the decay of equilibrium
fluctuations is expected to be ballistic, i.e., the width of
the correlation function spreads in time as ∼t . There are
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very few simulations exploring equilibrium correlations of
conserved quantities in integrable models [11–13]. Also we
have not found a mathematical statement in the literature of the
conditions under which one gets nondecay, with system size, of
the energy current in the open system with applied temperature
bias, and of ballistic scaling of correlations functions. In
fact, there are examples of integrable systems [14], in one
dimensions with stochastic dynamics and in higher dimensions
with Hamiltonian dynamics, where one has diffusive transport
(though no local equilibrium). Some exact results are known
on properties of the equilibrium energy current correlation
function, for example, in terms of Mazur inequalities [15]. But
it is not clear what this precisely means for either the decay of
equilibrium spatiotemporal correlations or for the system size
dependence of current in the nonequilibrium setting.

The main aim of this paper is to perform a detailed
study of the form of equilibrium correlations in integrable
systems. In particular we study the well-known model of
an anharmonic chain, the Toda chain [16], first introduced
in 1967 as an example of an integrable one-dimensional
(1D) system, which generalizes the harmonic chain to large
amplitude oscillations. The chain is characterized by nonlinear
interactions of exponential type between nearest neighbors
while still being integrable. The exact solvability of the model
was studied in Refs. [17,18], where it was reported how to
construct a full set of conserved quantities using the Lax pair
formalism. The periodic lattice was studied in Refs. [19,20]
using the inverse scattering method. In the limit of large
anharmonicity the chain is characterized by soliton solutions,
which are stable wave packets localized in real space. For
infinite chains the isolated soliton solution was found by
Toda [16]. For periodic finite chains one can find exact
solutions, the so-called cnoidal waves, which are periodic
trains of solitons [13,16]. The equilibrium thermodynamic
properties such as specific heat, etc. [21], can be studied by
performing exact integrals with respect to Gibbs distribution.
Although special exact classes of solutions are known for the
Toda chain, finite-temperature dynamical properties, such as
correlation functions, are hard to access analytically. There
have been some attempts to study finite-temperature dynamical
properties of Toda chain through noninteracting soliton gas
analogy [11,22,23] and through taking classical limit of a
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quantum Toda chain [24]. The quantum Toda chain was solved
in Ref. [25] and by the Bethe ansatz in Ref. [26]. A review of
various static and dynamic properties of the Toda chain can be
found in Ref. [27].

Energy transport in the Toda chain was studied in Ref. [15],
where the decay of current correlations and overlap of currents
with other conserved quantities were studied in the context of
Mazur inequalities. A careful numerical study was carried
out in Ref. [13] looking at the decay of current correlations
in finite systems prepared in canonical equilibrium. It was
pointed out that the Mazur relations needed to be modified and
that one needed to take projections of the current to not just
the conserved quantities but also to their bilinear combinations.
Among the other results in Ref. [13], the existence of special
“cnoidal” solutions in the periodic Toda chain was noted and
the effect of cubic and quartic perturbations on the decay of
conserved quantities was studied.

To test the role of integrability in heat transport, it is
interesting to study transport in perturbed integrable systems.
The effect of solitons on the heat transport in Toda chain
and its perturbations was studied in Ref. [28]. The diatomic
alternate mass Toda chain, which is nonintegrable, was studied
in Ref. [29], where it was found that the thermal conductivity
κ diverges with system size N as as κ ∼ N0.34. Heat transport
in Toda chain perturbed with conservative noise was studied in
Refs. [30,31], where again it was seen that the current decays
with system size (anomalously). In Ref. [32] it was pointed
out that the Fermi-Pasta-Ulam (FPU) chain can be studied
as a perturbation of Toda chain and that they exhibit similar
behavior at short times.

Another motivation for our study is from the context
of recent studies on thermalization in integrable quantum
systems. It has been shown that integrable quantum systems
prepared in special initial conditions relax to a state that
can be described by generalized Gibbs ensemble (GGE),
i.e., thermal equilibrium state is described by a distribution
P = e− ∑

n λnIn/Z({λn}), where In are the conserved quantities
of the system, λn are corresponding Lagrange multipliers, and
Z is the appropriate partition function [33]. On the other
hand, typical states and also typical energy eigenstates are
described by the usual Gibbs’ ensemble (with only temperature
specified) [34,35]. An interesting question, then, is to see how
integrability shows up in the dynamics of the system when it
is prepared in an initial thermal Gibbs state.

In this paper we investigate the spatiotemporal equilibrium
correlations of fluctuations of the three conserved quantities:
stretch, momentum, and energy in the Toda chain. The
equilibrium state is chosen to correspond to the one with
specified temperature (T ) and pressure (P ) with zero average
momentum. Our main results are as follows

(i) In all parameter regimes we find from numerical
simulations that the correlations exhibit ballistic scaling,
which means that all correlation functions have the form
C(x,t) = (1/t)f (x/t), where f is some scaling function
(nonuniversal).

(ii) In two limiting cases the Toda system reduces to the
harmonic chain and the hard particle gas. In these cases we
are able to compute all correlation functions exactly. We show
that there is excellent agreement between direct simulations of
the Toda with these exact results.

(iii) We follow the prescription used in the theory of fluc-
tuating hydrodynamics of nonintegrable anharmonic chains
and carry out a transformation to the three “normal” modes
corresponding to the three conserved quantities. We find that
one can then again see a separation of the heat and sound
modes, but unlike the nonintegrable case, here the cross
correlations between different modes are nonvanishing, even
at long times.

The plan of the paper is as follows. In Sec. II we precisely
define the Toda chain model and gives a summary of some
known exact results. The numerical results for spatiotemporal
correlations of the three conserved quantities in the Toda chain
are presented in Sec. III. We also discuss the form of correlation
functions in the normal-mode basis. We summarize the main
findings of this work in Sec. IV.

II. TODA CHAIN: MODEL, DEFINITIONS, AND
SUMMARY OF SOME EXACT RESULTS

We first define the Toda model on a ring geometry. We
consider N particles with position qx , momentum px , with
x = 1, . . . ,N . We define a “stretch” variable rx = qx+1 − qx .
The Toda Hamiltonian is given by

H =
N∑

x=1

p2
x

2
+ V (rx),

where V (rx) = a

b
e−brx , (1)

and we take periodic boundary conditions qN+1 = ∑N
x=1 rx =

q1 + L, q0 = qN − L, where L is the length of the lattice. The
equations of motion are

mq̈x = −a[e−b(qx−qx−1) − e−b(qx+1−qx )], x = 1, . . . ,N. (2)

Using the Lax pair formulation one can construct N constants
of motion, the first few of which are

I1 =
N∑

x=1

px, I2 =
N∑

x=1

[
p2

x

2
+ V (rx)

]
,

I3 =
N∑

x=1

[
p3

x

3
+ (px + px+1)V (rx)

]
. (3)

In addition we have a trivial but important conserved quantity
I0 ≡ L = ∑N

x=1 rx , in the case of periodic boundaries.

A. Limiting cases

If one takes the limit b → 0, a → ∞ with ab = ω2

constant, then one gets a harmonic chain with spring constant
ω2. In addition, there is a large linear term that can be canceled
with an appropriate “pressure” term [adding a term Pr to
the potential V (r) with P = a]. On the other hand, in the
limit b → ∞ the potential vanishes for r > 0 and is infinite
at r = 0, thus mimicking a hard-particle gas. As we will
see, in these limiting cases, all dynamical correlations can
be exactly computed. In both these cases, some equilibrium
dynamical results were already known [36–39] and even
many exact properties of the nonequilibrium steady state are
known [9,40,41].
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B. Solitons and phonons

As noted in Ref. [13] the Toda chain on the ring has a family
of the so-called “cnoidal” wave solutions that are periodic in
time and space, very similar to the normal modes of a harmonic
chain. For harmonic lattice the overall amplitude of the normal
modes is a free parameter and apart from this freedom,
there are exactly N independent periodic solutions, each
specified by a wave-vector k and a corresponding frequency
ωk (independent of amplitudes). For the nonlinear Toda lattice,
one can again construct N solutions specified by wave vectors
k but there is a free “nonlinearity” parameter depending on the
amplitude A of the solution and, in this case, the frequencies
depend on A. The explicit solutions are stated in Ref. [13].
Here we note the observation made there, that for small
amplitudes, the cnoidal waves look like sinusoidal waves or
phonons (the normal modes of a harmonic lattice), while for
large amplitudes, they look like trains of solitons (localized
excitations).

In the hard particle gas limit, the dynamics consist of
particles moving ballistically and exchanging velocities on
collision. A velocity pulse would simply pass unscattered
through this system. Thus, this limit is characterized by
“noninteracting” solitons. So we see that the two limiting
cases discussed above correspond to excitations being either
phonon-like or soliton-like and, for general parameters, we
expect a mixture of these two.

C. Specification of the equilibrium state and definition
of correlation functions

The Toda chain has a large number of conserved quantities,
and accordingly one can construct generalized ensembles
that are invariant distributions. Such general ensembles are
specified by a set of N Lagrange multipliers corresponding to
the N conserved quantities. Here we restrict our discussion to
the special case where the initial state is prepared such that
only the conserved quantities energy, stretch, and momentum
are specified, while all other Lagrange multipliers are set to
zero. More specifically, we prepare the system initially in a
state described by the following canonical ensemble (with
zero average momentum) and at specified temperature T and
pressure P :

Prob({rx,px}) = e−β
∑N

x=1[p2
x/2+V (rx )+Prx ]

Z
, (4)

where the partition function is simply given by Z =
[
∫ ∞
−∞ dp

∫ ∞
−∞ dre−β(p2/2+V (r)+Pr)]N .

Corresponding to the three global conserved quanti-
ties (I0, I1, I2), we can define the local conserved fields
rx(t), px(t), ex(t) = p2

x/2 + V (rx). It is easy to see that they
satisfy the continuity equations

∂t rx = px+1 − px,

∂tpx = V ′(rx) − V ′(rx−1),

∂t ex = px+1V
′(rx) − pxV

′(rx−1). (5)

Defining a local pressure variable P = −V ′(r) and the discrete
derivative ∂xf (x) = f (x + 1) − f (x), we see that the above

equations can be written in the following form:

∂t rx(t) + ∂xjr (x,t) = 0,

∂tpx(t) + ∂xjp(x,t) = 0,
(6)

∂tex(t) + ∂xje(x,t) = 0, where

[jr (x,t),jp(x,t),je(x,t)] = [−px(t),Px−1(t),px(t)Px−1(t)].

Next, we define the fluctuations of the fields from their
equilibrium values as

u1(x,t) = rx(t) − 〈r〉, u2(x,t) = px(t),

u3(x,t) = ex(t) − 〈e〉, (7)

where 〈. . .〉 denote average over the initial equilibrium state.
We will look at the following dynamic correlation functions:

Cαν(x,t) = 〈uα(x,t)uν(0,0)〉, (8)

with α, ν = 1, 2, 3. The average is over initial conditions
chosen from Eq. (4) and the dynamics in Eq. (2) [or
equivalently the first two equations in Eq. (5)].

D. Correlation functions in the special limiting
cases of Toda lattice

Exact results for the correlations of velocity 〈px(t)p0(0)〉
were obtained in the papers by Montroll and Mazur [39] for the
harmonic chain and by Jepsen [36] for the hard particle gas.
The dynamics of harmonic crystal being linear and the initial
conditions taken from Gaussian distribution makes it simple to
obtain exactly the full set of correlations Cαβ(x,t). It turns out
that for the hard-particle gas, one can use a recently developed
formalism [37], to again compute the full set of correlation
functions [42]. Here we summarize these results (some details
of the calculations are given in the Appendix).

For a harmonic chain with nearest-neighbor spring constant
ω2, the correlation functions are given by

Crr (x,t) = TJ2|x|(2ωt)/ω2,

Crp(x,t) = T

[
−J2|x|−1(2ωt)

ω
θ (−x) + J2|x|+1(2ωt)

ω
θ (x)

]
,

Cpr (x,t) = T

[
−J2|x|+1(2ωt)

ω
θ (−x) + J2|x|−1(2ωt)

ω
θ (x)

]
,

Cpp(x,t) = TJ2|x|(2ωt),

Cee(x,t) = 1

2

[
C2

rr (x,t) + C2
rp(x,t) + C2

pr (x,t) + C2
pp(x,t)

]
,

(9)

where Jn(z) is Bessel function of the first kind of order n and
θ (x) is the Heaviside θ function.

For the hard particle gas, we consider initial velocities
chosen from Maxwell distribution with variance v̄2 = T . The
correlation functions are then given by

Crr (x,t) = 1

ρ2σt

e
−( x

σt
)2

√
2π

, Cpp(x,t) = v̄2

σt

(
x

σt

)2
e
−( x

σt
)2

√
2π

,

Cee(x,t) = v̄4

4σt

[(
x

σt

)4

− 2

(
x

σt

)2

+ 1

]
e
−( x

σt
)2

√
2π

, (10)

where ρ = P/T is the average density and σt = ρv̄t .
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E. Sum rules

We note here [3,10] that the correlation functions of
conserved quantities satisfy the following exact sum rules (see
Appendix for derivation), in the limit N → ∞:∑

x

Cαβ(x,t) =
∑

x

Cαβ(x,0),

(11)
d

dt

∑
x

xCαβ (x,t) = 〈J α(0)uβ(0,0)〉,

d2

dt2

∑
x

x2Cαβ(x,t) = 2〈J α(t)jβ(0,0)〉,
(12)

where J (t) =
∑

x

j (x,t).

These sum rules serve as useful check of numeric simulations.
Further, they provide useful information on transport proper-
ties. For example, the last of the above equation enables one
to relate total current correlations to spreading of correlation
functions of corresponding conserved quantities. One can then
try to say something about nonequilibrium transport via linear
response theory [43,44]. For the case of the integrable models
studied here, we see ballistic scaling of correlations of all
conserved currents, and this immediately implies that the
corresponding total currents do not decay to zero in the infinite
time limit.

We now first present results from direct simulations on the
form of these different correlation functions. In our simulations
we explore different parameter regimes and in the two limiting
cases, compare our results with the above exact results.

III. NUMERICAL RESULTS FOR CORRELATIONS
OF CONSERVED QUANTITIES

A. Numerical details

The Toda-chain is simulated by numerically evaluating
Eq. (2) using the velocity-Verlet algorithm. We choose a
small time step (dt � 0.01) in the simulations, which keeps
the total energy and momentum constant to a high accuracy
(relative error less than 10−6 for energy and 10−4 in I3). To
capture the equilibrium correlations, we prepare the system
in an initial state in a canonical (T ,P ) ensemble by drawing
random numbers p,r for each particle from the distribution
e−β(p2/2+V (r)+Pr)/Z through inverse transform sampling. For
the partition function to be bounded, we require that pressure
is nonzero for Toda Lattice. The full set of spatiotemporal
correlation functions, defined in Eq. (8), are computed by
taking averages over 106–107 initial conditions.

We present numerical results and discuss their scaling in
three different parameter regimes. These correspond to the
harmonic and hard-particle limits and an intermediate regime.
In the former cases, comparisons are made with the exact
results stated in the previous section. For the three conserved
quantities we will use the notation r ↔ 1, p ↔ 2, e ↔ 3.

1. Case I: a = 20,b = 0.05,P = 20.0,T = 1.0

In this limit, the Toda lattice is expected to show similar
characteristics of the harmonic lattice. In Figs. 1(a) and 1(b)
we show results for the diagonal correlations Crr , Cee in

FIG. 1. (a,b) Toda chain with parameters a = 20.0, b =
0.05, P = 20.0, T = 1.0, N = 256 at time t = 80. This corresponds
to the harmonic limit. The simulations of the Toda are compared
with the exact harmonic chain correlation functions (red dashed
lines) as given in text. Here ω2 = 1, hence Crr = Cpp . (c) Toda
chain with parameters a = 0.1, b = 10.0, P = 0.1, T = 1.0, N =
1024 corresponding to hard-particle limit, at time t = 400. The solid
black lines are the values of exact correlation function, as given in
text (with σt = ρv̄t).

the Toda lattice, respectively, and compare them with exact
harmonic chain results as given in Eqs. (9). We find an
excellent agreement. For our parameters, the effective spring
constant ω2 = 1 and hence Crr = Cpp. The correlations are
extended and oscillatory. In Fig. 2(a), the momentum and
energy spatiotemporal correlations are shown for two different
times illustrating how they spread with time. The speed of
sound here is c ≈ 1. In Figs. 3(a) and 3(b), we plot the same
data after scaling the x and y axes by factors of 1/t and t ,
respectively (ballistic scaling). We see a good collapse in the
bulk with some deviations near the sound peaks, which occur
near the edge.

2. Case II: a = 1.0, b = 1.0, P = 1.0, T = 1.0

This corresponds to the intermediate regime and we no
longer see the oscillations in the correlations. In Fig. 2(b), the
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FIG. 2. Diagonal correlation functions Eq. (8) for Toda lattice
for two different times (dashed line indicates later time). The black
dashed line show position of sound velocity as predicted from Eq. (16)
at the two times (a) harmonic limit at time t = 80, 120 [parameters of
Fig. 1(a)]. (b) Toda chain with parameter a = 1, b = 1, P = 1, T =
1, N = 1024 at time t = 200, 300. (c) Hard-particle limit [parameters
of Fig. 1(c)] at time t = 200, 400.

momentum and energy correlations are shown for two different
times. The speed of sound here is c = 0.8833.... The stretch
and momentum correlations only have peaks at the edges,

FIG. 3. The diagonal correlation functions Eq. (8) for Toda
lattice in various limits for two different times are plotted with
ballistic scaling. (a, b) Collapse momentum and energy correlations,
respectively, in harmonic limit with parameters the same as that
of Fig. 2(a). Although the scaling is good in the bulk, the edges
show significant deviations. (c) Ballistic scaling for Toda with the
parameters of Fig. 2(b). (d) Ballistic scaling in the hard-particle limit
with parameters the same as in Fig. 2(c).

while the energy correlation has an additional small peak in
the middle. In Fig. 3(b) we see that there is a very good ballistic
scaling of the correlation functions.
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3. Case III: a = 0.1, b = 10.0, P = 0.1, T = 1.0

This corresponds to the hard-particle gas limit and again
we see no oscillations. In Fig. 1(c) the results for correlation
functions from direct simulations of the Toda chain are
compared with the exact results for the hard-particle gas in
Eq. (10). We again see excellent agreement with the numerical
data. We now see that the nature of correlations are very
different. The stretch correlation has a single peak at the center
and energy correlation has a relatively large central peak. In
Fig. 2(c) the correlations are shown at two different times.
The speed of sound is c = 0.1709..., while Fig. 3(c) shows the
expected ballistic scaling.

To see the huge effect of integrability on the form of
correlations, we show results from a simulation with a potential
corresponding to a truncated Toda potential with parameters
P, T chosen to be close to the actual Toda simulations. Note
that truncation leads to an FPU potential and is expected to
destroy integrability. The truncated Toda potential to quartic
order is given by

Vtr(r) = r2

2
− r3

6
+ r4

24
, (13)

and we have set P = 0.0, T = 0.5 to match the equilibrium
properties with that of Toda chain with parameters a =
1, b = 1, P = 1, T = 0.5. With this parameters, the speed of
sound in truncated Toda chain is c = 1.004... and for Toda
chain is c = 0.938..., which is about a 6% difference.

In Fig. 4 we show a comparison of the correlation functions
of Toda chain with the corresponding truncated Toda chain.
We see that they show significant qualitative differences. In
particular for the truncated Toda (FPU) chain, the correlation
functions show localized and well-separated peaks, while in
the Toda chain, they are broad and overlapping. The cross
correlations are of similar order in both cases and we will
now see how this changes when we transform to normal mode
basis. The normal mode representation more clearly shows the
difference between the Toda results and the FPU.

B. Description in terms of normal modes

In the usual hydrodynamic theory of anharmonic chains [3],
it is convenient to go to a description in terms of “normal”
hydrodynamic modes of the system. The normal modes, which
we will denote by (φ+, φ0, φ−) consist of linear combinations
of the original field (u1, u2, u3) chosen in such a way that
the correlation matrix becomes approximately diagonal at
long times; i.e., the cross correlations between different
modes become negligible at long times. At the level of
linearized hydrodynamics, for the diagonal elements of the
correlation matrix, well-separated peaks for each mode is
seen. Specifically, one finds (at the linear level) a single
diffusively spreading heat mode and two propagating sound
modes moving with speeds ±c. While it is not obvious what
such a normal mode transformation will achieve for our
integrable system, we nevertheless proceed to construct such
a transformation (using the three variable description) and
analyze the correlations in this basis.

We briefly review the construction of the normal mode
transformation, starting with the microscopic continuity equa-
tions given by Eq. (6). The conserved currents jα are then

FIG. 4. All correlation functions between the three locally con-
served quantities (r, p, e) for (a) truncated Toda chain [potential given
by Eq. (13)] and parameters P = 0, T = 0.5, N = 8192 at time
t = 2000. (b) Toda chain with a = 1, b = 1, P = 1 and all other
parameters the same as in panel (a).

expanded about their equilibrium value up to linear order in
the fields leading to the linear equations

∂tuα(x,t) + ∂x(Aαβuβ(x,t)) = 0, (14)

where

A =
⎛
⎝ 0 −1 0

∂lP 0 ∂eP

0 P 0

⎞
⎠.

The partial derivatives above are computed using the equilib-
rium equation of state P = P (l,e) where l = 〈r〉,e = 〈e〉. The
diagonalization of the matrix A leads to the form RAR−1 =
diag(−c,0,c), where the matrix R is completely fixed by
the normalization condition RC(t = 0)RT = 1, with C the
correlation matrix. We refer the reader to Ref. [3] for explicit
expressions. The constant c corresponds to the sound velocity
and can be computed explicitly from equilibrium correlation
functions through the formula [3]

c2 = 1

�

(
1

2β2
+ 〈V + Py; V + Py〉

)
, (15)
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with � = β(〈y; y〉〈V ; V 〉 − 〈y; V 〉2) + 〈y;y〉
2β

, and where
〈A; B〉 = 〈AB〉 − 〈A〉〈B〉. For the Toda potential one can
simplify Eq. (15) to get the form

c2 = b2

β

[2z2ψ (1)(z) − 2z + 1]

[(2z + 1)ψ (1)(z) − 2]
, (16)

where z = βP

b
and ψ (1)(z) is polygamma function, which is

defined as ψ (1)(z) = d2

dz2 log[�(z)] and �(z) is the standard
� function. It is interesting to note that for the special case
with P = b, the above formula is very close to one derived in
Ref. [23].

For small b and P = a, Eq. (16) can be expanded to give
the expected speed of sound in a harmonic chain c = √

ab.
In the other limit, when b → ∞ and the external pressure is
P the above formula gives the hard particle limit c = √

3βP .
These two limits can also be obtained in the high-temperature
(corresponding to large b) and low-temperature limits (small b)
by expanding with respect to z, leading to the same expressions
for speed of sound to the leading order.

The normal mode transformation is then defined by
φs = ∑

α Rs,αuα , for s = +, 0,−. We can then compute
correlations for these normal modes,

Crs = 〈φr (x,t)φs(0,0)〉, (17)

for r,s = +, 0,−. As we will see this normal mode trans-
formation separates the two sound modes s = +,− moving
with velocity ±c, respectively, and the heat mode s = 0. All
the modes continue to show ballistic scaling. We now show
numerical data of the correlations in normal modes for the
Toda chain in various parameter regimes.

1. Case I: a = 1.0, b = 1.0, P = 1.0, T = 1.0

In Fig. 5(a) we show the sound and heat modes plotted
together at three different times t = 200, 300, 350. The speed
of sound is c = 0.883.... The scaled right moving sound modes
and the scaled heat modes are plotted in Figs. 5(b) and Fig. 5(c),
respectively. The scaling collapse is very good even for short
times. The sound mode is broad and asymmetric. The heat
mode, on the other hand, has a broad central peak and also
significant side peaks. The amplitude of heat mode is much
less than that of sound mode, which implies less scattering.
In Figs. 5(b) and 5(c) we show the ballistic scaling of the
right moving sound mode and the heat mode. Note that the
shift by ct for the sound mode is not really necessary to see
scaling collapse for the ballistic case. Typically, we find that
the off-diagonal correlations are of the same magnitude as that
of the diagonal correlations.

2. Case II: a = 1.0, b = 1.0, T = 5.0, P = 1.0

In Fig. 6(a) we show the three normal modes correlations
plotted together. The speed of sound in this case is 0.6232....
At high temperatures the dynamics is controlled by solitons,
which are moving slower than their phonon counterparts. At
this temperature the phonon-soliton interaction is negligible
and the sound mode is symmetric and fits well to a Gaussian

FIG. 5. Normal mode representation: Case I with parameters
a = 1, b = 1, P = 1, T = 1, and N = 1024. (a) Heat and sound
modes plotted together at times t = 200 (red), t = 300 (blue), and
t = 350 (green). The two sound modes move to the left and to the
right with velocities ∓c (vertical dashed lines indicate the distance
ct). (b) The sound modes at the three times are scaled ballistically
and we see a good collapse even at small times. (c) The heat modes
are scaled ballistically.

with σ = 0.1982, while the heat mode has faster decay.
Another feature is that at high temperatures the diagonal
correlations are at least an order of magnitude larger than
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FIG. 6. Normal mode representation: Case II with parameters
a = 1.0, b = 1.0, P = 1.0, T = 5.0, and N = 1024. (a) Heat and
sound modes plotted together, at times t = 200 (red), t = 300 (blue),
and t = 450 (green). The two sound modes move to the left and to
the right with speed c (vertical dashed lines indicate the position ct).
(b) This shows the ballistic scaling of the sound modes at the three
different times. These are now almost Gaussian (shown by black
solid line with standard deviation σ = 0.1982...). (c) This shows the
ballistically scaled heat mode. The amplitude of the heat and sound
modes are now comparable.

the cross-correlations. In Figs. 6(b) and 6(c) we show the
ballistic scaling of the left-moving sound mode and the heat
mode.

3. Case III: a = 0.1, b = 10.0, T = 1.0, P = 1.0

In Fig. 7(a) we show the three normal modes correlations
plotted together, in a parameter regime corresponding to the
hard particle limit. The speed of sound is 0.17093. The heat
and sound modes now have single peaks but these are broad
and with significant overlap at all times. Also note that the
heat mode is larger in amplitude than the two sound modes
unlike the other cases. In Figs. 7(b) and 7(c) we show the
ballistic scaling of the right-moving sound mode and the heat
mode.

Finally, we show that the normal mode representation also
brings out clearly the striking differences between integrable
and nonintegrable models. In Figs. 8(a) and 8(b) we plot
the normal mode correlations for the truncated Toda chain
whose correlations (in usual variables) were presented in
Fig. 4(a). We see the striking differences between these and
the corresponding plots for the Toda chain in Figs. 5, 6,
and 7. In particular, we see that for the nonintegrable case,
the sound modes show the KPZ scaling form C++(x,t) =
f+[(x + ct)/(λst

2/3)]/(λst)2/3, while the heat modes show
Levy-5/3 scaling C00 = f0[x/(λht

3/5)]/(λht)3/5, where f+,0

and λs,h are appropriate scaling functions and scaling factors.
The cross correlation between the three normal modes in the
truncated Toda lattice is shown in Fig. 9(a) and for Toda
chain in Fig. 9(b). In this case we see that for both the Toda
chain and its truncated version, the off-diagonal correlations
between heat and sound modes are much smaller than the
diagonal correlations. The main difference between the two
cases is that in the truncated Toda chain, the modes are
localized, while for integrable Toda chain they have a broad
spreading.

IV. CONCLUSION

We have studied the spatiotemporal equilibrium correlation
functions of the fluctuations of three conserved quantities
(stretch, momentum, and energy) in the Toda chain. We found
analytical expressions of these correlations in two different
limits of the Toda chain, namely harmonic chain and hard
particle gas and verified them in direct molecular dynamics
simulations. The two limits can be argued to correspond
to either phonon dominated dynamics or soliton dominated
dynamics.

For generic parameter regimes, our numerical data shows
that the Toda correlations always exhibit ballistic scaling. We
pointed out that this form is completely different from the
correlations seen in a truncated Toda potential, which exhibits
the universal scaling forms predicted by nonlinear fluctuating
hydrodynamics of generic anharmonic chains. We carried out
the transformation to normal modes following the approach of
hydrodynamics (for the three variables) and found that this is
still useful in separating the multiple peaks seen in correlation
functions of the conserved variables. Also, an explicit formula
for the speed of sound is obtained. Unlike nonintegrable
systems, the normal modes have peaks with large width (both
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FIG. 7. Normal mode representation: Case III with parameters
a = 0.1, b = 10.0, P = 0.1, T = 1.0, and N = 1024, corresponding
to the large anharmonicity limit. (a) This shows the heat and the two
sound modes at times t = 300 (red), t = 400 (blue), and t = 500
(green). The distances x = ±ct are marked with vertical dashed lines.
(b) This shows the ballistic scaling of the sound modes. (c) This shows
ballistic scaling of the heat mode.

mean position and width of the peaks scale linearly with
time). Ballistic scaling of space-time correlations seems to be a
generic feature of classical integrable systems, and proving this

FIG. 8. (a) Sound and heat modes for truncated Toda chain
[Eq. (13)] with parameters P = 0.0, T = 0.5, N = 8192 at times
t = 2000 (red), t = 3000 (blue), and t = 3500 (green). The black
dashed line show the positions ±ct and coincide with the peaks of
the sound modes. (b) The expected KPZ-scaling of the sound modes,
with exponent 2/3 as per hydrodynamics prediction. (c) The heat
mode scaling with the the expected Levy exponent 3/5.

rigorously remains an open interesting problem. The question
is also of interest in the context of integrable quantum systems.
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FIG. 9. The cross correlations between the normal modes at t =
2000, which are smaller than their respective diagonal correlations
for (a) truncated Toda chain with parameters as given in Fig. 4(a). (b)
Toda chain with same parameters as Fig. 4(b).
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APPENDIX

1. Harmonic chain correlation functions

The Hamiltonian for the harmonic chain is given by

H =
N∑

x=1

p2
x

2
+ ω2r2

x

2
, (A1)

where rx = qx+1 − qx and we assume periodic boundary
conditions r0 = rN and pN+1 = p1. The variables {rx,px}

satisfy the equations of motion:

∂t rx = px+1 − px,

∂tpx = ω2(rx − rx−1). (A2)

Defining Fourier transform variables r̃k = ∑N
x=1 eikxrx, p̃k =∑N

x=1 eikxpx , these satisfy the equations

∂t

(
rk

pk

)
= T̂

(
rk

pk

)
,

where T̂ = 2i sin(k/2)

(
0 eik/2

ω2e−i k/2 0

)
.

Let Ŝ be the matrix that diagonalizes B̂; i.e., Ŝ−1B̂Ŝ = i�.
Then the solution of the above equation is given by(

r̃k(t)
p̃k(t)

)
= Ŝei�t Ŝ−1

(
r̃k(0)
p̃k(0)

)

=
(

cos(λt) ieik/2

ω
sin(λt)

iωe−ik/2 sin(λt) cos(λt)

)(
r̃k(0)
p̃k(0)

)
,

(A3)

where λ = 2ω sin(k/2). The translational invariance of the
problem means that the correlation matrix

C(x,t) =
( 〈rx(t)r0(0)〉 〈rx(t)p0(0)〉

〈px(t)r0(0)〉 〈px(t)p0(0)〉
)

(A4)

is given by

C(x,t) = 1

N

∑
k

C̃(k,t)e−i kx, (A5)

where C̃(k,t) =
( 〈r̃k(t)r̃−k(0)〉 〈r̃k(t)p̃−k(0)〉

〈p̃k(t)r̃−k(0)〉 〈p̃k(t)p̃−k(0)〉
)

. (A6)

Using the solution in Eq. (A3) and the fact that (since the
initial distribution is taken from a Gibbs ensemble with
temperature T )

C̃(k,0)=
( 〈r̃k(0)r̃−k(0)〉 〈r̃k(0)p̃−k(0)〉

〈p̃k(0)r̃−k(0)〉 〈p̃k(0)p̃−k(0)〉
)

=
(

T/ω2 0
0 T

)
,

we get

C̃(k,t) = T

(
cos(λt)/ω2 i ei k/2

ω
sin(λt)

i e−i k/2

ω
sin(λt) cos(λt)

)
.

Doing inverse Fourier transform gives C(x,t) [Eq. (A5)]. After
straightforward manipulations and going to large N limit we
get the following explicit correlation matrix:

Crr (x,t) = TJ2|x|(2ωt)/ω2,

Crp(x,t) = T

[
−J2|x|−1(2ωt)

ω
�(−x) + J2|x|+1(2ωt)

ω
�(x)

]
,

Cpr (x,t) = T

[
−J2|x|+1(2ωt)

ω
�(−x) + J2|x|−1(2ωt)

ω
�(x)

]
,

Cpp(x,t) = TJ2|x|(2ωt), (A7)

where Jn(z) is the Bessel function of first kind and �(x)
is the Heaviside θ function. Since the process is Gaussian,
the energy correlation is derived using expressing higher-
order moments in terms of two-point correlation functions.
Cee(x,t) = [C2

rr (x,t) + C2
rp(x,t) + C2

pr (x,t) + C2
pp(x,t)]/2.
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2. Hard-particle gas correlation function

In the hard-particle limit, the particles simply exchange
velocity when they collide with each other. Thus, the system
can effectively be mapped to a gas of noninteracting particles,
where particles exchange their identity on each collision.
Indeed, this mapping to the noninteracting gas was used
by Jepsen [36] to obtain an exact solution for velocity-
velocity autocorrelation functions in the hard-particle gas. A
simpler approach was recently proposed in Ref. [37] to obtain
the velocity-velocity autocorrelation function and we have
extended this to obtain other correlations [42]. Here we present
a heuristic approach that gives the asymptotic exact results.

Since the initial velocities are chosen independently for
each particle, the contribution to the correlation function
〈vr (t)v0(0)〉 is nonzero only when the velocity of the rth
particle at time t is the same as that of the zeroth particle
at time 0. The initial velocity distribution of each particle

is chosen from a Maxwell distribution f (v) = e−v2/2v̄2

√
2πv̄

, with

v̄2 = kBT = 1/β. The velocity correlation function is thus
approximately given by

〈vx(t)v0(0)〉 =
∫

dvv2δ(x − ρvt)
f (v/v̄)

v̄

= v̄2

σt

(
x

σt

)2
e
−( x

σt
)2

√
2π

, (A8)

where σt = ρv̄t . To compute the stretch correlations, we note
that

〈rx(t)r0(0)〉 = 〈[qx+1(t) − qx(t))(q1(0) − q0(0)]〉
= −[〈qx+1(t)q0(0)〉 − 2〈qx(t)q0(0)〉

+ 〈qx−1(t)q0(0)〉]
= −∂2

x 〈(qx(t)q0(0)〉, (A9)

where we have used the translation symmetry of the chain.
Now taking two time derivatives gives

∂t 〈rx(t)r0(0)〉 = −∂2
x 〈(vx(t)q0(0)〉 = −∂2

x 〈(vx(0)q0(−t)〉,
∂2
t 〈rx(t)r0(0)〉 = ∂2

x 〈(vx(0)v0(−t)〉 = −∂2
x 〈(vx(t)v0(0)〉,

where we used time-translation invariance. Using this, the
stretch correlation can be written in terms of velocity cor-
relations as follows:

〈rx(t)r0(0)〉 =
∫ t

0
dt ′

∫ t ′

0
dt ′′∂2

x 〈vx(t)v0(0)〉.

This finally gives (taking the continuous x limit)

〈rx(t)r0(0)〉 = 1

ρ2σt

e
−( r

σt
)2

√
2π

. (A10)

For energy correlation, we need to compute

〈ex(t); e0(0)〉 = 〈ex(t)e0(0)〉 − 〈ex(t)〉〈e0(0)〉
= 1

4

〈[
v2

x(t) − 〈
v2

x(0)
〉][

v2
0(0) − 〈

v2
0(0)

〉]〉
.

A similar computation as that leading to Eq. (A8) gives

〈ex(t); e0(0)〉 = v̄4

σt

[(
x

σt

)4

− 2

(
x

σt

)2

+ 1

]
f

(
x

σt

)
.

(A11)

3. Sum rules

Here we outline proofs of the the sum rules mentioned
in Sec. II. The zeroth sum rule says that for a conserved
quantity, the total correlation of the system remain constant in
time; i.e., ∑

x

Cαβ(x,t) =
∑

x

Cαβ(x,0). (A12)

Recall that we are interested in correlations of the fluctuations
around equilibrium values uα(x,t) = Iα(x,t) − 〈Iα〉. Let us
also define the current fluctuations as �jα(x,t) = jα(x,t) −
〈jα〉 and the total current J α(t) = ∑

x jα(x,t). From the
equations of motion we get

∂tu
α(x,t) = �jα

x−1(t) − �jα
x (t).

Multiplying both sides by uβ(0,0) and averaging over the
initial equilibrium distribution gives

∂tC
αβ(x,t) = 〈

�jα
x−1(t)uβ(0,0)

〉 − 〈
�jα

x (t)uβ(0,0)
〉

= 〈
�jα

0 (0)uβ

1−x(−t)
〉 − 〈

�jα
0 (0)uβ

−x(−t))
〉
,

(A13)

where we used space and time-translational invariance. Sum-
ming over all sites we then get

d

dt

∑
x

Cαβ(x,t)=
∑

x

[〈
�jα

0 (0)uβ

x−1(−t)
〉−〈

�jα
0 (0)uβ

x (−t)
〉]
,

which vanishes, since
∑

u
β
x is a conserved quantity. Hence the

result in Eq. (A12) follows.
The other sum rules are on the moments of spatial

correlation functions of conserved quantities. The first and
second sum rules, respectively, state

d

dt

∑
x

xCαβ (x,t) =
N/2−1∑

x=−N/2

〈�jα(x,0)uβ(0,0)〉

− N〈jα(−N/2,t)β(0,0)〉
= 〈J αuβ〉 (N → ∞), (A14)

d2

dt2

∑
x

x2Cαβ(x,t) = 2
N/2−1∑
−N/2

C
αβ

j (x,t)

+ N

[
C

αβ

j

(
−N

2
,t

)
− C

αβ

j

(
N

2
− 1,t

)]

= 2
∑

x

C
αβ

j (x,t) (N → ∞), (A15)
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where C
αβ

j (x,t) = 〈�jα(x,t)�jβ(0,0)〉 and we note that
Eq. (A14) only involves an equilibrium equal-time correlation.

The proof starts by following steps as those for Eq. (A13)
to get

∂tC
αβ(x,t) = 〈

�jα
x−1(0)uβ

0 (−t)
〉 − 〈

�jα
x (0)uβ

0 (−t)
〉
.

Multiplying the above equation by x, summing over all x, and
after simplifications using the fact that

∑
x uβ(x,t) = const

gives Eq. (A14). Taking another time derivative, and on using

the continuity equations, we get

d2

dt2
Cαβ(x,t) = −[〈

�jα
x−1(0)

[
�j

β

−1(−t) − �j
β

0 (−t)
]〉

− 〈
�jα

x (0)
[
�j

β

−1(−t) − �j
β

0 (−t)
]〉]

= [
C

αβ

j (x + 1,t) − 2C
αβ

j (x,t) + C
αβ

j (x − 1,t)
]
.

Multiplying the above equation by x2, summing over all x, and
after simplifications using the first sum rule

∑
x Cαβ(x,t) =

const gives Eq. (A15).
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