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We present a numerical study of the tight-binding approach to overdamped Brownian motion on a tilted
periodic potential. In the tight-binding method the probability density is expanded on a basis of Wannier states
to transform the Smoluchowski equation to a discrete master equation that can be interpreted in terms of thermal
hopping between potential minima. We calculate the Wannier states and hopping rates for a variety of potentials,
including tilted cosine and ratchet potentials. For deep potential minima the Wannier states are well localized and
the hopping rates between nearest-neighbor states are qualitatively well described by Kramers’ escape rate. The
next-nearest-neighbor hopping rates are negative and must be negligible compared to the nearest-neighbor rates
for the discrete master equation treatment to be valid. We find that the validity of the master equation extends
beyond the quantitative applicability of Kramers’ escape rate.
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I. INTRODUCTION

Brownian motion on a tilted periodic potential is a text-book
problem for studying nonequilibrium transport in periodic
systems dominated by thermal fluctuations [1,2]. The standard
theoretical description of Brownian motion on tilted periodic
potentials is based on a continuous diffusion equation [1].
That equation can be solved exactly in one dimension for the
steady state [1–3] and can be made tractable in certain other
limits by analytic methods [1,4]. In particular, for potentials
with deep minima, simpler master equation treatments have
been used [4,5]. Attempts have been made to connect the
continuous diffusion equation with discrete approaches [6–
12], but the assumptions inherent in discrete treatments are
not always made explicit. Recently, we transformed the
continuous diffusion equation to a discrete master equation by
implementing the classical analog of the tight-binding model
of quantum mechanics [13,14]. The key advantage of this
approach is that the master equation is derived systematically,
making clear the approximations applied [13,14]. In this paper,
we present a detailed numerical study of these approximations
to determine the validity of the tight-binding approach to
Brownian motion on periodic and tilted periodic potentials.

In the tight-binding method the probability density is ex-
panded on a basis of Wannier states to derive a master equation
that can be interpreted in terms of discrete thermal hopping
between potential minima [13,14]. Three approximations are
made in the derivation. Approximation (A1): The eigenvalues
of the evolution operator separate into bands enabling a
separation of time scales and a lowest-band description
in the long-time limit. Approximation (A2): The Wannier
states are localized so hopping between nearest-neighbor
states dominates and higher-order transitions between non-
nearest-neighbor states are neglected. Approximation (A3):
The connection with Kramers’ problem of thermal escape over
a potential barrier [4,14–16] means that hopping rates between
nearest-neighbor Wannier states are given by Kramers’ escape
rate [14]. In this paper, we consider the validity of these
approximations for a variety of potentials including cosine and
ratchet potentials and tilted periodic potentials. We calculate
the lowest band gap in the eigenvalue spectrum and find the tilt

where the gap vanishes. We calculate the Wannier states and
determine their localization. We calculate the hopping rates
between states and compare the nearest-neighbor hopping rates
with Kramers’ escape rate. We also determine the importance
of higher-order hopping rates in the master equation. To
clarify the validity of the discrete master equation description
and the applicability of Kramers’ escape rate, we focus on
one-dimensional systems. However, the tight-binding method
is applicable in higher dimensions and we illustrate this by
considering a simple two-dimensional case.

This paper is organized as follows. In Sec. II we intro-
duce the one-dimensional continuous diffusion equation for
overdamped Brownian motion on a tilted periodic potential.
In Sec. III we summarize the tight-binding approach. In
Sec. IV we describe our numerical method and detail the
one-dimensional periodic potentials considered in this paper.
In Secs. V and VI we study the system with untilted and tilted
periodic potentials, respectively. In Sec. VII we discuss the
validity of the tight-binding approach. In Sec. VIII we calculate
the ground state and average drift using the tight-binding
approach and make a comparison with the exact steady-state
results. In Sec. IX we consider a tilted periodic potential in
two dimensions. We conclude in Sec. X.

II. OVERDAMPED BROWNIAN MOTION ON A TILTED
PERIODIC POTENTIAL

Overdamped Brownian motion of a particle on a one-
dimensional tilted periodic potential can be described by the
Smoluchowski equation

∂P (x,t)

∂t
= LP (x,t), (1)

where P (x,t) is the probability density of finding the particle
at position x at time t [1]. The evolution operator is

L = 1

γ

∂

∂x

[
�

∂

∂x
− F (x)

]
, (2)

where γ is the friction coefficient, � = kBT , kB is the
Boltzmann constant, and T is the temperature. The force
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F (x) is the negative gradient of the tilted periodic potential
V (x), i.e.,

F (x) = −∂V (x)

∂x
, (3)

V (x) = V0(x) − f x, (4)

V0(x) = V0(x + a), (5)

where a is the periodicity of the periodic potential V0(x) and
f is the tilt.

The Smoluchowski equation [Eq. (1)] for a tilted periodic
potential has no general analytic time-dependent solution.
However, in one dimension the steady state can be determined
analytically and is given by [2]

PS(x) = 1

Z
e−V (x)/�

∫ x+a

x

dx ′eV (x ′)/�, (6)

where

Z =
∫ a

0
dx

∫ x+a

x

dx ′ e[V (x ′)−V (x)]/�. (7)

The average velocity can also be determined exactly and is [2]

vS = �a

γZ
(1 − e−f a/�). (8)

III. TIGHT-BINDING METHOD

The tight-binding method is a basis discretization method
that allows the continuous diffusion equation [Eq. (1)] for
overdamped Brownian motion on a tilted periodic potential
to be systematically transformed to a simpler discrete master
equation. The method applies for periodic and tilted periodic
potentials that have only one dominant minimum per period
that is deep compared to the thermal energy. The main benefits
of the method are that it provides formal expressions for the
rate of hopping between discrete states and it makes clear the
validity of the master equation description. We present here a
brief summary of the tight-binding method. Full details can be
found elsewhere [13,14].

The evolution operator L for a tilted periodic potential
is not, in general, Hermitian. A biorthonormal set can be
constructed from the eigenfunctions of the evolution operator
L and its adjoint L† = (1/γ )[�∂2/∂x2 + F (x)∂/∂x]. The
eigenfunctions φα,k(x) of L satisfy the eigenequations [1]

Lφα,k(x) = −λα,kφα,k(x), (9)

and the adjoint eigenfunctions φ
†
α,k(x) of L† satisfy

L†φ†
α,k(x) = −λ

†
α,kφ

†
α,k(x). (10)

The eigenvalues λ
†
α,k = λ∗

α,k are imaginary, in general [1,14].
Due to the periodicity of F (x), the eigenvalues separate into
bands and the eigenfunctions have the Bloch form [13,14,17]

φα,k(x) = eikxuα,k(x), (11)

φ
†
α,k(x) = eikxu

†
α,k(x), (12)

where the functions uα,k(x + a) = uα,k(x) and u
†
α,k(x + a) =

u
†
α,k(x) are periodic with periodicity a, α is the band index, and

k is the wave number restricted to the first Brillouin zone [17].
The ground state φ0,0(x) is periodic with periodicity a and
λ0,0 = 0 [1].

For potentials with deep minima compared to the thermal
energy �, the system for long times becomes localized
around minima of the potential. In that case, the delocalized
eigenfunctions are not a convenient basis. Instead, the system
can be expanded in the localized Wannier states

wα,n(x) = 1

q

∫
B

dk φα,k(x)e−ikan, (13)

w†
α,n(x) = 1

q

∫
B

dk φ
†
α,k(x)e−ikan, (14)

where q = 2π/a and n is an integer [14]. The Wannier states
are a real, discrete, and biorthonormal set [1,14]. Expanding
the probability density as

P (x,t) = q
∑
α,n

pα,n(t)wα,n(x), (15)

where pα,n(t) = ∫
dx w

†
α,n(x)P (x,t), the Wannier states trans-

form the continuous Smoluchowski equation [Eq. (1)] to
a discrete evolution equation describing hopping between
Wannier states within the same band [13,14].

To derive a discrete master equation, the following approx-
imations are applied. Approximation (A1): The eigenstates
in higher bands decay rapidly and are neglected for long
times [13]. In this approximation, only the lowest band
is retained and, dropping the α subscript, the full discrete
evolution equation reduces to the master equation,

∂pn(t)

∂t
=

∑
n′

κn−n′pn′(t), (16)

where the hopping rates are

κn = − 1

q

∫
B

dk λke
ikan, (17)

and
∑

n κn = −λ0 = 0 [14]. Approximation (A2): The Wan-
nier states in the lowest band are well localized and hopping
transitions beyond nearest-neighbor Wannier states are ne-
glected. In this approximation, the sum in the master equation
[Eq. (16)] is truncated, retaining only κn with n = −1,0,1.
Approximation (A3): For deep minima, the nearest-neighbor
hopping rates κ±1 are approximated by Kramers’ escape
rate [14,15],

κK =
√−V ′′(xmax)V ′′(xmin)

2πγ
e−[V (xmax)−V (xmin)]/�, (18)

where xmin is the position of the minimum initially occupied,
and xmax is the position of the potential maximum that must
be escaped to reach the minimum finally occupied. The
tilt dependence of the nearest-neighbor hopping rates can
be further approximated by truncating Kramers’ escape rate
Eq. (18) to lowest order to yield [14,16]

κT
±1 ≈ e±α±1f a/�κ0

K, (19)

where κ0
K is Kramers’ escape rate for f = 0 and α±1 are the

loading coefficients describing the relative position of potential
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maxima between consecutive minima. The loading coefficients
satisfy 0 � α±1 � 1 and α1 + α−1 = 1.

IV. NUMERICS

We implement the tight-binding method for specific po-
tentials, as follows. The eigenfunctions φα,k and eigenvalues
λα,k are determined numerically by expanding the periodic
functions uα,k(x) of the Bloch states Eq. (11) according to [12]

uα,k(x) =
∑

n

cn,α,ke
inqx . (20)

We impose periodic boundary conditions with period Na

where N is a large integer (N � 32). Diagonalizing the matrix
equation for the coefficients cn,α,k , we construct the eigenfunc-
tions φα,k(x) and determine the lowest band Wannier states
wn(x) using Eq. (13). The phases of the Bloch eigenfunctions
are chosen to vanish at the nth potential minimum so that
the Wannier states in the lowest band are localized [18].
The adjoint eigenfunctions φ

†
α,k(x) and Wannier states w

†
n(x)

can be determined similarly. We normalize according to the
orthonormality relation [1,12,14]

q

N

∫ Na

0
dx φ

†∗
α,k(x)φα′,k′(x) = δαα′δkk′ . (21)

For tilted periodic potentials, i.e., f �= 0, Eq. (21) does not on
its own determine the relative weighting of the eigenfunctions
and their adjoints. Therefore, we also take

q

N

∫ Na

0
dx

φ∗
α,k(x)φα′,k′(x)

φ0,0(x)
= δαα′δkk′ . (22)

When f = 0, the adjoint states have the form φ
†
α,k(x) =

φα,k(x)/φ0,0(x) [1] and Eq. (22) reproduces Eq. (21).
We consider four periodic potentials that have periodicity

a, amplitude A, and deep minima centered around zero. These
are (i) the cosine potential,

V cos
0 (x) = −A

2
cos(qx) + A

2
; (23)

(ii) the asymmetric ratchet potential,

V rat
0 (x) = −B

2
cos[q(x − x0)] + B

8
sin[2q(x − x0)] + A

2
,

(24)

where

B = 4
√

2A
4
√

3(3 + √
3)

(25)

and

qx0 = − arcsin

(
1 − √

3

2

)
; (26)

(iii) the maxima-broadened potential,

V bro
0 (x) = −A

2
cos(qx) − A

8
cos(2qx) + 5A

8
; (27)

and (iv) the double-minima potential,

V dou
0 (x) = −C

2
cos(qx) + C

8
cos(4qx) + (1 + √

5)A

5 + √
5

, (28)

V
0
/A

x/a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 1. (Solid) Cosine potential Eq. (23), (dashed) asymmetric
ratchet potential Eq. (24), (dashdot) maxima-broadened potential
Eq. (27), and (dotted) double-minima potential Eq. (28).

where

C = 32A

5(5 + √
5)

. (29)

The potentials are shown in Fig. 1. For large values of A,
the potentials (ii) and (iv) can, particularly when tilted, have
multiple deep minima per period. In this paper, we restrict
our discussion to cases where the potentials have only one
dominant deep minimum per period.

V. EQUILIBRIUM

For untilted periodic potentials with f = 0 the system is
in thermal equilibrium. Figure 2 shows the lowest eigenvalue
bands for the potentials shown in Fig. 1. The eigenvalues λα,k

k/q

λ
γ
/
Θ

q2

-0.5 5.00
0

0.5

1

1.5

2

FIG. 2. Lowest eigenvalues for the untilted (solid) cosine poten-
tial Eq. (23), (dashed) asymmetric ratchet potential Eq. (24), (dashdot)
maxima-broadened potential Eq. (27), and (dotted) double-minima
potential Eq. (28) with A = 2�.
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Δ

γ
/Θ

q2

A/Θ

0 5 10 15
0

2

4

6

8

FIG. 3. Band gap � between the two lowest eigenvalue bands
for the untilted (×) cosine potential Eq. (23), (+) asymmetric ratchet
potential Eq. (24), (�) maxima-broadened potential Eq. (27), and
(�) double-minima potential Eq. (28). The solid curve is the analytic
result Eq. (31) based on the harmonic approximation to the minima
of the cosine potential.

are real and even in k [13]. In the limit of deep potential
minima, i.e., A � �, the lowest eigenvalue band has the tight-
binding form

λk = 2κ1[1 − cos(ka)], (30)

derived by inverting the hopping rates Eq. (17) and assuming
nearest-neighbor hopping. The gap � = λ1,±q/2 − λ0,±q/2

between the lowest two eigenvalue bands is shown in Fig. 3
and typically increases with A/�. For the cosine potential, the
gap is on the order of the separation between the two lowest
eigenvalues of the harmonic approximation to the potential
minima, i.e.,

� ≈ V ′′
0 (0)

γ
= Aq2

2γ
. (31)

The hopping rates κn are determined from the eigenvalues
by Eq. (17) and for f = 0 the symmetry of the eigenvalues
means that κn = κ−n [13]. The nearest-neighbor hopping rates
κ1 are shown in Fig. 4(a) for the potentials in Fig. 1. These
rates decrease for increasing A/� and determine the height
of the lowest eigenvalue band [see Eq. (30)]. A comparison
between κ1 and Kramers’ escape rate κK of Eq. (18) is given
in Figs. 4(a) and 4(b) for the cosine and ratchet potentials.
Kramers’ escape rate is not directly applicable to potentials (iii)
and (iv) because it requires a single maximum and minimum
per period and a finite curvature at these extrema. For deep
potentials we find good quantitative agreement between the
nearest-neighbor hopping rates and Kramers’ escape rate.
Furthermore, Kramers’ escape rate for a cosine potential
provides reasonable qualitative agreement for all the potentials
considered.

The hopping rates κn with |n| > 1 are the rates of higher-
order transitions, i.e., κ±2 describes the rate of hopping

(b)

(a)

κ
1
γ
/ Θ

q2
−

κ
2
/κ

1
(κ

K
−

κ
1
)/

κ
1

(c)

A/Θ

0 5 10 15
0

0.1

0.2

0.3
-0.5

0

0.5

10−6

10−4

10−2

FIG. 4. (a) Nearest-neighbor hopping rate κ1, (b) fractional
difference between Kramers’ escape rate Eq. (18) and κ1, and (c) ratio
−κ2/κ1 for the untilted (×) cosine potential Eq. (23), (+) asymmetric
ratchet potential Eq. (24), (�) maxima-broadened potential Eq. (27),
and (�) double-minima potential Eq. (28). The curves in (a) are
Kramers’ escape rate for the untilted (solid) cosine potential and
(dashed) asymmetric ratchet potential.

between next-nearest-neighbor states, κ±3 describes the rate
of transitions between Wannier states separated by 3a, etc.
The higher-order hopping rates decrease in magnitude with
increasing A/� and |n|. They are positive for odd |n| and
negative for even |n|. The higher-order hopping rates are
negligible for deep potential minima but become important
as A/� decreases. In the limit A → 0, the hopping rates can
be found by inserting the parabolic form λk = �k2/γ of the
eigenvalues into Eq. (17) to yield

κnγ /�q2 = − (−1)|n|

2π2n2
, for |n| > 0, (32)

κ0γ /�q2 = − 1

12
. (33)

Figure 4(c) shows the second-order hopping rates κ2 for the
potentials shown in Fig. 1.
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x/a

(a)

w
0
2π

,w
† 0

(b)

-1.5 -1 -0.5 0 0.5 1 1.5
0

2

4

6

8

0

0.5

1

1.5

2

2.5

3

FIG. 5. (Black) Wannier state w0(x) and (gray) adjoint state w
†
0(x)

for the untilted (solid) cosine potential Eq. (23), (dashed) asymmetric
ratchet potential Eq. (24), (dash-dot) maxima-broadened potential
Eq. (27), and (dotted) double-minima potential Eq. (28) with (a)
A = 2� and (b) A = 10�.

The lowest band Wannier states w0(x) and the adjoint states
w

†
0(x) ∝ exp[V0(x)/�]w0(x) are shown in Fig. 5. For deep

potential minima, the Wannier states are well localized and
for potentials with a single minimum per period are well
approximated by the Gaussian ground state of the harmonic
approximation to the potential minimum. For the double-
minima potential Eq. (28) the Wannier state has two peaks.
As A/� decreases the Wannier states become increasingly
delocalized, gaining negative peaks at x = ±a and eventually
tending to the sinc function w0(x) ∝ sin(qx/2)/x in the limit
A → 0. The adjoint Wannier states are broader localized
functions that are approximately one in the region where
the Wannier states are localized. Like the Wannier states, the
adjoint states become increasingly delocalized for decreasing
A/� tending to sinc functions in the limit A → 0. The
standard deviation

σ =
√∫

dx x2|f (x)| −
[ ∫

dx x|f (x)|
]2

, (34)

where the function f (x) is replaced by the Wannier states
or their adjoints is shown in Fig. 6. The delocalization of
the Wannier states with decreasing A/� is reflected in the
increase in magnitude of the second-order hopping rates κ±2

[see Fig. 4(c)].

A/Θ

σ
/a

0 5 10 15
0

0.5

1

1.5

2

2.5

FIG. 6. Standard deviation σ of the absolute value of the (black)
Wannier state w0(x) and (gray) adjoint state w

†
0(x) for the untilted (×)

cosine potential Eq. (23), (+) asymmetric ratchet potential Eq. (24),
(�) maxima-broadened potential Eq. (27), and (�) double-minima
potential Eq. (28).

VI. NONEQUILIBRIUM

For tilted periodic potentials with f �= 0 the system is
driven out of thermal equilibrium. Figure 7 shows the band
structure for the potentials shown in Fig. 1. The eigenvalues
λα,k are imaginary with an even real part [see Fig. 7(a)] and
an odd imaginary part [see Fig. 7(b)]. The imaginary part

(b)

Im
( λ

γ
/Θ

q2
)

(a)

k/q

R
e(

λ
γ
/Θ

q2
)

-0.5 0 0.5

-0.2

0

0.2

0

0.5

1

1.5

2

FIG. 7. (a) Real and (b) imaginary parts of the lowest eigenvalues
for the tilted (solid) cosine potential Eq. (23), (dashed) asymmetric
ratchet potential Eq. (24), (dashdot) maxima-broadened potential
Eq. (27), and (dotted) double-minima potential Eq. (28) with A = 2�

and f = �/a.
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(b)Δ
γ
/Θ

q2

fa/Θ

(a)

-30 -20 -10 0 10 20 30
0

1

2

3

4

5
0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 8. Band gap � between the two lowest eigenvalue bands
for the tilted (solid) cosine potential Eq. (23), (dashed) asymmetric
ratchet potential Eq. (24), (dashdot) maxima-broadened potential
Eq. (27), and (dotted) double-minima potential Eq. (28) with (a)
A = 2� and (b) A = 10�.

vanishes when there is a gap in the real part. In the limit of
deep potential minima, i.e., A � � and A � f a, the lowest
eigenvalue band has the form

λk = (κ1 + κ−1)(1 − cos ka) + i(κ1 − κ−1) sin ka. (35)

Figure 8 shows the gap � = λ1,±q/2 − λ0,±q/2 between the
lowest two bands. The gap typically decreases with increasing
tilt until it vanishes. For A � � the gap vanishes when the
barrier height falls below �. As A/� decreases the gap is
maintained for barrier heights less than �. The tilt dependence
of the gap is asymmetric for the asymmetric ratchet potential
Eq. (24).

The hopping rates κn are tilt dependent and are shown in
Fig. 9. For n > 0 (n < 0) the nearest-neighbor rates increase
(decrease) in magnitude for increasing f a/�. The truncated
Kramers’ escape rate Eq. (19) captures general features of
the tilt dependence of the nearest-neighbor hopping rates and
provides quantitative agreement for f a � A [see Fig. 9(a)].
The full Kramers’ escape rate Eq. (18) provides reasonable
quantitative agreement across a wide range of tilting for the
cosine potential [see Fig. 9(b)]. The agreement is not as good

( κ
K
−

κ
1
)/

κ
1

κ
±

1
γ
/ Θ

q2

fa/Θ

−
κ
±

2
/κ

±
1

(a)

(b)

(c)

-20 -10 0 10 20

10−4

10−2

100

0

0.5

1
10−10

10−5

100

FIG. 9. (a) Nearest-neighbor hopping rates (black) κ1 and (gray)
κ−1, (b) fractional difference between Kramers’ escape rate Eq. (18)
and κ1, and (c) ratio (black) −κ2/κ1 and (gray) −κ−2/κ−1 for the
tilted (×) cosine potential Eq. (23), (+) asymmetric ratchet potential
Eq. (24), (�) maxima-broadened potential Eq. (27), and (�) double-
minima potential Eq. (28) with A = 10�. The curves in (a) are the
truncated Kramers’ escape rate Eq. (19) for the tilted (solid) cosine
potential and (dashed) asymmetric ratchet potential.

for the asymmetric ratchet potential because the potential
minima become shallow very quickly for increasing positive
f . The second-order hopping rates κ±2 are shown in Fig. 9(c).
They are negligible for deep potential minima but increase in
magnitude exponentially with increasing |f |.

The lowest band Wannier states and their adjoints are shown
in Fig. 10. As in the f = 0 case, the Wannier states are
centered on potential minima and for deep minima are well
localized. The standard deviations are shown in Fig. 11. These
increase slowly with increasing |f | until the potential minima
become shallow compared to � and the Wannier states become
delocalized.

VII. VALIDITY

The tight-binding derivation of the discrete master equation
[Eq. (16)] uses three approximations: (A1) the truncation to the
lowest band, (A2) the truncation to nearest-neighbor hopping,
and (A3) the use of Kramers’ escape rate for the nearest-
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fa/Θ

2π
w

0
,w

† 0

-1.5 -1 -0.5 0 0.5 1 1.5
0

1

2

3

4

5

FIG. 10. (Black) Wannier state w0(x) and (gray) adjoint state
w

†
0(x) for the tilted (solid) cosine potential Eq. (23), (dashed)

asymmetric ratchet potential Eq. (24), (dash-dot) maxima-broadened
potential Eq. (27), and (dotted) double-minima potential Eq. (28) with
A = 5� and f = 3�/a.

neighbor hopping rates. In general, these approximations are
valid for long times and deep potential minima. However,
having calculated in Secs. V and VI the band gap, hopping
rates, and Wannier states for a variety of potentials, further
details of the validity of the tight-binding method can be
provided, as follows.

In Approximation (A1), the states above the lowest band
are truncated. This requires a separation of timescales, i.e.,
the band gap in the eigenvalue spectrum needs to be large
compared to the height of the real part of the lowest band. For
f = 0 and A > 1, the gap is larger than the height of the lowest
band and for increasing A the gap increases while the height
of the lowest band decreases. With increasing |f | the gap is

σ
/a

fa/Θ

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

FIG. 11. Standard deviation σ of the absolute value of the (black)
Wannier state w0(x) and (gray) adjoint state w

†
0(x) for the tilted (×)

cosine potential Eq. (23), (+) asymmetric ratchet potential Eq. (24),
(�) maxima-broadened potential Eq. (27), and (�) double-minima
potential Eq. (28) with A = 10�.

relatively slowly varying until it drops to zero rapidly in the
region where the potential becomes monotonically increasing
or decreasing. Therefore, provided a gap exists, it is reasonable
to assume a lowest-band description in the long-time limit.

In Approximation (A2), hopping beyond nearest neighbors
is neglected. This requires the Wannier states in the lowest
band to be sufficiently localized that the second-order hopping
rates κ±2 are negligible. If the (negative) second-order hopping
rates are not negligible then they appear in the master equation.
In that case the master equation no longer takes the standard
form with positive rates. Therefore, for a valid master equation,
and an interpretation of the system dynamics in terms of
hopping between localized states, the second-order rates must
be negligible compared to the first-order rates.

In Approximation (A3), the nearest-neighbor hopping rates
are determined by Kramers’ escape rate. Kramers’ escape
rate Eq. (18) and the truncated rate Eq. (19) provide a
reasonable qualitative description of the hopping rates in
the regime where the discrete master equation is valid [i.e.,
when Approximations (A1) and (A2) hold]. However, good
quantitative agreement with Kramers’ escape rate is only
possible for certain potentials and requires deeper potential
minima than is necessary for a valid discrete master equation
treatment, as detailed further below.

Figure 12 shows the hierarchy of approximations for the
cosine potential Eq. (23). The color map relates to Approxima-
tion (A3) and shows the difference between Kramers’ escape
rate Eq. (18) and the nearest-neighbor rate κ1. The map is
approximately symmetric in f and has a lower bound at the
critical tilt [19], where the potential becomes monotonically
increasing or decreasing with no maxima or minima. The
dashed curve shows the lower bound of the region where
the truncated Kramers’ escape rate Eq. (19) agrees with
the nearest-neighbor hopping rates to within 10%. The solid
curve relates to Approximation (A2) and shows where the
second-order hopping rates are 1% of the first-order rates.

Discrete

Continuous
0

2

4

6

12

8

10

14

A
/Θ

fa/Θ

-20 -10 0 10 20
0
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10

15

FIG. 12. Fractional difference 100(κK − κ1)/κ1 for the tilted co-
sine potential Eq. (23). The curves are where (solid) −κsgn(f )2/κsgn(f )1

is 0.01, (dashed) (κT
1 − κ1)/κ1 is 0.1, and (dash-dot) the gap �

vanishes.
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Above the solid curve the discrete master equation with
nearest-neighbor hopping can be considered valid while below
the solid curve the continuous diffusion equation is more
appropriate. In the region between the solid and dashed curves,
the master equation is valid but the nearest-neighbor hopping
rates are not well described by the truncated Kramers’ escape
rate Eq. (19). In that regime, either the full Kramers’ rate
Eq. (18) can be used or, more accurately, the hopping rates can
be determined from the lowest-band eigenvalues according to
Eq. (17). The dash-dot curve relates to Approximation (A1)
and shows the lower bound of the region where the eigenvalue
spectrum is gapped. This lies below the solid-curve boundary
of Approximation (A2).

In summary, Approximations (A1) and (A2) are required
for a discrete master equation treatment to be valid. Approxi-
mation (A2) is a tighter constraint than Approximation (A1).
Therefore, provided the next-nearest neighbor hopping rates
are negligible, a master equation can be used. The nearest-
neighbor hopping rates are well described qualitatively by
Kramers’ escape rate. The full Kramers’ escape rate Eq. (18)
is quantitative over a wider regime than the truncated rate
Eq. (19), but both expressions require deeper potential minima
than Approximations (A1) and (A2). In the regime where a
discrete maser equation treatment is valid but Kramers’ escape
rate is not quantitative, i.e., Approximations (A1) and (A2)
hold but (A3) does not, Kramers’ escape rate overestimates
the rate of hopping between neighboring Wannier states.

VIII. COMPARISON WITH THE EXACT STEADY STATE

In the regime where the discrete master equation is valid,
the tight-binding method can be used to determine steady-state
properties of the system. Here we use the tight-binding method
to determine the ground state and average drift and we compare
our results with exact analytic results for the steady state [see
Sec. II].

The master equation Eq. (16) can be solved analyti-
cally by transforming to the diagonal form using ck(t) =∑

n pn(t) exp(−ikan) [13]. In the ground state, pn(t) is
independent of n and t and, using the expansion Eq. (15),
the ground state has the form

φ0(x) ∝
∑

n

wn(x). (36)

Given the localization of the Wannier states wn(x), the ground
state in a single period a is well approximated by truncating the
sum in Eq. (36) to the appropriate single value of n where the
Wannier state wn(x) is localized on that period. Therefore, the
Wannier state w0(x) provides a good description of the ground
state in the region −a/2 � x � a/2 [see Figs. 5 and 10]. To
compare the ground state Eq. (36) with the exact steady-state
probability density Eq. (6), we calculate [12]

�P =
∫ a/2

−a/2
dx |PS(x) − φ0(x)|, (37)

where both the steady state PS(x) and the ground state φ0(x)
are normalized to unity over the region of integration in
Eq. (37). Figure 13 shows �P for a range of tilting. We find
that truncating the sum in Eq. (36) to a single Wannier state
n = 0 provides good agreement with the steady-state solution

Δ
P

fa/Θ

-20 -10 0 10 20
10−10

10−5

100

FIG. 13. Comparison �P of Eq. (37) between the exact steady
state Eq. (6) and the ground state Eq. (36) taking the sum over (black)
n = 0 and (gray) n = 0,±1 for the tilted (×) cosine potential Eq. (23),
(+) asymmetric ratchet potential Eq. (24), (�) maxima-broadened
potential Eq. (27), and (�) double-minima potential Eq. (28) with
A = 10�.

within the regime of validity of the master equation treatment
[Approximations (A1) and (A2)]. The deviation from the
exact steady-state solution increases with the magnitude of
the tilt, reflecting the delocalization of the Wannier states [see
Fig. 11] and breakdown of the master equation approach as
the second-order hopping rates increase in magnitude [see
Fig. 9(c)]. Calculating the ground state φ0(x) using n = 0,
±1 in the sum in Eq. (36) provides better agreement with the
steady state, as shown in gray in Fig. 13.

The average drift v can be calculated from the nearest-
neighbor hopping rates in the master equation Eq. (16)
according to [13]

v =
∑

n

anκn = a(κ1 − κ−1). (38)

When Kramers’ escape rate is valid, the Kramers’ drift vK can
be calculated by replacing the hopping rates κ±1 in Eq. (38) by
the Kramers’ escape rate Eq. (18). Further approximating the
Kramers’ escape rate using the truncated rate Eq. (19) yields
the truncated drift

vT = naκ0
K (eα1f a/� − e−α−1f a/�). (39)

Figure 14 compares the average drift v calculated using the
tight-binding method, and the Kramers’ drift vK calculated
using Kramers’ escape rate, with the exact result vS of
Eq. (8). We find that the drift v from the tight-binding
method is in good agreement with the exact steady-state
velocity vS [see Figs. 14(a) and 14(c)], within the regime
of validity of the master equation treatment. In the regime
where the master equation is valid but Kramers’ escape rate
does not provide quantitative agreement, the Kramers’ drift
overestimates the magnitude of the steady-state velocity [see
Figs. 14(a) and 14(b)].
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FIG. 14. (a) Steady-state drift v Eq. (38), (b) fractional difference
between the Kramers’ drift vK and the exact steady-state drift vS

Eq. (8), and (c) fractional difference between the drift v and the
exact steady-state drift vS for the tilted (×) cosine potential Eq. (23),
(+) asymmetric ratchet potential Eq. (24), (�) maxima-broadened
potential Eq. (27), and (�) double-minima potential Eq. (28) with
A = 10�. The curves in (a) are (black) the drift vT Eq. (39) calculated
using the truncated Kramers’ escape rate Eq. (19) and (gray) the exact
steady-state drift vS for the tilted (solid) cosine potential and (dashed)
asymmetric ratchet potential.

IX. TWO DIMENSIONS

The tight-binding method can be applied to Brownian mo-
tion on periodic potentials in more than one dimension [13,14].
In addition to the validity considerations described above
for one-dimensional systems, multidimensional systems are
further complicated when the transition paths are not well
defined. To illustrate the multidimensional case, we consider
the simple two-dimensional nonseparable potential

V0(x,y) = −A

2
cos(qxx) − B

2
cos(qyy)

−C

2
cos(qxx − qyy) + A + B + C

2
, (40)

shown in Fig. 15. The potential has three spatially dependent
terms. The term with amplitude A gives rise to processes
occurring in the x direction alone, the term with amplitude B

gives rise to processes occurring in the y direction alone, and
the term with amplitude C couples the two dimensions [14,20].

x/ax
y/ay

V
0
/Θ

0 0.2 0.4 0.6 0.8 1
0

0.5

1
-5

0

5

10

15

20

FIG. 15. Two-dimensional cosine potential Eq. (40) with A/� =
6, B/� = 4, and C/� = 10.
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FIG. 16. (a) Nearest-neighbor hopping rates (black) κn and (gray)
κ−n, (b) fractional difference between Kramers’ escape rate Eq. (18)
and κn, and (c) ratio (black) −κ2n/κn and (gray) κ−2n/κ−n for the two-
dimensional tilted cosine potential Eq. (40) with A/� = 6, B/� = 4,
C/� = 10, and fxax/� = 5. The symbols are (×) n = (1,1), (+)
(1,0), (�) (0,1), and (�)(1, − 1). The curves in (a) are the truncated
Kramers’ escape rate Eq. (19) for (solid) n = (1,1), (dashed) (1,0),
and (dotted) (0,1).
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We construct the potential with C > A,B so the rates in the
coupled direction dominate. We choose the friction coefficients
such that γxa

2
x = γya

2
y and we denote γ = √

γxγy .
For deep potential minima, the two lowest eigenvalue bands

are well separated and the lowest eigenvalue band has the
tight-binding form

λk =
∑

n

κn[1 − cos(k · An)] + iκn sin(k · An), (41)

where k = (kx,ky), n = (nx,ny), and A is a diagonal matrix
with Ajj = aj . The sum over n includes only the nearest-
neighbor terms n = (±1,0), (0,±1), and (±1,±1). The terms
with n = (±1,∓1) are neglected as there is no part of
the potential nonseparable in qxx + qyy. We find that for
A/� = 6, B/� = 4, and C/� = 10 the gap is more than
four orders of magnitude larger than the height of the lowest
band. The tilt dependence of the gap is qualitatively similar
to the one-dimensional case (see the solid curves in Fig. 8),
vanishing when the potential minima are no longer confined
in all directions compared to the thermal energy �.

The hopping rates κn are shown in Fig. 16. The transition
path in the coupled direction is tightly confined compared
to the thermal energy � and also the barrier for hopping
is large compared to � so Kramers’ escape rate calculated
using the minima and maxima of the transition path provides
a reasonable description. In the x and y directions, Kramers’
escape rate provides a reasonable qualitative description but
the transition paths are weakly confined compared to �

so Kramers’ rate underestimates the hopping rates in these
directions. The rates with n = (±1,∓1) are negligible for
f = 0 but increase with increasing | f | [see Fig. 16(a)].
The next-nearest-neighbor hopping rates [see Fig. 16(c)] are
negligible for deep potential minima and, as in the one-
dimensional case, increase in magnitude with increasing | f |.

X. CONCLUSION

We have presented a systematic numerical study of the
tight-binding approach to overdamped Brownian motion on a
tilted periodic potential. We have calculated the band structure,
hopping rates, and Wannier states for a variety of potentials.
For deep potential minima the Wannier states are well localized
and the hopping rates between nearest-neighbor states are
qualitatively well described by Kramers’ escape rate. When
Kramers’ escape rate does not provide quantitative agreement,
the tight-binding method enables the hopping rates between
potential minima to be determined from the lowest-band eigen-
values of the system. The discrete master equation derived via
the tight-binding method can be considered valid when the
hopping rates between next-nearest-neighbor states are neg-
ligible compared to the nearest-neighbor hopping rates. The
tight-binding method is also applicable in multiple dimensions.

It would be interesting to consider the implications of this
work for specific physical systems described by Fokker-Planck
equations [1,2,13,19]. For example, in one dimension the use
of Kramers’ escape rate can overestimate the nearest-neighbor
hopping rates and the magnitude of the average drift. In the
context of a strongly coupled molecular motor described by a
discrete master equation [14,21], this would overestimate the
power output and underestimate the efficiency at maximum
power, although the efficiency at maximum power would
remain bound by one half.
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