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We study phase transitions of the ferromagnetic q-state Potts chain with random nearest-neighbor couplings
having a variance �2 and with homogeneous long-range interactions, which decay with distance as a power
r−(1+σ ), σ > 0. In the large-q limit the free-energy of random samples of length L � 2048 is calculated exactly
by a combinatorial optimization algorithm. The phase transition stays first order for σ < σc(�) � 0.5, while the
correlation length becomes divergent at the transition point for σc(�) < σ < 1. In the latter regime the average
magnetization is continuous for small enough �, but for larger �—according to the numerical results—it becomes
discontinuous at the transition point, thus the phase transition is expected of mixed order.
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I. INTRODUCTION

The properties of phase transitions in a pure system can
be modified due to quenched disorder. This problem has
been studied in detail at a second-order (SO) transition point
[1,2], but much less is known when the transition is of
first order [3]. When the disorder is coupled to the local
energy density, such as for bond disorder, there is a general
tendency that the latent heat at the transition point is reduced
[4]. In two-dimensional systems with nearest-neighbor [or
short-range (SR)] interactions, any amount of bond disorder
is enough to turn the transition into second order [5]. The
new universality class of the problem, however, remains
unknown and numerical investigations are needed to identify
the properties of the emergent random fixed point [6–10].
In three- and higher-dimensional SR systems, however, weak
disorder is generally irrelevant, thus the phase-transition stays
discontinuous and only for strong-enough disorder will it
turn to a second-order one. This type of problem has been
numerically studied for the q-state Potts model with q > 2
[11–15]. In particular a mapping between the random-field
Ising model (RFIM) and the Potts model in the q → ∞ limit
has been used to predict some tricritical exponents of the latter
random model [7,15].

Homogeneous, i.e., nonrandom systems with long-range
(LR) interactions could have an ordered phase [16] and a first-
order transition, too, even if the system is one dimensional.
This happens, among others, for the q-state Potts chain [17]
with power-law interactions

J (r) ≈ J r−(1+σ ), (1)

where r is the distance between the sites and the exponent is
σ > 0 to have extensive total energy (for σ < 0 one should
divide J by L|σ |). According to numerical results [18] the
transition in the LR Potts chain is of first order for sufficiently
large values of q, where the limiting value qc = qc(σ ) is an
increasing function of σ . On the other hand, the transition for
q < qc(σ ) is of second order.
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Low-dimensional LR models with power-law interactions
became the subject of intensive research recently, after it was
noticed that the decay exponent σ in the problems plays
the role of some kind of effective dimensionality of the
analogous SR model. Among the classical problems studied
so far we mention the nonrandom Ising model in one and two
dimensions [19–23], the nonrandom Potts chain [18], the Ising
spin-glass model [24–27], and the RFIM in one dimension
[28–35]. For quantum models we mention investigations of
the transverse-field Ising model both with pure [36–46] and
random couplings [47–50] and the Anderson localization
problem [51], for reaction-diffusion type models the contact
process and similar models with [49] and without [52–61]
quenched disorder.

The critical properties of LR models are often unusual.
Here we mention that the classical Ising chain for σ = 1, as
well as other one-dimensional discrete spin models with LR
interaction have a so-called mixed-order (MO) phase transition
[62–68], at which point the order-parameter has a jump, but at
the same time the correlation length is divergent. We note that
recently MO transitions have been observed in other problems,
too [50,69–83].

In the present paper we consider LR models having a
first-order transition in their nonrandom version and study the
effect of quenched disorder on the phase-transition properties
of the system. To be specific, we consider the LR Potts model
in one dimension for large values of q (actually we consider
the q → ∞ limit), when the transition of the pure model is
of first order for all values of the decay exponents, σ > 0.
We have random nearest-neighbor couplings with a variance
�2, but the long-range forces are nonrandom and follow the
behavior in Eq. (1). We study the phase transition of the
system for different values of the effective dimensionality
σ and the strength of disorder �. The free energy and the
magnetization of a given random sample is calculated exactly
by a computer algorithm, which works in a time polynomial
in the number L of spins [84]. We follow the temperature
dependence of the average magnetization in relatively large
finite samples and the location of the phase-transition point
and its properties are analyzed by finite-size extrapolation
methods.
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The structure of the paper is the following: The model and
some results are summarized in Sec. II. Numerical results at
different points of the phase diagram are presented in Sec. III
and analyzed by finite-size scaling. We close our paper with a
discussion in Sec. IV.

II. MODEL AND SOME RESULTS

We consider the ferromagnetic q-state Potts model [17] in a
one-dimensional periodic lattice with long-range interactions
defined by the Hamiltonian

H = −
∑

i

Jiδ(si,si+1) −
∑

i<j+1

Jij δ(si,sj ). (2)

Here si = 1,2, . . . ,q is a Potts-spin variable at site i =
1,2, . . . ,L and the long-range interaction Jij has a power-law
dependence as in Eq. (1) with r = min(L − |i − j |,|i − j |).
The nearest neighbor couplings Ji ≡ Ji,i+1 are random vari-
ables. For simplicity we take Ji from a bimodal distribution,
being either J− = J − � or J+ = J + � with equal proba-
bility. In the following we set the energy scale to J = 1 and
restrict ourselves to 0 < � < 1.

A. The large-q limit

In this paper we consider the q → ∞ limit of the model,
when the reduced free energy in the Fortuin–Kasteleyn
representation [85] is dominated by a single graph [86], the
so-called optimal graph G, and is given by

− βf L = maxGW (G), W (G) =
⎡
⎣c(G) + β

∑
ij∈G

Jij

⎤
⎦.

(3)

Here c(G) stands for the number of connected components of
G and β = 1/(T ln q), with the temperature T .

In the homogeneous nonrandom model with � = 0 there
are only trivial optimal graphs as shown in Appendix A
for any σ . In the low-temperature phase, T < Tc, it is
the fully connected graph Gc with W (Gc) = −βLfhom =
1 + LβZL(1 + σ ), with

ZL(1 + σ ) = 1

L

L/2∑
i=1

(L + 1 − i)i−(1+σ )

=
(

1 + 1

L

)
ζL/2(1 + σ ) − 1

L
ζL/2(σ ), (4)

where we have assumed that L is even. Here ζL/2(α) =∑L/2
i=1 i−α and for L → ∞ we have the Riemann zeta function

ζ (α). In the high-temperature phase T > Tc, the optimal graph
is the empty graph Ge with W (Ge) = −βLfhom = L. The
phase-transition point in the thermodynamic limit is given by
βc = 1/ζ (1 + σ ) where the phase transition is of first order
having the maximal jump in the magnetization.

In the limit where σ goes to infinity one recovers the
disordered SR Potts chain. In that case and for finite-size L,
there are nontrivial optimal sets. But in the thermodynamical
limit, the magnetization still jumps from zero to one for the
bimodal distribution. This is shown in the Appendix A.

B. Stability analysis of the random model

Here we start with weak disorder, � � 1, and estimate the
characteristic function of nonhomogeneous optimal graphs.
First let us consider an island of l + 1 � L

2 consecutive sites,
which are fully connected within the sea of isolated points.
The corresponding characteristic function is given by (see
Appendix B)

W (G1) = L − l + β[(l + 1)ζl(1 + σ ) − ζl(σ )] + β�ε(l),

(5)

where ε(n) is the sum of n random numbers with mean
zero and variance unity, thus ε(n) ∼ √

n for large n. At the
transition point of the pure system, β = βc = 1/ζ (1 + σ ),
the new diagram is the optimal set, i.e., W (G1) > W (Ge),
provided � > {l[ζ (1 + σ ) − ζl−1(1 + σ )] + ζl(σ )}/ε(l − 1).
For large l the right-hand side (r.h.s.) of this inequality scales
as l1−σ / l1/2 ∼ l1/2−σ , thus we have the condition

� > Cl1/2−σ , l 
 1. (6)

Consequently, for a decay exponent σ > 1/2 there is a
new, nonhomogeneous optimal set and the (phase-transition)
properties of the system are modified by any small amount of
disorder, at least in the thermodynamic limit. On the contrary
for σ < 1/2 the transition, at least for small �, stays first order
and could be changed only by strong-enough disorder, i.e., for
large �.

Next we study the stability of the fully connected graph
Gc and consider a diagram, G2, in which in a fully connected
sea of points there are l disconnected sites. Its characteristic
function is given by (see Appendix B)

W (G2) = l + 1 + βLZL(1 + σ )

−β{l[2ζL/2(1 + σ ) − ζl(1 + σ )] + ζl(σ )}
+β�ε(l + 1). (7)

At β = βc we have W (G2) < W (Gc), at least for weak
disorder for any value of σ > 0. This means that, considering
the stability of the two trivial optimal sets of the pure system
at β = βc, these are not symmetric. For σ > 1/2 the empty
diagram is unstable, while the fully connected graph is stable
for weak disorder. We note that, in the SR model, both graphs
become unstable at the same value of the dimensionality,
d � 2.

In the LR model in the modified transition regime, σ > 1/2,
we can define a breaking-up length:

l∗ ∼ �1/(1/2−σ ), σ > 1/2, (8)

which is the typical size of connected clusters. This means that,
in a finite system, one should have L > l∗ to be able to observe
a new type of transition, otherwise there is a pseudo-first-order
transitions in the finite system.

C. Relation with the random-field Ising model

The previous stability analysis is based on the properties
of an interface separating the two trivial optimal graphs, and
analogous reasoning due to Imry and Ma [87] works for
the RFIM, in which case the interface separates the ordered
and disordered regions of the model. This mapping has been
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observed by Cardy and Jacobsen [7] and can be generalized for
LR interactions, in which case the RFIM in a one-dimensional
lattice is defined by the Hamiltonian

HRFIM = −
∑

i

BiSi −
∑
i<j

JijSiSj , (9)

in terms of Si = ±1. Here Bi is a random variable with zero
mean and variance �2, and Jij is in the same form as in
Eq. (1). The critical behavior of HRFIM has been studied in
the literature [28–35] and σ -dependent properties are found,
which are summarized in the following.

There is a ferromagnetic ordered phase in the system for
0 < σ < 1/2 [which corresponds to phase coexistence, i.e., a
first-order transition in the random-bond Potts model (RBPM)]
and there is no spontaneous ordering for σ > 1/2 (which
is analogous to the absence of a first-order transition in the
RBPM). The transition to the ferromagnetic ordered phase
is mean-field (MF) type in the region 0 < σ < 1/3, where
the critical exponents are the MF ones: αRF = 0, βRF = 1/2,
γRF = 1, and νRF = 1/σ . On the contrary for 1/3 < σ < 1/2
the transition is non-MF: the critical exponent νRF is not known
exactly, but we have the relations

2 − αRF

νRF
= 1 − σ,

βRF

νRF
= 1

2
− σ,

γRF

νRF
= σ. (10)

Cardy and Jacobsen [7] have conjectured relations between
the magnetization exponents of the RFIM and the tricritical
exponents in the energy sector of the RBPM, at least for SR
models. If we assume the validity of these relations for LR
interactions, too, we have for the correlation-length exponent
of the RBPM at the tricritical point:

ν = νRF

βRF + γRF
. (11)

Thus the conjectured results are ν = 2
3σ

and ν = 2 in the
MF-region and in the non-MF region, respectively.

III. NUMERICAL CALCULATION

A. Preliminaries

As for systems with quenched disorder one should perform
two averages: first, the thermal average for a given realization
of disorder and, second, averaging over the disorder realiza-
tions. For a given random sample of length L the thermal
average is obtained through the solution of the optimization
problem given in Eq. (3). Having the optimal graph of the
sample, we have the free energy as well as the structure of
connected clusters in this graph. The magnetization of the
sample, m, is given by the number of sites in the largest
cluster, Nmax, as m = Nmax/L. To study the properties of the
phase-transitions in the system it is convenient to monitor
the behavior of the average magnetization. In some cases,
however, we have also studied the behavior of the average
internal energy. The analyses of the average internal energy is
more complicated, while in the case of bimodal disorder there
are extra jumps; see Ref. [10]. The optimization process for a
given sample is solved exactly by a combinatorial optimization
algorithm which works in a time polynomial in the number L

of spins [84]. This makes it possible to treat relatively large
samples up to L = 1024 and in some cases up to L = 2048.

 0

 0.5

 1

0 0.5 1

Δ

σ

2nd order

Mixed Order

LR-1st Order SR-1st Order

FIG. 1. Schematic phase-diagram of the LR Potts chain with
random nearest-neighbor couplings in the q → ∞ limit together
with points of the phase diagram studied numerically. The border
of the strongly first-order regime in a finite system (dashed line) is
calculated with L = 256 and with N# = 600 samples. In the area to
the left of this border in such a finite system the transition is between
the fully connected graph and the empty graph; see the text. The
plus sign refers to long-range first-order transitions, the cross sign
refers to mixed-order transitions, the circle to short-range first-order
transitions, and the square to second-order transitions.

In the latter case the typical computational time of a sample
in the complete temperature range is about 6 to 7 hours with
a 2.4 GHz processor. A drawback of the calculation is that the
possible graphs in the present problem are fully connected,
having L(L − 1)/2 possible edges and the algorithm needs
so many iterations, which increases the computational time
accordingly. In the second step of the averaging process we
have considered several independent random samples, their
typical number being a few 10 000, for L = 1024 a few 1000.

B. Magnetization profiles

Before entering into the details to study the phase-diagram
of the system, we make a rough estimate of the domain, in
which the transition is very strongly first order, at least for the
finite systems, we can use in the numerical calculation. For
this purpose we analyzed the phase transition of N# = 600
random samples of length L = 256. In Fig. 1 there is dashed
line, which indicates the border obtained by this analysis. In
the area to the left of this border in all samples the transition is
between the fully connected graph and the empty graph; thus,
the transition is maximally first order, as in the homogeneous
system. By increasing L, this border is expected to be shifted
to the left and in the thermodynamic limit it stays inside of
the phase labeled by “LR-1st order” of the phase diagram
in Fig. 1. Next, we have chosen several points outside the
strongly-first-order regime, i.e., to the right of the dashed
line, which are indicated in Fig. 1. The selected points can
be divided into two groups: a set of points with relatively
weak disorder, � = 0.2 and � = 0.5 and another set with
quite strong disorder, � = 0.75. At each point the calculation
of the optimal graph is performed in the complete temperature
range: we have monitored the temperature dependence of the
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FIG. 2. Finite-size magnetizations at � = 0.2 and σ = 1. In the
inset the magnetization jump at the transition point is shown as a
function of the size of the system on a log-log scale. The straight
green line has a slope β/ν ≈ 1.55.

magnetization and focused on its possible singular behavior.
These calculations are performed in finite systems with L =
64,128, . . . ,1024 and the actual properties of the singularity,
thus the form of the phase transition is analyzed by finite-size
extrapolation. To make all the figures easily comparable we
have normalized the temperature by T � = 1/βc, which is the
sum of all the coupling constants; see Sec. II A.

1. Weak and intermediate disorder regimes: � = 0.2 and 0.5

For weak disorder with � = 0.2 we studied the point of the
phase-diagram with σ = 1 (square in Fig. 1), i.e., at border
of the LR regime. The magnetization profiles are shown in
Fig. 2. It is seen that, due to disorder, the first-order transition
in the pure system is rounded: the jump in the magnetization
decreases with increasing size, and in the thermodynamic limit
the jump is expected to disappear, �m(L) ∼ L−β/ν , so that the
limiting curve limL→∞ m(L,T ) = m(T ) is continuous. How-
ever, its derivative at T = Tc is expected to be divergent, so that
m(T ) − m(Tc) ∼ |T − Tc|β . The finite-size transition points
are expected to be shifted as Tc − Tc(L) ∼ L−1/ν . Note that,

-1.5

-1

-0.5

 0

 0.99  1  1.01  1.02

<
e>

T/T*

256
512
768

1024

 0.1

 0.2

 0.4

 0.7
 1

 256  512  768  1024L

Δ e

FIG. 3. Average energy for finite systems at � = 0.2 and σ = 1.
In the inset the finite-size latent heats (jumps of the energy at the
transition point) are shown for different sizes on a log-log scale. The
straight green line has a slope (1 − α)/ν ≈ 1.55.
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FIG. 4. Second-order transition at � = 0.5 and σ = 0.75.

for T < Tc (T > Tc), the profiles satisfy m(L1,T ) > m(L2,T )
[m(L1,T ) < m(L2,T )] for L1 < L2 . With the numerical
data in Fig. 2 we could not estimate ν since the transition
point Tc is not known with sufficient precision. However,
we could analyze the size dependence of the magnetization
jump; see inset of Fig. 2, and we obtained an exponent
β/ν ≈ 1.55. Note that the mean-field value is β/ν = 1. We
should mention that, according to the numerical data in Fig. 2,
the magnetization seems to approach a finite limiting value
above the transition temperature. This could be an artifact, that
the calculation is performed in the case q → ∞ and for finite
values of q we probably recover the expected vanishing of
the magnetization for T > Tc (see also the remark in Sec. III
B 2 c). We also studied the temperature dependence of the
average energy density, which is shown in Fig. 3. At the
transition point in small finite systems there is a discontinuity
of the energy density, �e(L), which seems to disappear in
the thermodynamic limit as �e(L) ∼ L−(1−α)/ν , but its first
derivative, the specific heat, is divergent: C(T ) ∼ |T − Tc|−α .
The finite-size behavior of �e(L) is shown in the inset of Fig. 3;
see the very similar behavior as the magnetization jump in the
inset of Fig. 2. We obtained an estimate α/ν ≈ −0.55 and thus
a relation β + α ≈ ν is noticed at this point. Thus we conclude
that the transition according to the Ehrenfest classification is
of second order.

For intermediate disorder, � = 0.5, two points are con-
sidered with σ = 0.75 and σ = 1.0, the calculated average
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FIG. 5. Magnetization for � = 0.5 and at the border σ = 1.
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FIG. 6. First-order transition due to LR forces at � = 0.75
and σ = 0.4.

magnetization profiles are presented in Figs. 4 and 5. In both
cases the transition seems to be of second order, which is
in agreement with the temperature dependence of the energy
densities.

2. Strong-disorder regime: � = 0.75

At the disorder parameter � = 0.75 we studied different
regimes by varying the decay exponent σ .

a. σ � 0.5: Long-range first-order transitions. See plus
signs in Fig. 1. At the point σ = 0.4 in Fig. 6 the average
magnetization has a finite jump of �m ≈ 1 for all finite
systems. The finite-size transition points, which are identified
with the position of the jump, Tc(L), are shifted such that
Tc(L1) < Tc(L2) for L1 < L2. Furthermore, the distance from
the true transition point is well described by the asymptotic
behavior in the nonrandom system: �Tc = Tc − Tc(L) ∼
L−σ , since TC(L) ∝ cstζL(1 + σ ). Thus the scaling exponent
associated with lengths is ν ≈ 1/σ . At this point, and in
general, in the regime σ � 0.5 there is a random first-order
transition due to LR forces.

At the borderline value of σ = 0.5 the magnetization
profiles in Fig. 7 still show a jump, at least for smaller
finite systems. With increasing L, however, the jump in
the magnetization is going to be rounded, so that the
transition could be continuous in the thermodynamic limit.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.9  0.92  0.94  0.96  0.98

<
M

>

T/T*

128
256
512
768

FIG. 7. The jump in the magnetization is rounded due to disorder
at � = 0.75 and σ = 0.5.
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FIG. 8. Mixed-order transition at � = 0.75 and σ = 0.625.

With the finite-size results at hand we cannot discriminate
between these scenarios. The shift of the finite-size transition
points are characterized by an exponent ν ≈ 2 = 1/σ in this
case, too.

b. 0.5 < σ � 1.0: Mixed-order transitions. See crosses
in Fig. 1. In this regime we have a series of points with
σ = 0.625, 0.75, 0.875, and 1.0 and the corresponding
profiles are shown in Figs. 8–11. The new feature of
the profiles is that, for different sizes, they cross each
other, so that for T < Tc (T > Tc) the profiles satisfy
m(L1,T ) < m(L2,T ) [m(L1,T ) > m(L2,T )] for L1 < L2.
From this we expect (if the L dependence stays monotonic
and no reversal of the tendency will be found for larger values
of L) that at the transition point in the thermodynamic
limit the magnetization has a finite limiting value:
limL→∞ m(L,T −

c ) = m− > 0, which is different from
the limit limL→∞ m(L,T +

c ) = m+. Consequently at the
transition point there is a jump in the magnetization:
�m = m− − m+. We also expect that the actual value of
m+ is (close to) zero for strong disorder (large �) and it is
increasing for smaller values of �. In the thermodynamic
limit for T < Tc the magnetization is expected to follow a
singular temperature dependence: m(T ) − m− ∼ (Tc − T )β .
This can be checked in finite systems by defining
finite-size transition points as the crossing points of
the profiles m(L1,T ) and m(L2,T ): m[L1,Tc(L1,L2)] =
m[L2,Tc(L1,L2)] ≡ m−(L1,L2). According to scaling
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FIG. 9. Mixed-order transition at � = 0.75 and σ = 0.75.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7  0.8  0.9  1  1.1  1.2  1.3

<
M

>

T/T*

64
128
256
512

1024
2048

FIG. 10. Mixed-order transition at � = 0.75 and σ = 0.875.

theory the differences should behave asymptotically as
Tc(L1,L2) − Tc ∼ (L1L2)−

1
2ν and m− − m−(L1,L2) ∼

(L1L2)−
β

2ν . Due to strong finite-size corrections we could
make an estimate for the critical exponents only at the
point σ = 0.875, in which case the measured quantities are
presented in Table I.

From these data we obtain the following estimates for the
exponents: 1/ν ≈ 1.27 and β/ν ≈ 0.78. This means that, at
this point, or more generally in the 0.5 < σ � 1.0 part of the
phase diagram (with � = 0.75), there is a mixed-order phase
transition in the system: the magnetization has a jump at the
transition point, but the correlation length is divergent at Tc.

Comparing the magnetization profiles at different values
of σ , one can notice that its limiting value m− and thus the
jump �m is an increasing function of σ in the given range.
Increasing σ over the upper limit, σ = 1, the form of the
singularity changes once more.

c. σ > 1.0: Short-range first-order transitions. See circles
in Fig. 1. The magnetization profiles at σ = 1.25 and 1.5 in
Figs. 12 and 13 show similar features: a jump develops for large
L, the asymptotic position of which is at Tc(σ )/ζ (1 + σ ) < 1,
which ratio is decreasing with increasing σ and in the true SR
model with σ → ∞ this ratio is just 1 − �. Thus in this region
the transition is of first order due to SR interactions. Comparing
the finite-size transition temperatures Tc(L), defined as the
inflection point of the profiles, we observe the asymptotic
behavior Tc(L) − Tc ∼ L−1, which is characteristic for SR
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FIG. 11. Magnetization for � = 0.75 and at the border σ = 1.

TABLE I. Finite-size parameters of the transition point for
� = 0.75 and σ = 0.875. In the last row the extrapolated values
are presented.

L1 L2 Tc(L1,L2) m−(L1,L2)

128 256 0.9118 0.3389
256 512 0.8985 0.4879
512 1024 0.8930 0.5745

0.8894 0.695

forces. We note that spontaneous order in the LR Potts chain
for σ > 1 can be observed only in the q → ∞ limit. For any
finite value of q due to thermal fluctuations there is no ordered
phase, thus the SR first-order transition regime is absent.

IV. DISCUSSION

We have studied numerically the phase diagram of the
ferromagnetic LR Potts chain with random nearest-neighbor
couplings in the q → ∞ limit. We expect that the trends
observed in finite samples represent the asymptotic behavior
and no reversal of the tendency will be found for larger
values of L. Depending on the strength of disorder � and
the decay exponent σ , different type of phase transitions are
found: first-order transitions due to LR interactions, first-order
transitions due to SR interactions, second-order transitions,
and mixed-order transitions. A schematic phase diagram is
depicted in Fig. 1.

For small values of σ < σc(�) � 0.5 the long-range inter-
actions are dominant over quenched disorder and the transition
is of first order, as in the nonrandom system. For large values
of σ > 1 the transition is also of first order; however, now due
to short-range interactions. We note that, for finite values of q

in this region, there is no ferromagnetic order in the system.
For intermediate values of the decay exponent σc(�) < σ < 1,
quenched disorder is going to change the order of the transition.
For weaker disorder the transition turns to second order, which
is manifested by a divergent specific heat and by a divergent
correlation length; however, the magnetization at the critical
point is continuous and has a finite value. For strong disorder
the transition turns out to be of mixed order. At the transition
point the correlation length is divergent, but there is a finite
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FIG. 12. First-order transition due to SR forces at � = 0.75
and σ = 1.25.
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FIG. 13. First-order transition due to SR forces at � = 0.75
and σ = 1.5.

jump in the magnetization, as well as in the energy density.
The finite-size scaling behavior of the magnetization profiles
are also different in the SO and the MO transitions.

The different type of transitions are connected with the
geometric properties of the optimal graphs. At first-order
transitions, the optimal graphs are different at the two sides of
the transition points: in the ferromagnetic phase there is a giant
cluster, whereas in the high-temperature phase the clusters
have finite mass and extent. At the second-order transition at
both sides there is a giant cluster; however, at the transition a
hole in this giant cluster is developed, the size of which as well
as its mass are divergent. This hole in the SO transition point is
a fractal, so the average magnetization is continuous. Similar
process takes place at a mixed-order transition, too, with the
difference that, in this case the “hole” in the high-temperature
phase is a compact object having a finite density of mass. This
leads to a jump in the magnetization in the thermodynamic
limit. For large-enough � this hole is going to disconnect
the giant cluster, so that the density of its mass, being the
magnetization, has a vanishing value in the thermodynamic
limit.

We expect that the results summarized in the phase diagram
in Fig. 1 remain qualitatively correct for other, more general
models, too. First we mention that the LR forces in Eq. (2)
can be (weakly) random, too, which means that, in Eq. (1),
the prefactor is modified as J → Ji , and Ji > 0 are random
variables. Another set of models are obtained if the parameter
q is a large but finite value. As noted before this model for
σ > 1 has no ordered phase; however, a similar phase diagram
is expected to hold in the regime 0 < σ < 1. This conjecture
is based on the known results in the SR models, in which the
properties of the phase transitions in different dimensions are
found to be a smooth function of q, so that the q → ∞ limit
is not singular [8–10]. Further numerical work is needed to
clarify if a similar relation also holds for the LR model.
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APPENDIX A

In this appendix we calculate exactly the free energy on
the two lines � = 0 and σ → ∞ of the phase diagram. As
explained in Ref. [84], finding the free energy amounts to
finding the so-called optimal set. Let us recall that an optimal
set is a set of edges that maximizes the objective function

f (S; β) = c(S) + β
∑
e∈S

J (e),

where c(S) is the number of connected components of S and
β is the inverse temperature.

For any sample, the optimal set for zero temperature is the
set of all bonds, while for high temperature the optimal set
is empty. Between these two limits the optimal set changes
at a finite number nT of temperatures (nT < L). We call
these temperature “breaking temperatures.” If there is only
one breaking temperature (nT = 1) the model is maximally
first order since the magnetization jumps from zero to one.

Let us first consider the case � = 0: a nondisordered model.
We show below that, for any decreasing weight function of
distance (such as, for example, d−(1+σ )) there is a single
breaking temperature for any size L. Note first that, if a bond
of length d, belongs to an optimal set, then there is an optimal
set to which all bonds of length d are present. Indeed, the
permutation of the sites i → i + 1 preserve the length of the
bonds and therefore any bonds of length d belongs to some
optimal set. The union of two optimal sets is also an optimal
set as shown in Ref. [84], this is the property which makes
polynomial this problem. Therefore, we deduce that there is an
optimal set to which all bonds of length d belong. Suppose now
that the bond between site 0 and site d belongs to the optimal
set. Then the bond between the sites d and 2d also belongs
to the optimal set and consequently the site 0, d, 2d belongs
to the same cluster. More generally all the bonds between αd

and (α + 1)d also belong to the optimal set and consequently
all sites αd, where the product is modulo L and α an arbitrary
integer, belong to the same cluster. If L is a prime number,
then all the sites will be attained, and therefore the optimal set
contains all bonds if it contains any one bond, which proves the
results. Note that, in this special case of L being prime, we did
not use the fact that the weight function is decreasing. To sketch
the results in the case where L = ln is not a prime number
we introduce the sets of edges Cn,l(k) induced by the vertex
sets {k,l + k,2l + k, . . . ,(n − 1)l + k}. It is clear that every
optimal set is of the form R(n) = ⋃l−1

k=0 Cn,l(k) and is therefore
characterized by a divisor of L. Showing that the transition is
maximally first order amounts to showing that the optimal
set is characterized by only either 1 or L. To this end, let us
introduce the sets of edges �n(k) induced by the set of vertices
{k,k + 1, . . . ,k + (n − 1)}. A union S(n) = ⋃l−1

k=0 �n(nk) is in
general not an optimal set. However, comparing the objective
function for S(n) and R(n) and using the fact that J is a
decreasing function of the distance, we find that only S(1) and
S(L) can be the optimal set. This proves that the model is
maximally first order also when L is not prime.

Now we turn to the case σ → ∞, i.e., when only the short-
range disordered bonds are present. In the general case the cou-
pling constant can take n values 0 < J0 � J1 � · · · � Jn−1

the breaking temperatures Tk = 1
k−1

∑L−1
i=0 Ji for 2 � k � L.
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Using this relation in the case of bimodal distribution with an
equal number of strong (1 + �) and weak (1 − �) bonds, one
gets 1 − � = J0 = · · · = JL

2
< JL

2
= · · · = JL−1 = 1 + �

from which the Tk are easily deduced. After some algebra
one gets that, if � � 1

L−1 , the model is maximally first order
with a breaking temperature L

L−1 , while if 1
L−1 < � there are

two breaking temperatures T1 = L
L−2 (1 − �) and T2 = 1 + �.

In the intermediate regime T1 � T � T2 the free energy is
f (T ,L) = 1

2 + 1
2

1+�
T

, and we have numerically observed that
magnetization scales as L−0.82. So in the thermodynamical
limit the magnetization jumps from 0 to 1 at T2.

Note finally that all realizations have exactly the same
behavior. Therefore, in some sense, the model is not
disordered.

APPENDIX B

In this appendix we prove Eq. (5). The configuration G1 is
the set of the l bonds (0,1), (1,2), . . . , (l,l + 1). So the sites
0 to l + 1 are in same connected components, while all others
sites belong to a connected component of size 1 (singleton).

So there are 1 + (L − l + 1) = L − l connected components.
Only the first connected component has a contribution to the
sum of the weight of the bonds. This connected component
has l − d + 1 pairs of sites at distance d, for d running from
1 to l and assuming l + 1 < L

2 . We deduce that the sum of the
nonrandom part of the weight of the bonds is

l∑
d=1

(l − d + 1)
1

d1+σ
= (l + 1)

l∑
d=1

1

d1+σ
−

l∑
d=1

1

dσ
.

Since ζl(α) = ∑l
d=1

1
dα , Eq. (5) follows.

The configuration G2 can be seen as a configuration G1 but
with l > L

2 . However, it is easier to see it as a complete graph
from which appropriate bonds are removed. The formula in
Eq. (7) is established in the very same way as the formula
in Eq. (5). However, it is slightly more difficult, since from
the complete graph one has to remove not only the bonds
between the isolated sites (see the formula above), but also
the bonds between the isolated sites and the L − l sites of the
large connected components.
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