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Numerical analysis of long-range spatial correlations in surface growth
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To analyze long-range spatial correlations in surface growth, we study numerically a class of generalized
Kardar-Parisi-Zhang equation with a fractional Laplacian and driven by long-range spatially correlated noise,
and investigate interplay of the fractional Laplacian and correlated noise. We find that the growth system with
long-range correlation exhibits nontrivial scaling properties, such as strong dependence on the noise correlation
and weak dependence on the fractional order. The growth instability is also discussed in various parameter
regimes.
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I. INTRODUCTION

Disordered surface growth in nonequilibrium conditions
has received much attention in the last several decades because
it is related to various physical phenomena such as crystal
growth, bacterial growth, molecular beam epitaxy (MBE),
fluid flows in porous media, and fracture cracks, among others
[1–4]. In this field, special efforts focus on relating discrete
microscopic growth models to their corresponding continuum
field theories. The first nonlinear continuum equation used
to study the growth of an interface is the well-known
Kardar-Parisi-Zhang (KPZ) equation [5], which describes
the dynamics of an interface with environmental noise. The
KPZ model has become a paradigm for the study of kinetic
roughening and makes up a distinct universality class in
dynamic phase transition. In the (1+1) dimension, the KPZ
equation reads

∂h

∂t
= ν∇2h + λ

2
(∇h)2 + η(x,t), (1)

where the first term on the right-hand side is the diffusion
term, the second one is the nonlinear term describing the lateral
growth, and η(x,t) is a noise term which represents a stochastic
process.

The study of growing surfaces is often characterized by
fluctuations of the growth height around its mean value. One
of the most important physical quantities describing surface
roughening is the global interfacial width W (L,t), which is
defined as

W (L,t) ≡ 1√
L

〈[h(x,t) − h(t)]2〉1/2, (2)

where h̄L denotes the spatial average in a system with size
L, and 〈· · · 〉 stands for the average over noise realizations. In
many cases, starting from a flat surface, the global width has
a dynamic scaling form of Family-Vicsek type [6],

W (L,t) = tβf (L/t1/z), (3)
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where the scaling function f (x) ∼ xα for x � 1 and f (x) →
const for x 
 1. The roughness exponent α is a critical expo-
nent that characterizes the roughness of the saturated interface,
and the dynamic exponent z describes the dependence of the
crossover time on the system size through the relation tx ∼ Lz.
The ratio β = α/z is called the growth exponent and describes
the short time behavior of the surface.

Nevertheless, the local growth assumption is not always
justified physically. Few experiments were able to give the
KPZ exponents directly, but an overwhelming majority of
experimental investigations have reported values of scaling
exponents inconsistent with the local KPZ class [1–3]. The
discrepancy has spurred considerable theoretical activities
involving modifications of the KPZ model [7]. Meanwhile,
in most experimentally studied growth systems, it is believed
that long-range correlations or nonlocal effects are present
in reality, although they can be very weak under certain
circumstances. It is, therefore, important to understand how the
behavior of surface growth would be modified when the long-
range correlations are taken into account. To our knowledge,
there are three kinds of modified KPZ models that account for
long-range spatial correlations, namely, the KPZ equation in
the presence of spatially correlated noise [8–11], the nonlocal
KPZ equation [12–14], and the KPZ equation with a fractional
Laplacian for describing anomalous diffusion [15,16]. Since
both a space-fractional Laplacian and spatially correlated noise
can describe nonlocal effects, it is natural to consider how
interplay between them affects the scaling properties in surface
roughening. In this work, to investigate the dynamic scaling of
surface growth with long-range interactions, we study numeri-
cally the time evolution of the generalized KPZ equation with a
fractional Laplacian and long-range spatially correlated noise.
The scaling exponents obtained from numerical computation
are consistent with the results based on analytical approaches.
This work shows that long-range spatial correlations affect
scaling behavior of the surface growth.

The rest of this paper is organized as follows. First,
we describe the fractional KPZ (FKPZ) equation, and its
linearization, the fractional Edwards-Wilkinson (FEW)
equation. Next we present numerical methods and simulation
results in the (1+1) dimension. Finally we discuss the
obtained results and conclude.
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II. THE FRACTIONAL GROWTH EQUATIONS

The modified KPZ equation is obtained from the local
KPZ equation by replacing the standard second-order spacial
derivative with a fractional Laplacian operator [15,16], which
can be posed as

∂h

∂t
= ν�γ h(x,t) + λ

2
(∇h)2 + η(x,t). (4)

Here, �γ h ≡ −(−�)γ /2(1 < γ � 2) is the fractional Lapla-
cian. It can be defined as the Riesz-type fractional derivative
[17],

�γ h(x,t) = −(−�)γ /2h(x,t)

= −[C+(γ )xD
γ
+h(x,t) + C−(γ )xD

γ
−h(x,t)], (5)

where C+ = C− = 1/[2 cos(πγ )], and xD
γ
+h(x,t) and

xD
γ
−h(x,t) denote the left and right Grunwald-Letnikov

fractional derivatives, respectively:

xD
γ
+h(x,t) = lim

�x→0
(�x)−γ

(x−a)/�x∑
k=0

gkh(x − k�x,t),

xD
γ
−h(x,t) = lim

�x→0
(�x)−γ

(L−x)/�x∑
k=0

gkh(x − k�x,t), (6)

where g0 = 1, gk = (−1)k γ (γ−1)···(γ−k+1)
k! (k = 1,2,3, . . .), a

is the lattice spacing, and L is the system size in our context.
η(x,t) is a spatially correlated noise described by 〈η(x,t)〉 =
0 and 〈η(x,t)η(x′,t ′)〉 = 2D|x − x′|2σ−dδ(t − t ′), where the
coefficient D is the strength of noise, d is the dimension of
the growth substrate, and σ is the spatial correlation index. As
a special case in which γ = 2 and σ = 0, Eq. (4) corresponds
to the local KPZ equation driven by Gaussian white noise.

The FKPZ equation was proposed first by Mann and
Woyczynski [15], who suggested a fractal Langevin-type
equation for growing fractal interfaces in the presence of self-
similar hopping surface diffusion in order to explain the related
experiments [18], where impurities exist on the growing
surface, and the standard KPZ equation loses its validity, and
then a fractional Laplacian was introduced into the continuum
equation (1) describing another relaxation mechanism. Katzav
[16] generalized the FKPZ equation by introducing spatially
correlated noise and investigated the scaling behavior of the
FKPZ equation based on a self-consistent expansion (SCE)
approach [19].

For λ = 0, Eq. (4) reduces to the FEW equation and
therefore can be solved exactly [4,15]. The scaling exponents
in this case can also be obtained easily through a power-
counting analysis [1]: The scale transformation x → bx, to-
gether with the corresponding rescaling in the height h → bαh,
the time t → bzt , and the noise η(x,t) → b−(d+z−2σ )/2η(x,t),
transforms Eq. (4) to

bα−z ∂h

∂t
= νbα−γ �γ h(x,t) + b−(d+z−2σ )/2η(x,t). (7)

Multiplying both sides of Eq. (7) with bz−α , we obtain

∂h

∂t
= νbz−γ �γ h(x,t) + bσ−α−(d−z)/2η(x,t). (8)

In order to have scale invariance we must set the exponent
of b equal to zero, which results in α = (γ + 2σ − d)/2, β =
(γ + 2σ − d)/2γ , and z = γ . For γ = 2 and σ = 0, α = (2 −
d)/2, β = (2 − d)/4, and z = 2, which are the exact values of
the local Edwards-Wilkinson (EW) equation with Gaussian
white noise [20]. In the case of the (1+1)-dimensional
FEW equation, α = (γ − 1)/2, β = (γ − 1)/2γ , and
z = γ .

For λ �= 0, the nonlinear term in Eq. (4) is in fact relevant
and, therefore, affects the scaling exponents [15,16]. Similar to
the scale transformation in the linear case, we could transform
Eq. (4) to

bα−z ∂h

∂t
= νbα−γ �γ h(x,t) + λ

2
b2α−2(∇h)2

+ b−(d+z−2σ )/2η(x,t). (9)

Multiplying both sides of Eq. (9) with bz−α , we obtain

∂h

∂t
= νbz−γ �γ h(x,t) + λ

2
bα+z−2(∇h)2

+ bσ−α−(d−z)/2η(x,t). (10)

To ensure scaling invariance, one would expect naively
that the right-hand side of Eq. (10) must be independent
of b. However, this procedure provides three scaling re-
lations for two exponents, thereby overdetermining them.
The assumption that the coefficient of the nonlinear term of
Eq. (10) should be independent of scaling leads to the scaling
relation α + z = 2, which implies that the FKPZ equation
has the same superscaling relation as the standard KPZ
equation [1].

In order to investigate analytically the scaling properties of
the FKPZ equation driven by spatially correlated noise, Katzav
[16] developed the SCE approach, which yields rich phases
of the FKPZ system. When the spatial correlation parameter
σ �= 0, there is a weak-coupling solution with critical expo-
nents α = (γ + 2σ − d)/2, β = (γ + 2σ − d)/2γ , and z =
γ . When σ = 0, the scaling exponents naturally restore the
values of the FEW with Gaussian white noise (they are called
weak coupling because they are exactly the solutions obtained
in the case of the FEW equation discussed above). The second
type of solution is the strong-coupling solution that obeys the
well-known scaling relation α + z = 2, including three special
cases: (i) independent of the noise correlation parameter
and the fractional order, α = (0(d) − d)/2, β = (0(d) −
d)/(d − 0(d) + 4), and z = (d − 0(d) + 4)/2, where 0(d)
is the steady state value and only depends on the substrate
dimension d, more specifically, 0(1) = 2, and 0(2) = 2.59;
(ii) independent of the fractional order but dependent on
the noise correlation parameter, α = (2γ + 2 − d)/3, β =
(2γ + 2 − d)/(d + 4 − 2σ ), and z = (d + 4 − 2σ )/3; and
(iii) dependent on the fractional order but independent of
the correlation parameter α = 2 − γ , β = (2 − γ )/γ , and
z = γ .

The above-mentioned analytical solutions of the FKPZ
system are different evidently in the weak-coupling and
the strong-coupling regimes. In the weak-coupling regime,
the critical exponents depend on the correlation parameter
and the fractional order. However, in the strong-coupling
regime the correlation parameter and the fractional order
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separately affect the scaling exponents; that is, interplay be-
tween the fractional Laplacian and correlated noise is lost. This
discrepancy motivated us to check the above results directly in
numerical simulations. In the following sections, we give nu-
merical evidences for long-range spatial correlations in these
fractional growth systems.

III. NUMERICAL METHODS AND RESULTS

We define t = i�t , i = 1,2, . . . ,m, x = k�x, k =
1,2, . . . ,n, where �t = T/m is the step size in time, and
�x = L/n is the step size in space. The space-fractional deriv-
ative terms in Eq. (5) can be approximated by the scheme [21]

�γ h(x,t) = −(−�)γ /2h(x,t)

= −[C+(γ )xD
γ
+h(x,t) + C−(γ )xD

γ
−h(x,t)]

= −
[
C+(γ ) lim

�x→0
(�x)−γ

(x−a)/�x∑
k=0

gkh(x − k�x) + C−(γ ) lim
�x→0

(�x)−γ

(L−x)/�x∑
k=0

gkh(x − k�x)

]

= − 1

2 cos(πγ/2)(�x)γ

[
(x/�x+1)/�x∑

k=0

gkh(x − (k − 1)�x,t) +
(x/�x+1)/�x∑

k=0

gkh(x + (k − 1)�x,t) + O(�x)

]

≈ − 1

2 cos(πγ/2)(�x)γ

[
(x/�x+1)/�x∑

k=0

gkh(x − (k − 1)�x,t) +
(x/�x+1)/�x∑

k=0

gkh(x + (k − 1)�x,t)

]
, (11)

which enables rewriting the FKPZ equation with an explicit finite-difference scheme in the following form:

h(x,t + �t) − h(x,t)

�t
≈ − 1

2 cos(πγ/2)(�x)γ

[
(x/�x+1)/�x∑

k=0

gkh(x − (k − 1)�x,t) +
(x/�x+1)/�x∑

k=0

gkh(x + (k − 1)�x,t)

]

+ λ

(�x)2
[h(x,t + �t) − h(x,t)]2/8 + σ

(
12

�t

)1/2

η(x,t), (12)

where σ = (2D/�x)1/2, and η(i,t) is a spatial noise realization
at time t with long-range power-law correlation. In order
to generate this spatially correlated sequence, we adopt the
method by Peng et al. [10]. The actual numerical algorithm
consists of the following steps: (i) generate a one-dimensional
sequence η0(i,t) of uncorrelated random numbers with a
Gaussian distribution, (ii) calculate the Fourier coefficients
η0(q,t) of the sequence, and obtain η(q,t) using η(q,t) =
|q|−σ η0(q,t), and then (iii) implement the inverse Fourier
transform back to η(i,t), which is the sequence in real space
with the desired power-law correlation. In this process, fast
Fourier transform is invoked.

In the following simulations, we set the parameters as
�t = 0.05, �x = 1, ν = 1, λ = 4, D = 1, and starting from
a flat interface at t = 0 with periodic boundary condition.
To investigate the scaling behavior of the fractional growth
process, we check the time evolution of the interface width
W (L,t) in the FKPZ equation at an early time. In Fig. 1,
we show double logarithmic plots W (L,t) versus t in a
one-dimensional substrate of length L = 2n, with 4 � n � 15
(16 � L � 32768). We observe clearly the finite-size effect.
Here, parameter values γ = 1.75 and σ = 0.25 are used.

Figure 1 shows that, for very short times (typically log2 t <

0), there is a transient region where the initial deposit comes
into being. In this region, W (L,t) rapidly increases with
t . After this transient, the steady growth begins, and the
growth interface is fully driven by the interplay between
the fractional Laplacian, the nonlinear lateral correlation, and
the correlated noise. Therefore, in a sense, this is where the
early growth really starts, and in this regime one is able to

obtain the growth exponent effectively. Then, with increasing
growth time, a crossover region is observed, and finally the
interface width saturates at the steady-state saturation region.
In the steady growth region, we find that, when L < 512, the
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FIG. 1. Log-log plot of the global interfacial width W (L,t) versus
time t for the FKPZ equation (γ = 1.75 and σ = 0.25) with different
system sizes 24, . . . ,215 (from bottom to top). Results have been
averaged over a number of different noise realizations: 5000 for L =
24, 2500 for L = 25, 1000 for L = 26, 750 for L = 27, 500 for L = 28,
250 for L = 29, and 100 for the remaining values of system sizes.
The inset shows β as a function of L.
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FIG. 2. The log-log plot of the width W (L,t) versus time t for the FKPZ and FEW equations in the short time regime (a) with different γ for
the FKPZ equation (σ = 0.25), (b) with different σ for the FKPZ equation (γ = 1.75), (c) with different γ for the FEW equation (σ = 0.25),
and (d) with different σ for the FEW equation (γ = 1.75). In each of these simulations, an average over 100 runs is taken. For the sake of clear
comparison, each curve is shifted successively along the vertical coordinate.

slopes (the effective growth exponent) of different systems
are different. More precisely, the value of β increases with
L monotonously. This suggests a significant finite-size effect
of scaling exponents in this discretized fractional growth
system. The dependence on system size in the FKPZ equation
is similar to that of the local KPZ equation, in which the
effective roughness exponent is expected to converge to the
asymptotic value as the system size gets large enough. Our
simulations show that, in the discretized FKPZ equation,
when L � 512, the effective growth exponents for systems
with different sizes can be considered approximately equal.
In other words, the finite-size effect of scaling exponents
could be regarded as trivial beyond this size. The inset of
Fig. 1 shows the growth exponent as a function of the
system size L (γ = 1.75 and σ = 0.25). It indicates that
β � 0.364 for L � 512. Without loss of generality, in the
following simulations, we use L = 8196 for most of our
studies. Very similar results can be obtained with larger values
of L.

To describe quantitatively the scaling properties of the
FKPZ system, we made the double logarithmic plot of W (L,t)
versus t with various fractional orders and spatial correlation
parameters. In Fig. 2(a), the fractional order γ is chosen
as 1.5–2.0, and the spatial correlation parameter σ = 0.25.
The growth exponents are calculated for different γ using
the power-law relation W ∼ tβ , and the obtained value is
β = 0.343 ∼ 0.385, which weakly depends on γ . Figure 2(b)
exhibits a similar power-law relation with γ = 1.75 and
σ (0–0.5). In this condition, the growth exponent obviously
depends on the spatial correlation coefficient, β = 0.310 ∼
0.496 when σ = 0–0.5. Therefore, these results imply that the
scaling exponents have weak dependence on the fractional
operator and strong dependence on the spatial correlation
parameter. In the linear case λ = 0, the growth exponent
changes evidently as γ or σ varies. The numerical results are
in agreement with the corresponding analytical values [4,16]
[see Figs. 2(c) and 2(d)]. For example, when σ = 0.25 and γ =
1.5–2.0, the obtained growth exponent is β = 0.332 ∼ 0.373,
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FIG. 3. The growth exponent for the FKPZ and FEW equations
in various parameter regimes: (a) β versus γ and (b) β versus
σ . The solid, dot-dashed, and dashed lines in (a) indicate the
theoretical predictions for the FKPZ (γ = 1.5 − 2.0,σ = 0) [16],
FEW (γ = 1.5 − 2.0,σ = 0), and FEW (γ = 1.5 − 2.0,σ = 0.25)
equations, respectively; in (b) the corresponding predictions for the
FKPZ (γ = 2.0,σ = 0 − 0.5) [9], FEW (γ = 2.0,σ = 0 − 0.5), and
FEW (γ = 1.75,σ = 0 − 0.5) equations are solid, dot-dashed, and
dashed lines, respectively.

and for γ = 1.75 and σ = 0–0.5, β = 0.223 ∼ 0.495. For the
special case, γ = 2.0 and σ = 0, β ≈ 0.25, which indicates
that the linear fractional equation returns to the local EW case
[20].

In order to gain more insight into this growth system, it
might be interesting to focus on two extreme cases: γ � 2.0,
σ = 0 and γ = 2.0, σ �= 0. The first case (namely, γ � 2.0
and σ = 0) corresponds to the FKPZ with Gaussian white
noise which is the original equation suggested by Mann and
Woyczynski [15]. In this condition, our simulations show that
β = 0.302 ∼ 0.332 when γ = 1.5–2.0 [see Fig. 3(a)]. We
find that the dependence on the fractional parameter becomes
weaker compared with the case of σ �= 0. It implies that the
scaling exponents change distinctly by introducing the noise
correlation parameter into the fractional KPZ equation; in

other words, the parameters γ and σ affect jointly the scaling
behavior of the generalized growth system. These results are
well in line with one of the strong-coupling solutions based on
the SCE approach [16], and the previous numerical simulations
[22] based on the Caputo-type fractional derivative. In this
case, the validity condition reads 0(d) > max{(d + 4σ +
4)/3,(d + 3)/3,d − 2γ + 4}. The scaling exponents are z =
(d − 0(d) + 4)/2 and α = (0(d) − d)/2. More specifically,
in the (1+1) dimension, z = 3/2 and α = 1/2 can be obtained
exactly, where the validity condition reads 3/2 � γ � 2 [16].
Therefore, the critical exponent is γ independent in the
fractional KPZ system with Gaussian white noise.

Interestingly, an inequality on scaling exponents for general
dynamical systems has been derived by Katzav and Schwartz
[23]. This inequality has been used to successfully estimate
the effectiveness and limitation of analytical or numerical
approximation in various dynamical growth models. It is not
difficult to prove that many analytical methods produce results
that violate the dynamical inequality in dealing with nonlocal
growth systems. We use the inequality here to check the
validity of the numerical results for the FKPZ system and
find that the scaling exponents satisfy the exponent inequality
when the values of γ range from 1.5 to 2.0.

The second special case (namely, γ = 2.0 and σ �= 0)
corresponds to the local KPZ model with spatially correlated
noise. This problem has been studied in the past using various
analytical approximations, for example, the dynamic renor-
malization group (DRG) method [8], the scaling approach [9],
and SCE [11]. Surprisingly, these analytical tools agree on
the basic picture that for a large enough noise parameter one
obtains a power-counting strong-coupling solution, given by
β = (2σ + 1)/(5 − 2σ ). The controversy between different
methods lies in the scaling exponents for smaller values of
σ , and on the critical value σ0(= 1/4) that separates the
two phases. In Fig. 3(b), we provide detailed comparisons
of β versus σ for the FKPZ (γ = 2.0) with the theoretical
results. These results show that the scaling exponents we
obtained are consistent with the theoretical predictions based
on the Flory-type scaling approach [9] and also agree with the
previous numerical results from a direct simulation of the KPZ
equation driven by spatially correlated noise and the related
problem of directed-polymer growth [10].

For the linear FEW equation, the two extreme cases
(γ = 2.0, σ �= 0 and γ �= 2.0, σ = 0) correspond to the
local EW with spatially correlated noise and the fractional
EW equation with Gaussian white noise, respectively. The
scaling exponents obtained numerically here are consistent
with the corresponding results based on power counting [see
Figs. 2(c) and 2(d)]. The results indicate that long-range
spatial correlations affect dramatically the scaling behavior
of the linear fractional system, and the growth exponent
increases monotonously with the correlation parameter γ or σ ,
which implies that these scaling properties of the linear FEW
system differ from those of the nonlinear FKPZ system [16].
Interestingly, we also find that, different from the strong
dependence on γ when σ = 0, the growth exponents in the
FEW system driven by the correlated noise (σ �= 0) relies
only weakly on γ . Therefore, we conclude that, whether in
the FKPZ or in the FEW system, the correlated noise and
the fractional order combine together to affect the growth
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FIG. 4. The log-log plot of the structure factor S(k,t) versus wave number k for the FKPZ equation (a) with different γ and σ = 0, (b) with
different γ and σ = 0.25, (c) with different σ and γ = 2.0, and (d) with different σ and γ = 1.75. In each of these simulations, an average
over 250 runs is taken. Every straight line is plotted to guide the eyes. For the sake of clear comparison, each curve is shifted successively along
the vertical coordinate.

exponent; that is, the interplay between these correlation
parameters contributes to nontrivial scaling properties in the
generalized growth system.

To determine the roughness exponent α describing the
saturation of the surface fluctuation, usually one needs to cal-
culate the global interfacial width W (L,t) or local interfacial
width w(l,t). Unfortunately, due to numerical divergence in the
generalized KPZ system, it is not convenient to obtain α using
the relation W (L,t) ∼ Lα for the system size L in the steady-
state regime t 
 Lz. However, as we see in the following,
an alternative technique to determine the critical exponents
of a growing surface is to study the Fourier transform of
the interface height in a system of linear size L, ĥ(k,t) =
L−1/2 ∑

x [h(x,t) − h(t)] exp(ikx), where the spatial average
of the height has been subtracted. In this representation, the
properties of the surface can be investigated by calculating the
structure factor or power spectrum S(k,t) = 〈ĥ(k,t)ĥ(−k,t)〉,
which contains the same information on the system as the local
interfacial width or height difference correlation function. For

a self-affine interface, the structure function has a scaling form
[24]

S(k,t) = k−(2α+1)s(kt1/z), (13)

with

s(u) =
{
u2(α−αs ) if u 
 1,

u2α+1 if u � 1,
(14)

where s(u) is a spectral scaling function, and αs is a spec-
tral roughness exponent. To determine the universal critical
exponents, we use the scaling function S(k,t)k(2α+1) against
kt1/z. All the data collapse nicely onto a universal scaling
curve for different growth times when the roughness and
dynamic exponents are chosen properly. Thus we can estimate
these scaling exponents α and z based on data collapse.
Meanwhile, we can also check the scaling exponents obtained
independently using the scaling relation z = α/β.

Figure 4 shows the log-log plot of the structure factor S(k,t)
versus wave number k for the generalized KPZ system with
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FIG. 5. The structure factor S(k,t) of the growth surface at
different growth times from the FKPZ system with L = 1024:
(a) γ = 1.75 and σ = 0 and (b) γ = 1.75 and σ = 0.25. All of
these results are averaged over 1000 noise realizations. The curves
correspond to times from bottom to top: (a) t = 25, 35, 50, 75,
115, 165, and 250; (b) t = 17, 25, 35, 50, 75, and 115. Insets show
good data collapses with the critical exponents: (a) α = 0.440 and
z = 1.405 and (b) α = 0.525 and z = 1.375.

different fractional orders and spatial correlation parameters.
Through comparison of systems with different size and growth
time, we find that the scaling properties for the structure
factor do not change evidently with L and t . Without loss of
generality, we choose L = 1024 and t = 100 in the following
simulations. The spectral roughness exponent is calculated for
different γ and σ using the scaling relation S(k,t) ∼ k(2αs+1)

in the large wave number regime kt1/z. Figure 4(a) shows
the double logarithmic plot of S(k,t) versus k for the FKPZ
with γ = 1.5–2.0 and σ = 0, that is, the fractional KPZ with
Gaussian white noise. Figure 4(b) displays the numerical
results with γ = 1.5–2.0 and σ = 0.25. We find that, when
σ is greater than 0.3, the growth instability shows up at a short
growth time. Therefore, we choose σ from 0 to 0.3 in the
following simulations. Figures 4(c) and 4(d) show numerical

results for the FKPZ (σ = 0–0.3) with γ = 2.0 and γ = 1.75,
respectively.

Figures 5(a) and 5(b) exhibit the scaling behavior and
data collapse of the structure factor for the FKPZ system
(γ = 1.75) with σ = 0 and σ = 0.25, respectively. Measuring
the asymptotic decay of the structure factor curves k−(2αs+1)

for long times and small momenta k, we immediately obtain
an estimation of the spectral roughness exponent αs = 0.438
(σ = 0), and αs = 0.486 (σ = 0.25). Using S(k,t)k(2α+1)

versus kt1/z, we find that the data collapse is optimal for the
critical exponents α = 0.440 and z = 1.405 (γ = 1.75 and
σ = 0), and the results are shown in the inset of Fig. 5(a).
Similar to the case of γ = 1.75, we also find that the global
roughness exponent obtained by a good data collapse with
different γ and σ = 0 is in excellent agreement with the
corresponding spectral roughness exponent. These results
provide numerical evidence that the normal Family-Vicsek
scaling relation still applies, and anomalous behavior cannot
occur in this special case of the FKPZ system (γ = 1.5–2.0 and
σ = 0). In Fig. 5(b), we choose parameters with γ = 1.75 and
σ = 0.25 as a general example of the generalized KPZ system.
Here, the critical exponents used for the best data collapse are
α = 0.525 and z = 1.375. Interestingly, our results show that,
when σ �= 0, the global roughness exponent with different γ is
larger than the corresponding spectral roughness exponent, i.e.,
α > αs . Therefore, these results imply that the FKPZ system
with σ > 0 does not display normal scaling behavior and agree
with the case of intrinsic anomalous roughening [24].

Following the above steps of data collapse, we then proceed
to estimate the global roughness and dynamical exponents
in the FKPZ system with different γ and σ . The values of
critical exponents, and the comparisons with some relevant
theoretical predictions, are shown in Fig. 6. In the nonlinear
FKPZ system, the results show that the comparison between
the numerical results and theoretical predictions is rather
nontrivial. First, the global roughness exponent increases
gradually with the increasing fractional order when σ = 0.25.
More specifically, α = 0.465 ∼ 0.558 (γ = 1.5–2.0). And the
critical exponent depends weakly on γ when σ = 0, that
is, α = 0.430 ∼ 0.475 (γ = 1.5–2.0). This difference implies
that, by introducing the spatially correlated noise into the
FKPZ equation, the interplay of these correlation parameters
also plays a role in the scaling behavior of the FKPZ system
in the saturated growth regimes [see Fig. 6(a)]. Meanwhile,
the roughness exponent has weak dependence on σ when γ

is constant, and the values of α (γ = 1.75, σ = 0–0.3) are
smaller than the corresponding values when γ = 2.0 [see
Fig. 6(b)]. For the two extreme cases of the FKPZ system
(γ = 2.0, σ = 0–0.3 and γ = 1.5–2.0, σ = 0), the computed
global roughness exponent agrees well with the theoretical
predictions of Refs. [9,16]. Slightly different from α versus γ

or σ , the dynamic exponent is independent of the correlation
parameters [see Figs. 6(c) and 6(d)]. When γ = 1.5–2.0 and
σ = 0, the values of z agree with the theoretical results [16].
And for the other special case (γ = 2.0), our results differ
slightly from the theoretical prediction [9]. However, for the
linear FEW system, the roughness exponent relies dramatically
on the long-range correlation parameters, i.e., γ and σ [see
Figs. 6(a) and 6(b)]. And the global roughness exponent
equals approximately the corresponding spectral exponent.
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FIG. 6. The roughness and dynamic exponents for the FKPZ and FEW equations in various parameter regimes: (a) α versus γ , (b) α versus
σ , (c) z versus γ , and (d) z versus σ . In (a) and (c), the theoretical predictions for the FKPZ (γ = 1.5–2.0, σ = 0) [16], FEW (γ = 1.5–2.0,
σ = 0), and FEW (γ = 1.5–2.0, σ = 0.25) equations are solid, dot-dashed, and dashed lines, respectively. And the solid, dot-dashed, and
dashed lines in (b) and (d) indicate the predictions for the FKPZ (γ = 2.0, σ = 0–0.5) [9], FEW (γ = 2.0, σ = 0–0.5), and FEW (γ = 1.75,
σ = 0–0.5) equations, respectively.

Thus, anomalous scaling could not occur in the linear growth
system. Interestingly, the dynamic exponent depends strongly
on the fractional order [see Fig. 6(c)] but does not change with
the spatial correlation parameter [see Fig. 6(d)]. All of these
values for the FEW system are in good agreement with the
theoretical results based on power counting. Furthermore, we
also find that the scaling exponents obtained independently
could basically satisfy the relation z = α/β for both the linear
FEW and the nonlinear FKPZ systems.

IV. DISCUSSIONS AND CONCLUSIONS

In our simulation, we find that numerical divergence always
exists in the discretized version of the nonlinear fractional
growth system. On the contrary, no divergence appears in
the linear fractional case. The apparent singularity in Eq. (4),
indicated by a rapid growth of the height variable, is found
to occur randomly in finite growth time [see Figs. 7(a)–7(c)].

It is impossible to follow numerically the evolution of the
nonlinear system beyond the time at which singularity occurs.
Interestingly, a similar behavior is also found in the case of the
discrete stochastic models describing growing surfaces. It was
said that there is a genuine instability intrinsic to the discretized
continuum growth system with nonlinearities [25,26].

To suppress the instability induced by the nonlinear term
of the growth equations, Dasgupta et al. [25] suggested that
the squared gradient in the equation should be replaced by
an exponentially decreasing function; e.g., (∇h)2 in the KPZ
equation is replaced by f ((∇h)2), where f (x) = (1 − e−cx)
with c being an adjustable parameter. This scheme avoids rapid
growth caused by the large local height difference, which is
the origin of the instability. In the modified discretized growth
equation, the nonlinear term is still estimated from the nearest
neighbors in all spatial directions. It was said that this method
of suppressing instability does not change scaling exponents
and other universal quantities [25]. In this work, we adopt the
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FIG. 7. The nonlinear term versus growth time for the FKPZ
equation (a) with different σ (λ = 4, γ = 1.75), (b) with different λ

(γ = 1.75, σ = 0.25), and (c) with different γ (σ = 0.25, λ = 4).

scheme mentioned above in order to suppress the annoying
numerical divergence in the FKPZ system. Unfortunately,
except for several special cases, this control strategy could not
effectively suppress the instability in the nonlinear generalized
growth equation (4).

In the following, we discuss the main factors leading to
the growth instability. The dynamical growth processes are
simulated with the original generalized KPZ equation. It can
be seen that, in the early time, the fractional growth displays
normal surface morphology, and there are no obvious mounds
formed on the surfaces. With the increase of the growth time,
the lateral length of the surface features becomes larger, and
some grooves appear and become coarse, followed by a large
isolated groove, which leads to instability eventually. It should
be pointed out that this instability is not a consequence of
unsuitably large time steps, but an intrinsic feature of the
discretization of the normal KPZ and other nonlinear equations
[25–27].

To display the unstable dynamical processes, the time
evolution of the nonlinear term is calculated through altering
the values of three potential parameters σ , λ, and γ (see Fig. 7).
Interestingly, altering any of these parameters leads to similar
growth instability, and the instability onset arrives early with
increasing parameter values.

Through comparing directly these numerical results, we
notice that, for a given parameter, the instability of the non-
linear term has different dependence on the order parameter.
In Figs. 7(a)–7(c), the average value of the nonlinear term for
Eq. (4) is shown as a function of the growth time:

(i) When λ and γ are fixed (λ = 4.0 and γ = 1.75), with
increasing σ , the apparent singularity indicated by a rapid
growth of the nonlinear term occurs at an earlier time [see
Fig. 7(a)].

(ii) Figure 7(b) shows that, when σ and γ are fixed (σ =
0.25 and γ = 1.75), the singularity of the growth shows up at
different time with different λ. More specifically, the onset of
the instability always becomes earlier with increasing λ.

(iii) When σ and λ are chosen as constants (σ = 0.25 and
λ = 4.0), by varying γ , we also find a similar unstable growth
[see Fig. 7(c)].

Therefore, we conclude that the chosen parameters σ , λ,
and γ could independently affect the growth instability in the
FKPZ system. We also find that, under certain circumstances
(e.g., σ = 0, or λ � 2, or γ = 1.5), the numerical instability
does not come up in the long-time simulation of Eq. (4).

We noticed that the random-matrix theory is closely linked
to growth phenomena over the recent years [28–30]. Both
theoretical and numerical evidences have been gathered,
showing that the growth systems in the KPZ universality class
share not only the values of the scaling exponents, but also
the full probability distribution of the interface fluctuations.
For the (1+1)-dimensional KPZ class, including the discrete
models [28], the related experiments [31], and the KPZ
equation itself [32], it is believed that the interface fluctua-
tions follow the Tracy-Widom (TW) probability distribution
function associated with large random matrices. Therefore, it
would be of interest to study probability distributions of the
height in the FKPZ equation discussed here. Perhaps such a
program could further identify the universal properties hiding
behind the generalized growth system beyond the standard
KPZ case.

In summary, we have investigated the time evolution
of the roughness in the solution of the (1+1)-dimensional
FKPZ equation driven by spatially correlated noise based on
an explicit finite-difference approximation of the Riesz-type
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fractional derivative. We computed the critical exponents of the
interfacial width and structure factor with various long-range
correlation parameters. Roughly speaking, for the nonlinear
FKPZ system, the scaling exponents have strong dependence
on noise correlation parameter and weak dependence on
the fractional order. Moreover, we also noticed that when
introducing the correlated noise and fractional order together,
the interplay between these correlation parameters affects
evidently the scaling behavior of the generalized growth
system. In the two extreme cases of the FKPZ system, the
critical values are consistent with those obtained through
scaling analysis [9] and the SCE approach [16]. Compared
with the original KPZ with correlated noise and FKPZ with
Gaussian white noise, the FKPZ system in the presence of
spatially correlated noise has stronger numerical instability.
As a linear case of the FKPZ system, the numerical results
based on the FEW equation are in excellent agreement with
previous theoretical analysis [4,15]. Unlike in the FKPZ
equation, the scaling exponents in the linear fractional growth
system depend strongly on the correlation parameters. This
class of linear fractional growth processes demonstrates an
interesting type of continuous universality. Furthermore, due
to the trivial scaling properties of the FKPZ system when
σ = 0, the estimated values of the global roughness exponents
are approximately equal to the spectral roughness ones, i.e.,
α ∼ αs . The results provide the numerical evidence that

anomalous behavior does not occur in the FKPZ system
driven by Gaussian white noise. However, when σ �= 0, the
results show that the estimated global roughness exponent is
larger than the corresponding spectral roughness exponent,
which satisfies the case of intrinsic anomalous roughening
[24]. Therefore, we assume that the FKPZ driven by spatially
correlated noise exhibits nontrivial scaling properties, and
anomalous scaling behavior can occur in this kind of growth
system with long-range correlations. This conclusion is also
consistent with the theoretical arguments by López et al.
that disorder or nonlocal effects must be responsible for the
occurrence of intrinsic anomalous roughening [33]. Through
extensive numerical simulations, our results show that the
noise correlation parameter, the nonlinear coefficient, and the
fractional order all play important roles in the rapid growth of
instability. How to suppress effectively this instability needs
further research.
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[24] J. J. Ramasco, J. M. López, and M. A. Rodrı́guez, Phys. Rev.

Lett. 84, 2199 (2000).
[25] C. Dasgupta, J. M. Kim, M. Dutta, and S. Das Sarma, Phys. Rev.

E 55, 2235 (1997).
[26] B. Chakrabarti and C. Dasgupta, Phys. Rev. E 69, 011601 (2004).
[27] V. G. Miranda and F. D. A. Aarao Reis, Phys. Rev. E 77, 031134

(2008).
[28] M. Prähofer and H. Spohn, Phys. Rev. Lett. 84, 4882 (2000).
[29] T. Kriecherbauer and J. Krug, J. Phys. A: Math. Theor. 43,

403001 (2010).
[30] S. N. Santalla, J. Rodrı́guez-Laguna, T. LaGatta, and R. Cuerno,

New J. Phys. 17, 033018 (2015).
[31] K. A. Takeuchi, M. Sano, T. Sasamoto, and H. Spohn, Sci. Rep.

1, 34 (2011).
[32] T. Sasamoto and H. Spohn, Phys. Rev. Lett. 104, 230602 (2010).
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