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Free-energy functional of the Debye-Hückel model of simple fluids
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The Debye-Hückel approximation to the free energy of a simple fluid is written as a functional of the pair
correlation function. This functional can be seen as the Debye-Hückel equivalent to the functional derived in the
hypernetted chain framework by Morita and Hiroike, as well as by Lado. It allows one to obtain the Debye-Hückel
integral equation through a minimization with respect to the pair correlation function, leads to the correct form
of the internal energy, and fulfills the virial theorem.
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I. INTRODUCTION

The Debye-Hückel (DH) model originated in the physics of
electrolytes [1], that is, fluids of charged particles interacting
through a Coulomb potential. It is the linearized version of
the classical Hartree-like mean-field model, which is often
called the nonlinear Debye-Hückel (NLDH) model or Poisson-
Boltzmann model in the context of electrolytes. These two
models can be extended to arbitrary interaction potentials,
leading respectively to the DH and NLDH models of classical
fluids, with the corresponding integral equations.

Although it is based on very strong assumptions, the DH
model gives physical insight into the screening of interaction
potentials and the decay of correlation functions, both in
the framework of simple and multicomponent fluids. The
DH model is valid in the low-coupling limit, that is, in the
limit of small interactions compared to the kinetic energy of
the particles. More sophisticated models of classical fluids
exist, as for instance the hypernetted chain (HNC) [2] or
Percus-Yevick [3] models, which account for part of the
correlations. However, some theoretical studies also proceed
by introducing corrections, using the low-coupling DH limit
as a starting point (see Refs. [4,5]). It was also recently
shown that in the DH model, the energy and virial routes are
thermodynamically consistent for any potential [6]. For these
reasons, the DH model is of permanent theoretical interest.

Moreover, in a number of applications, modified versions
of the DH model are used, as for example in the physics of
electrolytes [7,8] or in plasma physics [9,10]. The DH model
therefore also has some practical interest.

In the case of a long-range attractive potential, the lineariza-
tion performed in the DH model allows one to circumvent the
classical catastrophe of collapsing particles. To some extent,
this explains why this model is so common in plasma physics
as well as in the physics of electrolytes.

Apart from the historical derivation as a linearized mean-
field theory of a charged-particle mixture [1], the DH model
of simple fluids can be obtained from the so-called Percus
trick [11] or from a diagrammatic analysis [4,5,12].

In the research on variational models of atoms in plasmas,
there is a serious need to account for ion and electron
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correlations and their impact on the atomic structure and
dynamics [13–24]. In this framework, it is also useful to have a
variational derivation of simple fluid models, using expressions
of the free energy as a functional of the ion-ion pair correlation
function. Such a variational expression can be used in a more
general theory that also includes the ion electronic structure.

A free-energy functional is available in the HNC the-
ory [25,26]. However, in the well-known DH theory, an
expression of the free energy as a functional of the pair
correlation function has not been yet proposed. The purpose
of this paper is to present a brief derivation of such an
expression, which can be seen as the DH equivalent to the
HNC free-energy functional of Morita and Hiroike [25], also
derived by Lado [26].

II. DEBYE-HÜCKEL INTEGRAL EQUATION

The DH integral equation for a homogeneous simple fluid
with the given pair potential u(r) writes (see, for example,
Ref. [11], Eq. 6.5):

h(r) = −βu(r) − �β

∫
d3r ′{h(r ′)u(|r − r′|)}, (1)

where � is the particle density of the fluid, β the inverse
temperature, and h(r) = g(r) − 1, g(r) being the usual pair
distribution function.

For some particular pair potentials such as the bare
Coulomb (1/r) or Yukawa (e−αr/r) potentials, this equation
can be recast as a differential equation (Poisson equation
in the Coulomb case, Helmholtz equation in the Yukawa
case). In a diagrammatic analysis, Eq. (1) corresponds to the
sum of all u-bond chain diagrams. Equation (1) can also be
seen as a Ornstein-Zernicke relation with the simplest closure
c(r) = −βu(r), where c(r) is the direct correlation function.

The Fourier transform Fk of a function F(r) is defined as:

Fk =
∫

d3r{F(r)eik·r}. (2)

For a potential that has a Fourier transform, Eq. (1) can be
rewritten in the Fourier space as the algebraic relation:

hk = −βuk − �βhkuk, (3)
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which has the direct formal solution:

heq,k = −βus,k; us,k ≡ uk

1 + �βuk

. (4)

Here, heq,k denotes the DH equilibrium correlation function
and us,k denotes the screened potential, both in the Fourier
space.

For any long-range potential (i.e., Coulombic at infinity),
limk→0 uk ∼ k−2, which implies uk=0 = −�−1. This is the case
in any model that can be written as an Ornstein-Zernicke
equation with a direct correlation function that includes the
interaction potential.

In the following, the pair potential u(r) will be replaced
by uξ (r) ≡ ξu(r), ξ being a charge parameter, and the
corresponding ξ indices will label h

ξ
eq, uξ , and u

ξ
s .

III. EXPRESSION OF THE FREE-ENERGY FUNCTIONAL

We consider a system that is immersed in a rigid, homo-
geneous, neutralizing background. Such a background does
not impact on the equations of motion or on the DH integral
equation. It, however, leads to renormalized energies by
accounting for the contribution:

Ebg

V
= −�2

2

∫
d3r{uξ (r)}, (5)

which cancels the divergences of energies in case of a long-
range potential. In case of a short-range potential, one can
disregard any background by removing this contribution. In
the following, we will address the configurational part of the
renormalized free energy and give its expression as a functional
of the pair correlation function.

In the particular case of the bare Coulomb potential:
uξ (r) ≡ ξ/r , it is easy to check that if one minimizes with
respect to h(r) the following functional Aξ {�,β,h(r)}:

Aξ

V
= 2�2

3β

∫
d3r

{
h(r)

(
h(r)

2
+ βξ

r

+ �βξ

2

∫
d3r ′

{
h(r ′)

|r − r′|
})}

(6)

one gets Eq. (1). This functional also yields all the well-
known equilibrium results for the renormalized configurational
internal energy U

ξ
eq, free energy A

ξ
eq, and pressure P

ξ
eq (see, for

example, Ref. [27], Sec. 78), namely:

U
ξ
eq

V
= ∂

∂β

(
βA

ξ
eq

V

)
= ∂

∂β

(
βAξ

V

)∣∣∣∣
eq

= −ξ�

2

√
4π�βξ (7)

A
ξ
eq

V
= 2

3

U
ξ
eq

V
(8)

P ξ
eq = �2 ∂

∂�

(
A

ξ
eq

�V

)
= �2 ∂

∂�

(
Aξ

�V

)∣∣∣∣
eq

= 1

3

U
ξ
eq

V
, (9)

where |eq means that the functional is taken at the DH
equilibrium, that is, for h(r) = h

ξ
eq(r) from Eq. (4). We stress

that Eqs. (7), (8), (9) hold for a one-component classical plasma
(OCP) with the contribution of the neutralizing background
included.

A slightly different functional can be guessed as well in the
Yukawa-OCP case: uξ (r) = ξ exp(−αr)/r .

The present derivation aims at giving a general form of the
free-energy functional for a simple fluid with any pair potential
u(r). As in Ref. [26], we use Debye’s charging method and
build an expression of the renormalized configurational free-
energy functional Aξ {�,β,u(r),h(r)} from the equilibrium
relation:

A
ξ
eq{�,β,u(r)}

V
= �2

2

∫ ξ

0

dξ ′

ξ ′

∫
d3r

{
hξ ′

eq(r)uξ ′
(r)

}
. (10)

In the case of the exact equilibrium, Eq. (10) is an exact
relation. We consider the case of |eq denoting the DH
equilibrium, with h(r) = h

ξ
eq(r) from Eq. (4), and require

Eq. (10) to hold.
Let us assume that the free-energy functional

Aξ {�,β,u(r),h(r)} can be written in the form that follows:

Aξ

V
=

∫
d3k

(2π )3

{
f

ξ

k hk

(
hk

2
+ βu

ξ

k + �β

2
hku

ξ

k

)}
, (11)

where f
ξ

k ≡ f (�,β,k,ξ,uk) is independent of hk . Minimiza-
tion of Aξ with respect to h(r) then lead to Eq. (3), i.e., to the
DH equation.

Differentiating with respect to ξ , we obtain:

ξ

V

∂A
ξ
eq

∂ξ
= ξ

V

∂Aξ

∂ξ

∣∣∣∣
eq

(12)

=
∫

d3k

(2π )3

{
ξ
∂f

ξ

k

∂ξ
hk

(
hk

2
+ βu

ξ

k + �β

2
hku

ξ

k

)

+ f
ξ

k hk

(
βξ

∂u
ξ

k

∂ξ
+ �β

2
hkξ

∂u
ξ

k

∂ξ

)}∣∣∣∣∣
eq

. (13)

Using u
ξ

k = ξuk , and substituting the formal equilibrium
solution of Eq. (4), we get:

ξ

V

∂A
ξ
eq

∂ξ
=−β2

2

∫
d3k

(2π )3

{
∂

∂ξ

(
ξf

ξ

k

)
u

ξ

s,ku
ξ

k + f
ξ

k u
ξ 2
s,k

}
. (14)

On the other hand, from Eqs. (10) and (4) we can write:

ξ

V

∂A
ξ
eq

∂ξ
= −β�2

2

∫
d3k

(2π )3

{
u

ξ

s,ku
ξ

k

}
. (15)

A sufficient condition to fulfill Eq. (10) [or equivalently
Eq. (15)], is the equation:

∂

∂ξ

(
ξf

ξ

k

) + ξf
ξ

k

ξ + �βukξ 2
= �2

β
. (16)

This equation can also be obtained starting from an exact
relation other than Eq. (10) (see Appendix A). This relation
involves the functional derivative of the free energy with
respect to u

ξ

k , instead of an integral over a charging parameter.
A solution to the differential Eq. (16) for ξf

ξ

k can be
obtained, for instance, by the standard method of solving the
homogeneous version of the equation and then applying the
method of variation of the constant. It can also be searched
in the form of a series. This leads to the following expression
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FREE-ENERGY FUNCTIONAL OF THE DEBYE-HÜCKEL . . . PHYSICAL REVIEW E 94, 062128 (2016)

for f
ξ

k :

f
ξ

k = �2

β
F

(
�βu

ξ

k

)
, (17)

where the function F is defined as:

F (x) =
(

1 + 1

x

)(
1 − ln(1 + x)

x

)
. (18)

As can be seen in Eq. (17), the only dependence of f
ξ

k on k

and ξ is via the potential u
ξ

k .
Finally, the DH free-energy functional reads:

Aξ

V
= �2

β

∫
d3k

(2π )3

{(
1 + 1

�βu
ξ

k

)(
1 − ln

(
1 + �βu

ξ

k

)
�βu

ξ

k

)

×hk

(
hk

2
+ βu

ξ

k + �β

2
hku

ξ

k

)}
, (19)

which is the main result of the present paper.
It is worth noting that Eq. (19), taken for the bare Coulomb

potential does not lead to the functional of Eq. (6). A comment
on that point is given in Appendix B.

IV. INTERNAL ENERGY, PRESSURE, AND
VIRIAL THEOREM

We first consider the renormalized configurational internal
energy, as defined by the thermodynamics:

U
ξ
eq

V
= ∂

∂β

(
βA

ξ
eq

V

)
= ∂

∂β

(
βAξ

V

)∣∣∣∣
eq

. (20)

As can be seen in Eq. (19), βAξ/V is a functional of h(r), �,
and of the product βξu(r). As a consequence, we can write:

∂

∂β

(
βAξ

V

)
= ξ

∂

∂ξ

(
Aξ

V

)
. (21)

We then have, in virtue of Eq. (10):

U
ξ
eq

V
= ξ

∂

∂ξ

(
Aξ

V

)∣∣∣∣
eq

= �2

2

∫
d3r

{
hξ

eq(r)uξ (r)
}
, (22)

which corresponds to the exact expression of the internal
energy, with h

ξ
eq(r) taken to be the DH approximation to the

equilibrium correlation function.
The result Eq. (22) can also be obtained in a more pedestrian

way, by making the explicit differentiation of the free-energy
expression Eq. (19) and then substituting h

ξ

eq,k . We do not
reproduce this calculation here.

The virial configurational pressure as a functional of
�,u(r),h(r) is:

P ξ
v = −1

3

�2

2

∫
d3r{h(r)r · ∇ru

ξ (r)}. (23)

For a potential that decays as 1/r or faster, using the Fourier
representation and integrating by part, we can write from
Eq. (23):

P ξ
v =

∫
d3r{h(r)uξ (r)} + 1

3

�2

2

∫
d3k

(2π )3

{
hkk · ∇ku

ξ

k

}
.

(24)

Using Eq. (4), the equilibrium virial pressure becomes:

P ξ
v,eq = U

ξ
eq

V
− �2

2

∫ ∞

0

dk

(2π )3

{
4π

3
k3 βu

ξ

k

1 + �βu
ξ

k

∂u
ξ

k

∂k

}
. (25)

Finally, we obtain:

P ξ
v,eq = U

ξ
eq

V
+ 1

2β

∫
d3k

(2π )3

{
�βu

ξ

k − ln
(
1 + �βu

ξ

k

)}
. (26)

Then, differentiating with respect to ξ , we get:

ξ
∂P

ξ
v,eq

∂ξ
= −�2β

2

∫
d3k

(2π )3

{(
u

ξ

s,k

)2}
. (27)

We now consider the equilibrium pressure, as it is defined
by the thermodynamics:

P ξ
eq = �2 ∂

∂�

(
A

ξ
eq

�V

)
. (28)

Using Eq. (10), we obtain:

P ξ
eq = �2 ∂

∂�

(−β�

2

∫ ξ

0

dξ ′

ξ ′

∫
d3k

(2π )3

{
u

ξ ′
s,ku

ξ ′
k

})
. (29)

Performing the differentiation with respect to �, we end up
with:

P ξ
eq = −�2β

2

∫ ξ

0

dξ ′

ξ ′

∫
d3k

(2π )3

{(
u

ξ ′
s,k

)2}
. (30)

Finally, using Eq. (27), we have:

P ξ
eq =

∫ ξ

0

dξ ′

ξ ′

{
ξ ′ ∂P

ξ ′
v,eq

∂ξ ′

}
= P ξ

v,eq. (31)

Thus, using the exact Eq. (10) in order to define the free energy
in the approximate DH case ensures that the virial theorem is
fulfilled.

Again, the result Eq. (31) can also be obtained in a more
pedestrian way, from the explicit differentiation of the free-
energy expression of Eq. (19) and the substitution of h

ξ

eq,k . We
do not reproduce this calculation here either.

V. CONCLUSION

Our Eq. (19) is an explicit expression of the renormalized
configurational free-energy functional in the Debye-Hückel
approximation. This expression allows one to obtain the
Debye-Hückel equation from a minimization procedure with
respect to the pair correlation function. In the DH case, as in
the HNC case of Refs. [25,26], requiring the exact charging
relation to hold in the approximate model allows one to define
a free-energy functional that yields the correct expression for
the internal energy and fulfills the virial theorem. Work is
now in progress in order to generalize the present formalism
to multicomponent fluids, as it was done in the HNC
case [28,29].
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APPENDIX A: ANOTHER DERIVATION OF EQ. (16)

Instead of requiring Eq. (10) as a charging relation, we could
have required, equivalently, the relation that follows (see, for
instance, Ref. [30]):

1

V

δAeq
{
�,β,u

ξ

k

}
δu

ξ

k

= �2

2
h

ξ

eq,k (A1)

This relation only has a meaning when the equilibrium free
energy Aeq is considered to be a functional of an arbitrary
potential. It has the same origin as Eq. (10), and is exact in
the case of the exact equilibrium. Equation (A1) is in fact
equivalent to Eq. (10) as soon as a functional dependency of
an arbitrary interaction potential uξ (r) is considered. In that
case, the equilibrium configurational free energy Aeq, with
its functional dependency on the interaction potential, can be
written:

Aeq{�,β,uξ (r)}
V

=
∫ ξ

0
dξ ′

∫
d3r

{
δAeq

δuξ ′ (r)

duξ ′
(r)

dξ ′

}
. (A2)

From the definition of the charge parameter: uξ (r) = ξu(r),
and the charging relation of Eq. (10), we can directly identify
the functional derivative:

1

V

δAeq{�,β,uξ ′
(r ′)}

δuξ (r)
= �2

2
hξ

eq(r). (A3)

The latter relation becomes Eq. (A1) in the Fourier space. This
stresses the particular role of Eq. (A1) in all theories that rely
on an arbitrary interaction potential.

Using the postulated form of the functional Eq. (11) with
f

ξ

k ≡ f (�,β,u
ξ

k), we can write:

1

V

δAeq

δu
ξ

k

= 1

V

δA

δu
ξ

k

∣∣∣∣∣
eq

(A4)

= ∂f (�,β,u)

∂u

∣∣∣∣
u

ξ

k

h
ξ

eq,k

(
hk

2
+ βu

ξ

k + �β

2
hku

ξ

k

)∣∣∣∣
eq

+ f
(
�,β,u

ξ

k

)
h

ξ

eq,k

(
β + �β

2
h

ξ

eq,k

)
(A5)

= ∂f (�,β,u)

∂u

∣∣∣∣
u

ξ

k

h
ξ

eq,k

β

2
u

ξ

k

+ f
(
�,β,u

ξ

k

)
h

ξ

eq,k

(
β + �β

2
h

ξ

eq,k

)
. (A6)

Using that u
ξ

k = ξuk , we have:

u
ξ

k

∂f (�,β,u)

∂u

∣∣∣∣
u

ξ

k

= ξ
∂f

(
�,β,u

ξ

k

)
∂ξ

= ξ
∂f

ξ

k

∂ξ
. (A7)

Substituting the above relation in Eq. (A6), we get:

1

V

δAeq

δu
ξ

k

= ξ
∂f

ξ

k

∂ξ

β

2
h

ξ

eq,k + f
ξ

k h
ξ

eq,k

(
β + �β

2
h

ξ

eq,k

)
(A8)

= β

2
h

ξ

eq,k

(
∂

∂ξ

(
ξf

ξ

k

) + f
ξ

k

(
1 + �h

ξ

eq,k

))
(A9)

= β

2
h

ξ

eq,k

(
∂

∂ξ

(
ξf

ξ

k

) + f
ξ

k

1 + �βu
ξ

k

)
. (A10)

Finally, requiring that Eq. (A1) is fulfilled leads to the Eq. (16).

APPENDIX B: COMMENT ON THE DIFFERENCE
BETWEEN EQ. (6) AND EQ. (19)

An extension of the functional of Eq. (6) to a general
non-Coulomb potential would not lead to the correct thermo-
dynamical quantities. Moreover, it can be noticed that Eq. (19),
taken for the bare Coulomb potential u

ξ

k = 4πξ/k2, does not
lead to the same functional as Eq. (6). Both of them however
give the same correct equilibrium relations Eqs. (7), (8), (9).

In the general case of an arbitrary interaction potential, we
apply the reasoning of Appendix A and end up with Eq. (16).

Now consider that uk is not belonging to the general
class of all interaction potentials, but rather to a given
subclass of functions ūk({xi}), which depend on a limited
number of parameters {xi}. Then, the equilibrium free energy
Aeq becomes a function of the {xi} instead of a functional of
u(r) (or uk):

Aeq(�,β,{xi}) ≡ Aeq{�,β,ūk({xi})}. (B1)

Equation (A1) becomes meaningless and we have instead
analogous equations that involve the derivatives with respect
to the {xi}.

As in Eq. (11), we assume the following form for the free-
energy functional A{�,β,{xi},hk}:

A

V
=

∫
d3k

(2π )3

{
f (�,β,k,{xi})hk

×
(

hk

2
+ βūk({xi}) + �β

2
hkūk({xi})

)}
(B2)

and require for the derivatives:

1

V

∂Aeq(�,β,{xi})
∂xi

= 1

V

∫
d3k

(2π )3

{
δAeq{�,β,uk}

δuk

∣∣∣∣
ūk

∂ūk

∂xi

}

(B3)

= �2

2

∫
d3k

(2π )3

{
heq,k({xi})∂ūk

∂xi

}
, (B4)

where heq,k({xi}) is solution of the DH equation for the
interaction potential ūk({xi}). We thus get a set of equations:∫

d3k

(2π )3

{
heq,k

(
∂f

∂xi

ūk + f
(
2 + �heq,k

)∂ūk

∂xi

)}

= �2

β

∫
d3k

(2π )3

{
heq,k

∂ūk

∂xi

}
. (B5)

Consider now a case for which the only parameter of the
set {xi} is the charge parameter ξ , such that ū

ξ

k ≡ ξwk , with
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given wk . Then Eq. (B4) becomes the charging relation for
Aeq(�,β,ξ ), which resemble Eq. (10), but where Aeq is not a
functional of the potential wk . Eq. (B5) becomes:∫

d3k

(2π )3

{
heq,kwk

(
ξ
∂f

∂ξ
+ f (2 + �heq,k)

)}

= �2

β

∫
d3k

(2π )3
{heq,kwk}. (B6)

We can either require the equality of the integrands, which will
lead to Eq. (16) and to the general formula Eq. (19), or we can
find some particular f (�,β,k,ξ ) that will fulfill the equation

for the chosen wk potential. For example, in the case of the
bare Coulomb potential, it can be checked that the choice:

f (�,β,k,ξ ) = 2�2

3β
(B7)

fulfills the Eq. (B6), and leads to the functional of Eq. (6).
If instead of considering a limited number of parameters

{xi}, we consider the continuum of parameters uk , Eq. (B5)
then becomes the equation for the functional derivative (A1).
Then, only the general solution of Eq. (19) remains valid.
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