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(Received 23 September 2016; published 14 December 2016)

The diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by
consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle
at position x and moving along the direction v̂ at time t , and numerically, by the use of Langevin dynamics
simulations. The analysis is focused on the marginal probability density of finding a particle at a given location
and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of
differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability
distribution, which contains the whole kinematic information. This approach allows the explicit calculation of
the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal
probability distribution, quantities from which the effective diffusion coefficient and the “shape” of the positions
distribution are examined. Oscillations between two characteristic values were found in the time evolution of the
kurtosis, namely, between the value that corresponds to a Gaussian and the one that corresponds to a distribution
of spherical shell shape. In the case of an ensemble of particles, each one rotating around a uniformly distributed
random axis, evidence is found of the so-called effect “anomalous, yet Brownian, diffusion,” for which particles
follow a non-Gaussian distribution for the positions yet the mean-squared displacement is a linear function of
time.
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I. INTRODUCTION

The transport properties of active or self-propelled parti-
cles have received particular attention over the past several
years. On the one hand, physicists, both theoreticians and
experimentalists, have found a fertile ground to probe and
explore ideas regarding the out-of-equilibrium conditions at
which active motion occurs. On the other hand, there are
potential applications for the designing and/or controlling the
self-propulsion mechanisms which would make possible to
manipulate the diffusive properties of such particles at will
[1–7].

The out-of-equilibrium element of active systems relies
undoubtedly on the single-particle mechanism that give rise
to self-propulsion. Such a mechanism breaks the fluctuation-
dissipation relation [8], which otherwise characterizes the
motion of passive Brownian particles by linking in a direct
way, the diffusion properties of the particle to the temperature
of the surrounding fluid. In practice, the detailed microscopic
dynamics of the self-propelling mechanism occurs at a smaller
time scales than the corresponding one of the observed pattern
of motion. This time-scales disparity allows us to employ
a reductionist approach for which the complexity of the
self-propelling mechanism can be simplified.

Such simplification considers the over-damped dynamics
for time evolution of the particle’s speed, so one can assume
that the particle moves at constant speed over a coarse-scale
of time at which the pattern of motion is described (see
Ref. [9], for instance). This approximation is well supported by
experimental studies in many real biological systems [10–15]
where fluctuations around the average value are small.

In regards to the study of pattern of motion observed in
active systems, two wide lines of research can be identified,
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on the one hand, there has been a great interest on the emergent
patterns of collective motion of collections of a large number
of interacting self-propelled particles. Indeed, collections of
self-propelled particles are ubiquitous in nature, from micro-
to macroorganisms in biology [16] and more recently in
manmade systems where micron-sized particles self-propel
by conversion of chemical energy into a mechanical one, as
has been demonstrated in a variety of examples [17,18].

On the other hand, the diversity of patterns of motion
of single active particles, either biological or synthetic, is
wide, particularly in the biological realm, where there are as
many such patterns as species of organisms in nature. Thus,
no wonder why the other main line of research focuses on
developing the theoretical frameworks to describe such, most
of the times complex, patterns of motion exhibited by single
active particles [19–25]. One aspect of interest corresponds
to those swimmers, either alive or passive, that show chiral
motion, i.e., a well-defined state (clockwise or anticlockwise)
of the circular motion component of the particle trajectories.
As a matter of fact, a plethora of biological organisms [26–39]
and synthetic particles as well [40–45] exhibit chiral motion
exhibited as helical motion in three dimensions and circular in
two.

The processes that lead to chiral motion of active arti-
cles may be diverse [46–49], the simplest situation in two
dimensions corresponds to a geometric effect, that is to say,
to the misaligning of the direction of the propelling force
and the orientation of the particle axis [50,51]. A simple
effective-force model, which leads to circular patterns of
motion, is the inclusion of an effective constant “torque”
in the Langevin equations that drive the orientation of the
self-propulsive force [52]. Such constant torque exerts the
particle to rotate with constant angular velocity [37,38,50,53],
leading to circular trajectories in two dimensions and to helical
ones in three dimensions. Such torque, for instance, may
be externally caused by a magnetic field that act over the
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magnetic moment of magnetic bacteria or used over nanorods
to steer them [54]. This theoretical framework is now standard
and has been used in a variety of studies as in the study
of the diffusion properties of active particles moving in two
dimensions [55,56], of motors having a component of circular
motion [45], and of the effects of confinement in the diffusion
properties of chiral-active particles where directed motion has
been observed [57,58]. Another approach that has been used
to study two-dimensional chiral motion is the rotationally
persistent random walks, where the introduction of a clockwise
or counterclockwise angular bias at each new step the walker
takes [59]. A connection, if any, among all these analytical
approaches is still missing in the literature and deserves a
future analysis.

Analytical studies of diffusion of active particles in three di-
mensions has received less attention than its two-dimensional
counterpart. In Ref. [60], for instance, the diffusion of torqued,
active particles in three-dimensional space is analyzed through
overdamped-Langevin equations, which are solved for the
time dependence of the first two moments of the particle
positions, namely, the average position and the mean-squared
displacement from which the effective diffusion coefficient is
computed. In Ref. [61] the diffusion properties of swimmers
that move in three dimensions with fixed, mean curvature,
and torsion, are studied by the use of stochastic Frenet-Serret
equations, which generalizes the deterministic description of
helical motion given in Ref. [28]. A more general instance
is studied in Ref. [62], where a self-propelled Brownian
spinning top is considered through the analysis of overdamped-
Langevin equations.

A complete description in three dimensions in terms of
the Smoluchowski-like equations is challenging and deserves
a thorough analysis even in the absence of chirality. This
approach leads us directly to the time evolution of the
probability distribution of the particle positions, and from it,
to relevant information regarding the characteristic features of
the pattern of motion as its non-Gaussian nature [23,25,63].

In this work we study the diffusion of active Brownian
particles that move freely with constant speed in infinite
three-dimensional space subject to an effective torque. We
derive Smoluchowski-like equations that take into account the
persistence effects of active Brownian motion and of chirality
as well. The equations are derived from the Fokker-Planck
equation for the total probability density of finding a particle
at position x moving in the direction v̂ at time t , P (x,v̂,t)
by coarse-graining over the direction of motion. From P (x,t)
analytical expression for the mean-squared displacement and
the kurtosis are given. A comparison of our prescription
formulas with numerical simulations was carried out by
solving the corresponding Langevin-like equations of active
particles subject to torques. Our analysis reveals oscillations
on time-dependence of the kurtosis in the ballistic regime and
for large values of the torque strength. These oscillations point
to the helical pattern of motion. We also compute the stationary
value of the kurtosis for an ensemble of active articles, each
particle moving under the effects of an instance of an effective
torque uniformly distributed on the sphere. Interestingly, this
situation exhibits the “anomalous, yet Brownian, diffusion”
effect, also known as weakly anomalous diffusion, where the
probability distribution is not Gaussian but the diffusion is

normal with a mean-squared displacement that grows linearly
with time.

This paper continues as follows: In Sec. II we present the
Langevin equations for the trajectories of particles that move
with constant velocity and their corresponding Fokker-Planck
equation for the probability density P (x,v̂,t) of a particle being
at point x, moving in the direction v̂ at time t , as stated in
Sec. III. The method of analysis is presented Sec. IV. Results
are discussed in Sec. V. We give our conclusion and final
remarks in Sec. VI.

II. HELICAL TRAJECTORIES OF CHIRAL ACTIVE
BROWNIAN PARTICLES

We consider a self-propelled microscopic particle, for
which the influence of thermal fluctuations due to the
surrounding fluid cannot be neglected. The interaction with
the fluid accounts for both the Brownian component of the
particle motion and the disspative mechanism due to the fluid
viscosity. The active component of the particle’s motion is
accounted for as the result of an active or swimming force
[64], which is defined to be proportional to the particle’s
swimming velocity, i.e., Fswim(t) = ζvswim(t), where ζ is the
hydrodynamic resistance that couples translational velocity to
force given by 6πηa for a sphere, with η the fluid viscosity and
a the particle radius. Thus, the time evolution of the particle
kinematic velocity, v(t), is given by the Langevin equation,

d

dt
v(t) = −ζv(t) + ζvswim(t) + ξ (t).

For low Reynolds numbers the approximated, overdamped
dynamics is valid and the last equation is replaced with

d

dt
x(t) = vs(t)v̂

swim(t) + ξT (t),

where ξT (t) = ξ (t). Thus, the change in time of the particle
position is due to the particles internal drive (self-propulsion)
and to the influence of stochastic passive fluctuations, ξT (t),
which randomize the translational motion of the particle.

The last equation is supplemented by additional stochastic
differential equations for the swimming velocity vswim(t) =
vs(t)v̂

swim(t), from which the explicit time dependence of the
swimming speed vs(t) and the swimming direction v̂swim(t)
are determined [9,65]. In the overdamped-speed limit, i.e.,
when the dynamics that drives the time evolution of vs(t)
(around a characteristic, fixed value v0) is faster than others in
the system, the particle speed can directly be set to v0. This
leaves the consideration of only one stochastic differential
equation that provides the evolution in time of the direction of
the swimming velocity, from now on simply denoted with
v̂(t). We assume that such evolution in time is only due
to active fluctuations ξR(t), which in many cases surpass
thermal ones. Chirality is taken into account by assuming
that rotational, active fluctuations does not average zero but
a constant, finite value τ = τ0τ̂ , which gives a fixed direction
τ̂ in three-dimensional space around the particles rotate with
constant angular acceleration τ0.

Under these considerations, the time evolution of the
particles’ kinematic state is therefore given by the following
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FIG. 1. A trajectory on the sphere traced by the tip of the unitary
vector v̂(t), computed from Eq. (1b). The trajectory corresponds to
an instance of Brownian motion on the surface of the sphere of radius
one.

stochastic differential equations:

d

dt
x(t) = v0 v̂(t) + ξT (t), (1a)

d

dt
v̂(t) = ξR(t) × v̂(t), (1b)

where ξT (t) and ξR(t) are modeled as three-dimensional
vectors with Gaussian white noise components; i.e., their
entries satisfy 〈ξT μ(t)〉 = 0 and 〈ξT μ(t)ξT ν(s)〉 = 2DBδ(t −
s)δμ,ν , for the translational ones, and 〈ξRμ(t)〉 = τμ and
〈ξRμ(t)ξRν(s)〉 = 2D	δ(t − s)δμν . Greek subindices denote
vector components; DB = kBT /6πηa, where T and η cor-
respond to the temperature and viscosity of the fluid, respec-
tively, kB is the Boltzmann constant, and a is the radius of
the particle that has been assumed spherical. D	 denotes the
active-rotational diffusion constant (temperature independent)
that characterizes active noise, and as usual, δ(x) and δμν

denote the Dirac δ and Kronecker δ, respectively.
The proper integration of Eq. (1b) requires the consideration

of the explicit multiplicative process involved and that |v̂(t)| ≡√
v̂2

x(t) + v̂2
y(t) + v̂2

z (t) = 1 at each time, where v̂μ(t), μ =
x,y,z are the components of the unitary vector v̂(t). Both
aspects are taken into account if the process described by
Eq. (1b) is acknowledged to be equivalent to the Brownian
motion of the tip of the unit vector v̂(t) on the unit sphere
(see Fig. 1). In the interpretation of Itó [66], Eq. (1b) can
be transformed, with the use of spherical coordinates, into
the following pair of stochastic differential equations for the
azimuthal, ϕ(t), and polar, θ (t), angles

dθ (t) = τ0 sin θτ sin[ϕτ − ϕ(t)]dt + Dθ

tan θ (t)
dt + ξθ (t)dt

(2a)

dϕ(t) = τ0{cos θτ − sin θτ cot θ (t)

× cos[ϕτ − ϕ(t)]}dt + ξϕ(t)

sin θ (t)
dt, (2b)

where v̂(t) = [sin θ (t) cos ϕ(t), sin θ (t) sin ϕ(t), cos θ (t)] and
the components of the constant vector τ has been

2.

0. 0.

2.

0

2

4

FIG. 2. Helical trajectories of active particles moving with di-
rection pointing along the ẑ and chiral intensity τ̄ = 10, for different
values of the Péclet number: Pe = 102 (blue), 102 (red), 10 (magenta),
and 1 (cyan). Axes correspond to the Cartesian coordinates x, y, z in
units of v0/D	.

written using the spherical angles, (ϕτ ,θτ ), as τ =
τ0(sin θτ cos ϕτ , sin θτ sin ϕτ , cos θτ ) with τ0 its magnitude.
The stochastic processes ξθ (t) and ξϕ(t) are Gaussian
white noises with zero mean and autocorrelation function
〈ξθ (t)ξθ (s)〉 = 2D	δ(t − s) and 〈ξϕ(t)ξϕ(s)〉 = 2D	δ(t − s),
respectively. One advantage of this formalism is that simple
integration schemes, as the Euler one, are numerically stable
when applied to Eqs. (2) than when applied directly to Eq. (1b).

We reserve the use of variable with an explicit time
dependence to denote those stochastic processes that appear
in the Langevin Eqs. (1) and (2), reserving the use of the
same symbols, but without the explicit temporal dependence,
to the corresponding variables that appear in the Fokker-Planck
equation.

Thus, our analysis considers the isotropic diffusion process
on the sphere, with rotational diffusion coefficient D	, which
allows us to choose it as a time scale t0 = D−1

	 and the length
scale l0 = v0t0. This choice leads to two free dimensionless
parameters, namely: the Péclet number Pe = v2

0/DBD	,
which measures the effects of active motion in relation to
diffusion, i.e., the larger the Péclet number the larger are the
persistence effect due to activity (see Fig. 2); and the strength
of the chirality τ̃ = τ0/t0. Regarding the chirality we consider
two cases: (i) when this is constant and the same for each
particle and (ii) when the chirality depends on each particle,
i.e., different trajectories realizations correspond to different
realizations of noise and chiral direction, in this last case the
chirality direction for each particle is chosen from a uniform
probability distribution.

Numerical calculations have been carried out by integration
of Eqs. (2) using a simple Euler scheme with a time step
10−3t0, in Fig. 2 some trajectories are shown for different
values of Pe = 103 (blue), Pe = 102 (red), Pe = 10 (magenta),
and Pe = 1 (cyan) with a torque pointing along the ẑ direction
with magnitude τ̃ = 10. Numerical results presented in the
following sections were obtained by averaging over 105

trajectories.
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III. THE FOKKER-PLANCK EQUATION

In this section we present a Fokker-Planck equation that
accounts for the evolution in time of the one-particle prob-
ability density, P (x,v̂,t), of finding an active, chiral particle
diffusing freely in three-dimensional space, at position x and
moving in the direction v̂ at time t . Such an equation can
be derived in a simple manner by use of Novikov’s theorem
[67,68] (see Appendix A). We follow this procedure and not
the alternate one of deriving the Fokker-Planck equation from
Itó’s interpretation of Eq. (1b), since the later would give rise
to extra terms not present in the former derivation, terms that
usually make the analysis more difficult. Later on in this paper,
the results obtained from the analysis of the Fokker-Planck
obtained are compared with the numerical solutions of the
Langevin Eq. (2) in the Itó interpretation.

In addition, Eq. (1b) describes the standard diffusion
of a point-particle on the surface of the unitary sphere as
mentioned before, its corresponding Smoluchowski equation
is an instance of the general theory of Brownian motion on a
manifold developed by van Kampen in Ref. [69]. There, the
author analyzes the consequences of geometrical constraints
as long as of symmetry-induced constraints, on the diffusion
of a point particle.

Thus, we start with the Fokker-Planck equation,

∂

∂t
P (x,v̂,t) + v0v̂ · ∇P (x,v̂,t)

= DB∇2P (x,v̂,t) + 1

sin θ

∂

∂ϕ
[(v̂ × τ ) · ϕ̂ P (x,v̂,t)]

+ 1

sin θ

∂

∂θ

[
sin θ (v̂ × τ ) · θ̂ P (x,v̂,t)

]
+ L(v̂)P (x,v̂,t),

(3)

where ∇ = (∂/∂x,∂/∂y,∂/∂z),

v̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ), (4)

and

θ̂ = (cos θ cos ϕ, cos θ sin ϕ, − sin θ ), (5)

ϕ̂ = (− sin θ sin ϕ, sin θ cos ϕ,0) (6)

form the standard set of local covariant vectors that span the
tangent space at the surface of the unitary sphere S2. L(v̂) is
the Laplace-Beltrami operator, which is given explicitly by

L(v̂) = D	

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
. (7)

Exact, closed, analytical solutions to Eq. (3) are not known
for the whole time evolution, not even in the long-time or
diffusive regime. In unbounded space, natural boundary con-
ditions allow a simplified analysis of Eq. (3) by transforming
the spatial coordinates to Fourier ones, x → k, namely,

∂

∂t
P̂ (k,v̂,t) + iv0v̂ · k P̂ (k,v̂,t)

= −DB k2P̂ (k,v̂,t) + 1

sin θ

∂

∂ϕ
[(v̂ × τ ) · ϕ̂ P̂ (k,v̂,t)]

+ 1

sin θ

∂

∂θ
[sin θ (v̂ × τ ) · θ̂ P̂ (k,v̂,t)] + L(v̂)P̂ (k,v̂,t),

(8)

being

P̂ (k,v̂,t) =
∫

d3x
(2π )3/2

e−ik·xP (x,v̂,t), (9)

the unitary Fourier transform of P (x,v̂,t) with respect the
spatial variable x.

Without loss of generality we choose a system of Cartesian
coordinates such that τ = τ0 ẑ = τ0(cos θ v̂ − sin θ θ̂ ), thus
Eq. (8) reduces to

∂

∂t
P̂ (k,v̂,t) + iv0v̂ · k P̂ (k,v̂,t)

=−DB k2P̂ (k,v̂,t) − τ0
∂

∂ϕ
P̂ (k,v̂,t) + L(v̂)P̂ (k,v̂,t).

(10)

We now expand P̂ (k,v̂,t) on the set of eigenfunctions of
Eq. (10) when v0 is set to zero, specifically, on the set of
functions e−DB k2t e−λn,mt Ym

n (v̂), where λn,m = D	n(n + 1) +
iτ0m, n = 0, 1,2, . . ., m = −n, . . . , n, and Yn

m(v̂) denotes
the spherical harmonic functions that are standardly defined

as (−1)m
√

(2n+1)
4π

(n−m)!
(n+m)! P m

n (cos θ ) eimϕ , P m
n (cos θ ) being the

associated Laguerre polynomial; notice that the explicit de-
pendence on θ and ϕ is made clear through Eq. (4), thus we
have

P̂ (k,v̂,t) = e−DB k2t

∞∑
n=0

n∑
m=−n

P̂ m
n (k,t)e−λn,mt Ym

n (v̂), (11)

where we recognize in the first factor the Fourier transform of
the Gaussian probability density,

GB(x,t) = 1

(2DBt)3/2
exp

{
− x2

4DBt

}
, (12)

due to translational Brownian motion solution of the three-
dimensional diffusion equation, while the second factor en-
compasses the dynamics that corresponds to the effects due to
self-propulsion. Further, expansion Eq. (11) explicitly shows
up the time scale associated with the damping factor of each
multipole distribution (spherical harmonic), which contributes
to Eq. (11), the higher the multipole order the faster it decays
with time. In fact, in the asymptotic limit, when high multipole
distributions have damped, only the rotationally symmetric
distribution is expected to remain.

The coefficients P̂ m
n (k,t) in Eq. (11) satisfy P̂ m

n (k,t) =
(−1)mP̂ −m∗

n (−k,t) and are given explicitly by

e[DB k2+λn,m]t
∫

d3x
(2π )3/2

∫
d	 e−ik·x Ym

n
∗(v̂) P (x,v̂,t), (13)

where d	 is the infinitesimal element of solid an-
gle on the sphere sin θ dθdϕ. In the spatial coordi-
nates, i.e., in consideration of the inverse Fourier trans-
form of Eq. (11), the convolution of GB(x,t) with the
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coefficient P m
n (x,t),

Pm
n (x,t) = e−λn,mt

∫
d3x′

(2π )3/2
GB(x − x′,t)P m

n (x′,t), (14)

corresponds to the space-dependent multipole of the decom-
position, into spherical harmonics, of the distribution of the
direction of self-propulsion on the unit sphere. In this way, one
should expect the monopole P0

0 (x,t) to be the dominant term
in the long time limit, for which the distribution v̂ is uniform on
the unit sphere and leads to the well-known diffusive behavior,
at a shorter time regime the dipole distribution denoted as
an order one rank tensor, [P−1

1 (x,t),P0
1 (x,t),P1

1 (x,t)], that
characterizes the polar order of the distribution of v̂, must be
taken into account. In this regime the effects of persistence are
apparent and, at an even shorter time regime, the quadrupole
distribution that corresponds to a traceless, symmetric second-
order rank tensor, which can be written in terms only of
P±2

2 (x,t),P±1
2 (x,t),P0

2 (x,t) (see Appendix), is related to the
nematic order of the distribution of v̂. Further, one can notice
that the expansion Eq. (11) is akin to the expansion in powers
of the unit vector v̂ [70,71], namely

P (x,v̂,t) = �(x,t) + J(x,t) · v̂ + v̂ · Q(x,t) · v̂ + . . . (15)

Commonly, such expansion is approximately closed at the first
two terms (also known as P1 approximation [70]) that involved
the probability density of �(x,t) that equals P0

0 (x,t)/
√

4π and
the current field J(x,t) whose components in terms of the
dipole distribution are given explicitly in the Appendix. This
approximation takes into account the persistence effects of
motion in various contexts and generally leads to telegrapher-
like equations whose validity is restricted to the long-time
regime. Description of phenomena at shorter time regimes
requires the consideration of higher-order terms than the dipole
one, which results in a difficult task. Analogously, Q(x,t)
can be written explicitly in terms of the five independent
quadrupole coefficients as given in the Appendix. To close this
paragraph, we want to comment in passing that the transport
Eq. (3) corresponds to the one-speed diffusion equation (see
Ref. [70]), used to describe, in the absence of chirality, the
monoenergetic transport process of neutrons and photons in the

simplified case for which the scattering of the direction of mo-
tion is considered independent of the particles kinetic energy.

A. The hierarchy equations for P̂ m
n (k,t)

The relation betweenPm
n (x,t) with the coefficients P m

n (x,t)
in Eq. (14) allows us to focus on these last ones. Substitution of
expansion Eq. (11) into Eq. (10) results in an equation that after
being multiplied by Ym′∗

n′ (v̂) and integrated over the solid angle
d	, the following hierarchy of equations for the coefficients
P̂ m

n (k,t) are obtained:

d

dt
P̂ m

n (k,t) =−
∞∑

n′=0

n′∑
m′=−n′

P̂ m′
n′ (k,t) e−(λn′ ,m′−λn,m)t

×
∫

d	Ym′
n′ (v̂)[iv0v̂ · k]Ym∗

n (v̂), (16)

where the orthogonality property of the spherical harmonics
has been used. The integral in Eq. (16) gives the explicit
coupling factors among the coefficients P̂ m

n (k,t) owing to the
advection term related to self-propulsion, iv0v̂ · k in Eq. (8),
and is reminiscent of the integrals that commonly appear in
quantum mechanics regarding the calculation, to first order in
perturbation theory, of the transition dipole moments for an
electron of a hydrogenoid atom in an external electromagnetic
field. In our case we define k · Im,m′

n,n′ = kxIx
m,m′
n,n′ + kyIy

m,m′
n,n′ +

kzIz
m,m′
n,n′ , where the matrix elements

Ix
m,m′
n,n′ =

∫
d	Ym′

n′ (v̂)Ym∗
n (v̂) sin θ cos ϕ, (17a)

Iy
m,m′
n,n′ =

∫
d	Ym′

n′ (v̂)Ym∗
n (v̂) sin θ sin ϕ, (17b)

Iz
m,m′
n,n′ =

∫
d	Ym′

n′ (v̂)Ym∗
n (v̂) cos θ, (17c)

are explicitly given in the Appendix. There, one ob-
serves that the coupling factors vanish except when both
�n ≡ n − n′ = ±1 and �m ≡ m − m′ = 0, ± 1 are met.
Thus, we have that for n � 1, the coefficient with given
pair of indices (n,m) is coupled with only the six
“nearest” coefficient neighbors with indices (n + 1,m ±
1), (n − 1,m ± 1), (n ± 1,m), and we have explicitly that

d

dt
P̂ m

n = v0

2
e−2D	(n+1)t

{
P̂ m+1

n+1

[
(n + m + 2)(n + m + 1)

(2n + 1)(2n + 3)

]1/2

e−iτ0t (ky + ikx) + P̂ m−1
n+1

[
(n − m + 2)(n − m + 1)

(2n + 1)(2n + 3)

]1/2

× eiτ0t (ky − ikx) − P̂ m
n+1

[
(n + m + 1)(n − m + 1)

(2n + 1)(2n + 3)

]1/2

2ikz

}
− v0

2
e2D	nt

{
P̂ m+1

n−1

[
(n − m)(n − m − 1)

(2n − 1)(2n + 1)

]1/2

× e−iτ0t (ky + ikx) + P̂ m−1
n−1

[
(n + m)(n + m − 1)

(2n − 1)(2n + 1)

]1/2

eiτ0t (ky − ikx) + P̂ m
n−1

[
(n − m)(n + m)

(2n − 1)(2n + 1)

]1/2

2ikz

}
. (18)

For n = 0 the coefficient with indices n = 0, m = 0 is coupled only with the three coefficients with pair of indices (1, ± 1) and
(1,0), since P̂ m

n ≡ 0 whenever n < 0 and/or |m| > n.
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IV. EQUATIONS FOR THE COARSE-GRAINED PROBABILITY DISTRIBUTION P(x,t)

We are interested in deriving the equation, and its corresponding solutions, that dictates the time evolution of the probability
density of finding a particle at position x at time t independent of the particle direction of motion, namely

P (x,t) =
∫

d	P (x,v̂,t) =
√

4π P0
0 (x,t) =

√
4π

∫
[d3x′/(2π )3/2] GB(x − x′,t)P 0

0 (x′,t), (19)

where definition Eq. (14) has been used. Thus, P (x,t) is determined by the knowledge of the coefficient P 0
0 (x,t) that gives the

contribution to the probability density distribution of particles being at x and at time t , due to self-propulsion and corresponds
to the inverse Fourier transform of P̂ 0

0 (k,t), which satisfies the equation

d

dt
P̂ 0

0 = v0

2
e−2D	t

[(
2

3

)1/2

e−iτ0t (ky + ikx)P̂ 1
1 +

(
2

3

)1/2

eiτ0t (ky − ikx)P̂ −1
1 −

(
1

3

)1/2

2ikzP̂
0
1

]
, (20)

where from now on, we omit arguments of the functions P̂ n
n whenever possible for the sake of writing-clarity. Equation (20) is

complemented by the condition P̂ 0
0 (k,t)|k=0 = [

√
2(2π )2]−1, that follows from the normalization condition for P (x,v̂,t). Notice

the explicit coupling to the coefficients P̂
±1,0
1 , these ones satisfy, respectively,

d

dt
P̂ 1

1 = v0

2
e−4D	t

[(
4

5

)1/2

e−iτ0t (ky + ikx)P̂ 2
2 +

(
2

15

)1/2

eiτ0t (ky − ikx)P̂ 0
2 −
(

1

5

)1/2

2ikzP̂
1
2

]

− v0

2
e2D	t

(
2

3

)1/2

eiτ0t (ky − ikx)P̂ 0
0 , (21a)

d

dt
P̂ −1

1 = v0

2
e−4D	t

[(
2

15

)1/2

e−iτ0t (ky + ikx)P̂ 0
2 +

(
4

5

)1/2

eiτ0t (ky − ikx)P̂ −2
2 −

(
1

5

)1/2

2ikzP̂
−1
2

]

− v0

2
e2D	t

(
2

3

)1/2

e−iτ0t (ky + ikx)P̂ 0
0 , (21b)

d

dt
P̂ 0

1 = v0

2
e−4D	t

[(
2

5

)1/2

e−iτ0t (ky + ikx)P̂ 1
2 +

(
2

5

)1/2

eiτ0t (ky − ikx)P̂ −1
2 −

(
4

15

)1/2

2ikzP̂
0
2

]
− v0

2
e2D	t

(
1

3

)1/2

2ikzP̂
0
0 ,

(21c)

and so on for higher-order coefficients. Equations (21) can be combined with Eq. (20) to get

d2

dt2
P̂ 0

0 + 2D	

d

dt
P̂ 0

0 + v2
0

3
k2P̂ 0

0 =
(

2

3

)1/2

iτ0
v0

2
e−2D	t

[
eiτ0t (ky − ikx)P̂ −1

1 − e−iτ0t (ky + ikx)P̂ 1
1

]
+
(v0

2

)2
e−6D	t

(
8

15

)1/2[
e−2iτ0t (ky + ikx)2P̂ 2

2 + e2iτ0t (ky − ikx)2P̂ −2
2

]
−
(v0

2

)2
e−6D	t

(
2

15

)1/2

4ikz

[
e−iτ0t (ky + ikx)P̂ 1

2 + eiτ0t (ky − ikx)P̂ −1
2

]
+
(v0

2

)2
e−6D	t

(
4

45

)1/2

2
(
k2
x + k2

y − 2k2
z

)
P̂ 0

2 . (22)

For the sake of simplicity, initial distributions that correspond
to rotationally symmetric, single pulses with zero net current
are chosen, thus, each instance of the particle trajectory
starts at the origin moving along a random direction drawn
from a uniform distribution on the sphere, i.e., P (x,v̂,0) =
δ(3)(x)/4π , where δ(3)(x) denote the three-dimensional Dirac
δ. The election of this initial condition is intended to explore
the nature of the Green function of the related equation
for P (x,t), and since it results in Fourier space P̂ m

n (k,0) =
δn,0δm,0[

√
2(2π )2]−1, where δn,m denotes the Kronecker δ, it

simplifies our analysis.

Notice that the right-hand side of Eq. (22) vanishes
asymptotically with time, implying that in such a limit
only the coefficient P̂ 0

0 (k,t) of the monopole term of the
expansion Eq. (11) (that weighs the uniform distribution of
the swimming directions on the unitary sphere) couples to
translational motion as was anticipated lines above when
Eq. (14) was discussed. Furthermore, in the same limit
one can recognize that P̂ 0

0 satisfies the three-dimensional
telegrapher’s equation (in Fourier domain k) of particles
propagating at speed v0/

√
3 and subject to changes in the

direction of motion at rate 2D	, in spatial coordinates it
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reads

∂2

∂t2
P 0

0 + 2D	

∂

∂t
P 0

0 = v2
0

3
∇2P 0

0 . (23)

Originally introduced by Goldstein [72] in one dimension
and later analyzed by Bourret [73,74], Eq. (23) generalizes
the diffusion equation in that it properly accounts for the
finite speed signal propagation that results into a non-Gaussian
probability density functions of the particle positions. In the
situation studied in this paper, the physics that underlies the
origin of Eq. (23) in the long-time regime, corresponds to
the persistence effects induced by the isotropic distribution
of swimming directions. Indeed, it is clear that during a
time interval �t � D−1

	 , the particle displaces itself with a
swimming direction that deviates uniformly, only in a small
amount solid angle �S that depends on �t , this process
generalizes the one-dimensional model in the continuum, of
particles moving with constant speed and changing directions
(left, right) at a constant rate [75]. The transport properties
described by the telegrapher’s equation have been discussed in
different contexts and in various dimensions, however, except
for the one-dimensional case for which it gives a proper
description of particles that move at constant speed and change
direction of motion at a rate D	, in higher dimensions gives
a correct description only in the long-time regime when the
persistence effects are small.

The solution to the homogeneous part of Eq. (22) is
given by

P̂ 0
0 (k,t) = P̂ 0

0 (k,0)e−D	t

[
D	

sin(ωkt)

ωk

+ cos(ωkt)

]
, (24)

where the dispersion relation for kinematic motion is

ω2
k = c2k2 − D2

	, (25)

c = v0/
√

3 being the propagation speed.
In spatial coordinates the solution is given by

P 0
0 (x,t) = e−D	t

∫
d3x′

[
D	 + ∂

∂t

]
GTel(x − x′,t)P 0

0 (x′,0),

(26)

where GTel(x,t) is the propagator defined by the inverse
Fourier transform of sin(ωkt)/ωk given explicitly by

GTel(x,t) = π1/2

21/2c|x|
[
D	

c

|x|√
|x|2 − c2t2

J1

(
D	

c

√
|x|2 − c2t2

)

× u(ct − |x|) + δ(ct − |x|)
]
, (27)

u(τ ) being the step or Heaviside function taking the value 1
for τ > 0 and zero otherwise. In the short-time regime, the
telegrapher’s Eq. (23) describes wave-like solutions, which
according to J. D. Barrow [76], favors three dimensions
for signal fidelity transmission as a part of the anthropic
principle. Barrow’s argument is based on the fact that in three
dimensions, the wave equation has as solution the one given by
Kirchoff, which in contrast to ones in one and two dimensions,
has a domain of dependence consisting only by the surface
of the sphere of radius ct , and therefore, concluding that all
three-dimensional wave phenomena travel only at the wave

speed c. We controvert this conclusion by comparison of the
results obtained in the short time regarding the propagation of
self-propelled particles.

V. RESULTS

We first analyze the simplified case that corresponds to the
absence of chirality, though being the most simple situation
in the present study, the analytical expression obtained are of
enough interest to be discussed in detail.

A. Isotropic case (no chirality effects)

In the isotropic case [put τ0 = 0 in Eq. (22)], the time
evolution of the probability density function P̂ 0

0 is directly
coupled only to the P

±2,±1,0
2 coefficients [notice that the first

term in the right-hand side of Eq. (22) is proportional to τ and
therefore vanishes when τ = 0], any attempt to solve exactly
Eq. (22) seems meaningless since it requires the solution of the
infinite hierarchy Eq. (18). However, an approximated solution
for Eq. (22) that is accurate up to the fourth moment can be
obtained by cutting off the hierarchy, holding up to the P̂

±2,±1,0
2

coefficients and neglecting higher ones. This approach goes
beyond the standard P1 or dipole approximation in that it
considers the quadrupole effects related to the nematic order
of the distribution of the self-propelling direction of motion
through the P2 coefficients.

Before attempting to obtain the isotropic solutions, we want
to remark on one aspect of Eq. (22) when τ0 = 0, namely,
one can show that the inhomogeneous term that involves the
P̂

±2,±1,0
2 coefficients do not contribute to the calculation of the

second moment of P̂ 0
0 (this has bee the case in two dimensions,

see Ref. [25]), from which it can be concluded that the solution
to the telegrapher’s Eq. (23) approximates the exact probability
density function in that it gives the exact time dependence of
the mean-squared displacement induced by rotational diffusion
(second moment of P 0

0 ). Such approximated solution retains a
finite signal speed propagation and therefore the shape is not
Gaussian. The larger the time the better is the approximation
as can be checked from the fact that in the long-time regime the
terms proportional to e−6D	t in Eq. (22) can be neglected. It is
clear, thus, that the next higher moments are well approximated
by the telegrapher equation only in the asymptotic limit,
breaking down the short-time regime. Situations like this are
frequently encountered in transport theory [75] and deserve a
more deep analysis.

From the definition of P (x,t) [(19)] we have that its second
moment is given by

〈x2(t)〉 = 6DBt + 〈x2(t)〉0, (28)

where 〈·〉0 denotes the average of (·) with respect to the
distribution of the positions

√
4π P 0

0 (x,t). Equation (28) is
valid in general, where the first term in the right-hand side gives
simply the contribution from translational diffusion 〈x2(t)〉B =
6DB t, while the second term gives the contribution due to
the persistence effects of active motion, in the present case,
due to rotational active diffusion. The observation made in the
previous paragraph makes the second moment of

√
4π P 0

0 (x,t)
be obtained directly from Eq. (23), which leads to the following
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equation for 〈x2(t)〉0,

d2

dt2
〈x2(t)〉0 + 2D	

d

dt
〈x2(t)〉0 = 2v2

0, (29)

whose solution for the initial condition 〈x2(t)〉0 = 0 is

〈x2(t)〉0 = 6DA

[
t − 1

2D	

(1 − e−2D	t )

]
. (30)

The diffusion coefficient corresponding to active motion is
obtained by taking the long-time limit of Eq. (30) and is given
by DA = v2

0/6D	, which gives the rate at which the variance of
the position distribution grows due to the rotational diffusion at
rate 2D	 of particles that move at speed v0/

√
3. In the short-

time limit, the ballistic regime expression Eq. (30) reduces
to v2

0 t
2.

The total mean-squared displacement is then given by

〈x2(t)〉 = 6(DB + DA)t − v2
0

2D2
	

(1 − e−2D	t ), (31)

from which the effective diffusion constant is obtained in the
asymptotic limit, namely D0

eff = DB + DA, expression that
coincides with the one calculated from the Kubo formula
[17]. This enhancement of diffusion due to self-propulsion
over the passive value DB has been pointed out theoretically
[77,78] and corroborated experimentally [79,80] in the case
of noninteracting active particles and in situations where the
effects of confinement are unimportant. Under this simplifi-
cations, an effective temperature Te can be correspondingly
introduced through the relation kBTe = kB(T + TA), where
the active temperature TA is defined as 6πηa v2

0/D	, and
which expresses the fact that in the asymptotic regime, active
Brownian motion can be thought as passive Brownian motion
in a homogeneous, hotter bath.

In the short-time limit, D	t � 1, on the other hand,
the mean-squared displacement has the expression 〈x2〉 ≈
v2

0 t
2(1 + 6DB/v2

0 t) that characterizes the ballistic regime
in the time regime 1  D	t  6Pe−1 and diffusive with
diffusion constant DB in the time regime D	t � 6Pe−1 as
is shown in Fig. 3 for Pe = 103. The apparent resemblance
of Eq. (31) with the corresponding one obtained from the
Ornstein-Uhlenbeck (OU) process has been noticed before
[81]. Observe, however, that if the fluctuation-dissipation
relation is assumed to be valid for the OU process, both
expressions cannot correspond to each other. Indeed, the
fluctuation-dissipation relation on the OU process implies that
speed scale due to diffusive behavior

√
6D(γ /m) equals the

mean thermal propulsion speed that emerges in the ballistic
regime of the mean-squared displacement vT , where D is
the diffusion coefficient, vT ≡ √

6kBT /m, m the particle
mass, and γ = 6πηa the coefficient of the dragging force
that appears in the corresponding Langevin equation for the
Ornstein-Uhlenbeck process. In contrast, such equivalence
cannot be established from Eq. (31), since the speed scale√

6D(γ /m) associated to diffusion behavior with diffusion
constant D0

eff does not agree with v0. This discrepancy
explicitly shows the departure from equilibrium measured

10-3 10-2 10-1 100 101 102 103

DΩt

10-6

10-4

10-2

100

102

104

<(
x-

<x
>)

2 >

Pe = 1
Pe = 10
Pe = 100
Pe = 1000
Pe = Infinity

~t2

~t

Pe

FIG. 3. Time dependence of the total mean-squared displace-
ment, in units of D−1

	 and v2
0/D	, respectively, for different values

of the Péclet number, namely, 1, 10, 100, 1000, and infinity. In these
units the effective diffusion constant is given by 1 + (Pe)−1.

by (v2
0/v

2
T )(γ /m)/D	, evidently the fluctuation-dissipation

relation is restored whenever v0 � vT and/or (γ /m) � D	.
Another aspect of interest corresponds to the short-time

behavior of the front propagation of self-propelled particles.
As mentioned before, the transmission fidelity of signals
(defined as the propagation without the effects of reverberation
or wake), as discussed by John D. Barrow in Ref. [76],
favors three dimensions supporting the anthropic principle.
A quantity that provides a measure for the shape of the
propagation front and therefore of signal fidelity is the kurtosis,
κ , of the distribution for the particle positions. A definition of
kurtosis for a multivariate distribution is given by Mardia et al.
[82], which at time t is given by

κ = 〈[x − 〈x〉] · �−1 · [x − 〈x〉]〉, (32)

where � corresponds to the covariance matrix defined by
the average of the dyadic product [x − 〈x〉] · [x − 〈x〉]. For
Gaussian distributions the kurtosis gives the invariant value
15, 8, and 3 in three, two, and one dimensions, respectively.
Thus, any deviation from these values measure the departure
from a Gaussian behavior either by transient effects from
nonequilibrium initial distributions or by the breakdown of the
fluctuation-dissipation relation. In the same spirit, the kurtosis
could equally characterize the shape of the distribution for
which propagation wakelike effects can be identified.

The time dependence of the kurtosis provides a mark for the
temporal evolution of the distribution of the particle positions.
For instance, for the three-dimensional Ornstein-Uhlenbeck
process, the kurtosis of the particle position distribution devi-
ates from its corresponding value 15, basically due to transient
effects induced by nonequilibrium initial distributions, which
are convoluted with the Gaussian propagator in the general
solution of the corresponding Fokker-Planck equation. In the
present analysis we leave aside these kind of transient effects
and focus on the time dependence of the kurtosis of the
corresponding Green functions for the self-propelled particles,
i.e., in the distribution of the particle positions.
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10-3 10-2 10-1 100 101 102 103

DΩt

5

9

15

κ(t)

Pe = 1
Pe = 10
Pe = 100
Pe = 1000
Pe = Infinity

Wave-like ballistic

Spherical shell

Gaussian
Pe

FIG. 4. Time dependence of the kurtosis, κ(t) for the rotationally
invariant case, for several values of the Pe. Solid lines are plots
of analytical expression of κ(t) as explained in text, while squares
are the values obtained from numerical simulations. The dashed
line corresponds to the kurtosis when the probability density P 0

0

is obtained from the telegrapher’s Eq. (23) and Pe = Infinity.

If no chirality effects are present, the distribution of particles
are spherically distributed around an arbitrary point (the
location of the initial pulse) in space, which, without loss
of generality, can be chosen as the origin. In such a case, the
kurtosis acquires a simple form, namely

κ(t) = 9
〈x4(t)〉

[〈x2(t)〉]2
, (33)

for which only the fourth an second moments are required. An
analogous expression to Eq. (28) can be found for the fourth
moment, namely

〈x4(t)〉 = 60 (DBt)2 + 12 DBt 〈x2(t)〉0 + 〈x4(t)〉0

+ 48 DBt

[√
2(2π )2

k

∂

∂k
P̂ 0

0 (k,t)

]
k=0

. (34)

The first term in the right-hand side corresponds to the
contribution due to translational fluctuations and 〈x2(t)〉0 is
given in Eq. (31).

Calculation of the last two terms in Eq. (34) requires
the knowledge of

√
4πP 0

0 (x,t). If the P2’s coefficients and
higher-order multipoles are neglected, the fourth moment
is approximated by the one of the telegrapher’s equation
propagator Eq. (23), which leads only to an approximated
expression for the time dependence of 〈x4(t)〉0 [23,25]. Such
approximation results in a kurtosis whose time dependence
gives the value 5 in the short-time regime D	t � 1, a value that
characterizes wavelike propagation with wake effects. As time
increases, the kurtosis grows monotonically to saturate at the
value 15 in the diffusive regime or long-time limit (thin-dashed
line in Fig. 4).

If the coupling of the P2’s coefficients to higher multipoles
are neglected, Eq. (22) can be closed for P̂ 0

0 and can be written

as (recall that τ0 = 0)

d2

dt2
P̂ 0

0 (k,t) + 2D	

d

dt
P̂ 0

0 (k,t) + v2
0 k2
∫ t

0
ds φ(t−s)P̂ 0

0 (k,s)

=
√

8

15

(v0

2

)2
e−6D	t

[
Q(k) + 4

√
2

15
k2P̂ 0

0 (k,0)

]
, (35)

where the memory function φ(t) is given explicitly by 3
5δ(t) −

8
5D	e−6D	t and

Q(k) = (ky − ikx)2P̂ 2
2 (k,0) + (ky + ikx)2P̂ −2

2 (k,0)

+ 2ikz

[
(ky − ikx)P̂ 1

2 (k,0) + (ky + ikx)P̂ −1
2 (k,0)

]
+
(

2

3

)1/2[(
k2
x + k2

y

)− 2k2
z

]
P̂ 0

2 (k,0) (36)

is a term that depends only on the initial conditions and that
vanishes for the initial conditions chosen.

Though a mere approximation, the solution to Eq. (35),
which in Fourier-Laplace domain is given by

P̂ 0
0 (k,ε) = P̂ 0

0 (k,0)
ε + 2D	 + 4

15
v2

0 k2

ε+6D	

ε2 + 2D	ε + v2
0 k2φ̃(ε)

, (37)

leads to the exact time dependence of 〈x4(t)〉0 and to the last
term in Eq. (34), as is shown when compared to numerical
simulations.

The exact formula for the fourth moment is found from the
following equation:

d2

dt2
〈x4(t)〉0 + 2D	

d

dt
〈x4(t)〉0

= 12v2
0〈x2(t)〉0 − 32v2

0D	

∫ t

0
ds e−6D	(t−s)〈x2(s)〉0,

(38)

which is directly obtained from Eq. (35) when multiplied by x4

and integrated over all space. The solution to the last equation
is given in terms of the second moment of P 0

0 (x,t) as

〈x4(t)〉0 = 4v2
0

∫ t

0
ds

∫ s

0
ds ′e−2D	(s−s ′)

[
3〈x2(s ′)〉0

− 8D	

∫ s ′

0
ds ′′e−6D	(s ′−s ′′)〈x2(s ′′)〉0

]
. (39)

After substitution of the second moment and evaluation of the
integrals we get

〈x4(t)〉0 = v4
0

D4
	

[
5

3
(D	t)2 − 26

9
D	t − e−2D	tD	t

+ 2(1 − e−2D	t ) − 1

54
(1 − e−6D	t )

]
, (40)

which gives the exact time-dependence for the fourth moment
of the distribution that carries the effects of persistence. In the
short-time regime 〈x4(t)〉0 is simplified to v4

0 t
4 and therefore

a kurtosis in this regime gets the value 9, which differs from
the value 5 for the distribution of positions corresponding to
the wavelike propagation (see Fig. 4). It can be shown that the
value 9 corresponds to a position distribution whose shape at
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time t is a spherical shell given by δ(3)(|x| − ct)/4π |x|2. In
the asymptotic limit, D	t  1, Eq. (40) gives 〈x4(t)〉0 −→
(5/3)(v0/D	)4(D	t)2, from which the kurtosis value 15,
corresponding to Gaussian distributions, is obtained.

The factor in square brackets in the last term in the right-
hand side of Eq. (34) can now be calculated with the help of
Eq. (37), namely, after Laplace inversion we get[√

2(2π )2

k

∂

∂k
P̂ 0

0 (k,t)

]
k=0

= v2
0

6D2
	

[1 − e−2D	t − 2D	t]. (41)

By collecting the results of Eqs. (30), (40), (41), and (28)
and putting them in Eq. (33), the time dependence of the
kurtosis is obtained. In Fig. 4 such a dependence is shown for
different values of Pe, namely 1, 10, 100, 1000, and infinity.
A comparison with the numerical solutions of Eqs. (1) is also
presented in the same figure, an excellent agreement with the
analytical solution (lines) is remarkable.

B. Effects of chirality about a fixed direction

Consideration of chirality in the locomotion behavior of
active particles is justified in many observed patterns of motion
of biological organisms or artificial active particles [53,83].
Due to different mechanisms, chirality breaks rotational
symmetry, which makes diffusion anisotropic; in the simple
case in which the rotational symmetry is broken about a fixed,
arbitrary direction, diffusion is split into diffusion along that
direction and along the perpendicular plane. We set such a
direction as ẑ for simplicity; the diffusive approximation leads
to the equation

d2

dt2
P̂ 0

0 (k,t) + 2D	

d

dt
P̂ 0

0 (k,t) + v2
0

3
k2P̂ 0

0 (k,t)

= v2
0

3
k2

⊥τ0

∫ t

0
ds η(t − s)P̂ 0

0 (k,s), (42)

where k⊥ = (kx,ky) denotes the vectors in k space that span
the two-dimensional subspace orthogonal to the direction
kz. The last expression generalizes the telegrapher Eq. (23),
η(t) ≡ τ0e

−2D	t sin τ0t being a memory function that makes
evident the anisotropic effects induced by chirality. An explicit
solution that considers this anisotropy can be found in the
Laplace-Fourier domain, to say

P̃ 0
0 (k,ε) = (ε + 2D	)P̂ 0

0 (k,0)

(ε + D	)2 + ω2
k − v2

0
3 k2

⊥
τ 2

0

(ε+2D	)2+τ 2
0

, (43)

where, as before, we have used initial conditions with vanish-
ing probability flux, i.e., dP̂ 0

0 (k,0)/dt = 0, and ω2
k is given in

Eq. (25). As is immediately clear from Eq. (43), the marginal
probability distribution in the long-time regime along the ẑ
direction, P 0

0 (z,t) obtained from Eq. (43) when evaluating the
inverse Laplace-Fourier transform with k⊥ = 0, is not affected
by chirality, and it satisfies the standard one-dimensional
telegrapher’s equation, whose integrodifferential form is given

by the expression

∂

∂t
P 0

0 (kz,t) = v2
0

3

∫ t

0
ds e−2D	(t−s) ∂2

∂k2
z

P̂ 0
0 (kz,s), (44)

and whose solution is well known to be appropriate in the
long-time regime [84]. In contrast, the marginal probability
distribution, P 0

0 (x⊥,t), on the plane where rotational motion
due to chirality takes place, satisfies the continuity equation

∂

∂t
P 0

0 (x⊥,t) + ∇⊥ · J(x⊥,t) = 0, (45)

provided that initial conditions with vanishing probability
flux are chosen and ∇⊥ ≡ (∂/∂x,∂/∂y). The total probability
current in Eq. (45), J(x⊥,s), is the sum of two contributions:
one that we denote with

Jp(x⊥,t) = −(v2
0/3
) ∫ t

0
ds e−2D	(t−s)∇⊥P 0

0 (x⊥,t), (46)

which is the current generated not only by the instantaneous
of the negative of the gradient of the instantaneous density
inhomogeneities, but for all previous ones weighted by an
exponentially decaying memory function that lead to the
persistence effects. The other contribution denoted with

J ch(x⊥,t) = (v2
0/3
) ∫ t

0
ds e−2D	(t−s)

×
∫ s

0
ds ′η(s − s ′)∇⊥P 0

0 (x⊥,t) (47)

corresponds to a current in the direction of the gradient of the
doubly convoluted probability density with memory functions
e−2D	t and the one that incorporates the effects of chirality, η(t)
just defined above. With these considerations, combination
of Eq. (45) with the constitutive relation Eqs. (46) and (47)
constitutes the long-time-regime Smoluchowski equation for
chiral, active particles. As is shown in the following, this
equation provides the exact time dependence of the mean-
squared displacement from which expressions for the effective
diffusion coefficient can be derived and that have been obtained
before from Langevin equations for Brownian circle swimmers
[50,55,85].

From Eq. (43) the explicit time-dependence contribution to
the mean-squared displacement, due to active motion, can be
straightforwardly obtained, namely

〈x2(t)〉0 = v2
0

D	

(
D2

	 + τ 2
0 /12

D2
	 + τ 2

0 /4

)
t − 1

6

v2
0

D2
	

(1 − e−2D	t )

+ 4

3

v2
0τ

2
0(

4D2
	 + τ 2

0

)2 [(1 − 4
D2

	

τ 2
0

)

× (1 − e−2D	t cos τ0t) − 4
D	

τ0
e−2D	t sin τ0t

]
,

(48)

where the effects of chirality about the ẑ direction are apparent.
Addition of the translational component 6DBt to the last

expression gives the total mean-squared displacement [see
Eq. (28)]. In Fig. 5 the time dependence of the total mean-
squared displacement is shown for two different situations, first
for a large, fixed value of chirality, namely τ0/D	 = 100, and
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FIG. 5. Mean-squared displacement in units of v2
0/D

2
	 as function

of the dimensionless time D	t , for different values of the Péclet
number, namely 1, 10,100, 1000 for a large, fixed chirality τ0/D	 =
100 (a); and for different values of chirality, 0.1, 1,10, 100, and a large
value of Pe = 100 for which the effects of persistence are important
(b). Squares correspond to data gathered from numerical simulations
while lines are plots of Eq. (28) with 〈x2(t)〉0 given by Eq. (48).

different values of the Péclet number [Fig. 5(a)]. The effects
of chirality are revealed in the time regime t ∼ τ−1

0 for values
of the Péclet number for which the effects of persistence are
conspicuous, Pe = 1000 and infinity. In the long time regime
the effective diffusion coefficient diminishes as Pe is increased,
bounded from below by DB + DA/3 [see Eq. (49)].

In the long-time regime normal diffusion dominates
the time dependence leading to the effective diffusion
coefficient [60],

Deff = DB + 1

6

v2
0

D	

(
D2

	 + τ 2
0 /12

D2
	 + τ 2

0 /4

)
, (49)

which results in a monotonous function of both D	 and τ0.

For fixed Péclet number the effective diffusion coefficient
is bounded from above by D0

eff, and from below by DB +
DA/3. The first-order correction is quadratic in τ0/D	 when
τ0/D	 � 1, namely Deff ≈ D0

eff − (DA/6)τ 2
0 /D2

	, contrarily,
the first-order correction when τ0/D	  1 is Deff ≈ DB +
(DA/3)(1 + 8τ 2

0 /D2
	).

In Fig. 5(b), the mean-squared displacement is shown for
the fixed Péclet number 100, value for which the effects
of persistence of active motion are important, and different
values of chirality. In the short-time regime the mean-squared
displacement is linear in t with a diffusion coefficient that
depends only Pe and not on chirality as is apparent in the figure.
At long times, in the diffusive regime, the effective diffusion
coefficient diminishes as chirality is increased, bounded from
below by DB + DA/3 [see Eq. (49)].

Due to the anisotropy induced by chirality, the motion can
be split into motion along the ẑ direction and motion on the
plane orthogonal to ẑ. It is straightforward to show that the
mean-squared displacement along the ẑ direction, computed
from Eq. (44), is one third of the result given in Eq. (28). On
the other hand, we reproduce the exact time-dependence of the
mean-squared displacement [50,85] on the x̂ ŷ plane directly
from the Smoluchowski equation given by Eqs. (45)–(47) and
given explicitly by

〈x2
⊥(t)〉 = 4D⊥t + 4

3

v2
0τ

2
0(

4D2
	 + τ 2

0

)2 [(1 − 4
D2

	

τ 2
0

)

× (1 − e−2D	t cos τ0t) − 4
D	

τ0
e−2D	t sin τ0t

]
,

(50)

shown in Fig. 6 for different values of Pe and τ/D	, symbols
correspond to data from numerical simulations while lines
to plots of the analytical Eq. (50). Notice the conspicuous
oscillations for Pe  1 and τ0/D	  1.

If the limit t → ∞ is applied to Eq. (50) after dividing by
4t , we recover previous results regarding the effective diffusion
coefficient of chiral, active particles in two dimensions [45,55],
namely

D⊥ = DB + 2

3
v2

0
D	

4D2
	 + τ 2

0

, (51)
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Pe =Infinity, τ0/DΩ = 100
Pe = 1000, τ0/DΩ = 100
Pe = 100, τ0/DΩ = 100
Pe = 10, τ0/DΩ = 10
Pe = 1, τ0/DΩ = 1

FIG. 6. Time dependence of the mean-squared displacement
〈(x⊥ − 〈x⊥〉)2〉 in units of v2/D2

	 along the x̂ ŷ plane perpendicular
to the chirality direction, as function of the dimensionless time D	t .
Analytical Eq. (50) is shown in solid lines while data acquired from
numerical simulations are shown by squares.
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FIG. 7. Time-dependence of the kurtosis κ(t) as defined in
Eq. (32) for different values of the Péclet number and chirality:
τ0/D	 = 100 (a) and for different values of chirality for a fixed
value of the Péclet number, Pe = 100 (b). Dotted lines are guides for
the eye.

which is a nonmonotonous function of D	 reaching its
maximum value DB + v2

0/6τ0 at D	 = τ0/2, as has been
pointed out in [Ref. [55], and references therein] for active
particle diffusing in two dimensions under the effects of a
constant torque or in Ref. [59] for the two-dimensional chiral
random walker.

Another relevant aspect refers to the effects of chirality
on the “shape” of the probability distribution of the particle
positions, measured by the kurtosis [23,25,63,86]. As has been
pointed out in the previous section, and in Refs. [23,25] for the
two-dimensional case, the exact, analytical time-dependence
of the kurtosis is obtained by keeping the quadrupole terms,
which make the calculation particularly difficult due to
the anisotropy induced by chirality that makes the use of
Eq. (33) useless. In the top panel of Fig. 7, the exact
time-dependence of the kurtosis, obtained from numerical
simulations for τ0/D	 = 100 and different values Pe, is
shown. In the short-time regime, the probability distribution
is approximately Gaussian, except for the case Pe = ∞,
for which the persistence effects are dominant leading to
an expanding spherical shell (κ � 9) as the shape of the

position distribution of the particles. Afterwards, the kurtosis
diminishes due to the effects of persistence and rises again
to reach a Gaussian in the asymptotic limit. Note, however,
that for large values of the Péclet number, oscillations of the
kurtosis appear in the short-time regime basically due to the
helical nature of the particle trajectories. The oscillations mark
periods of time where particles are tightly distributed (values
close to 9) and periods of time where the particles tend to
spread as a Gaussian distribution.

In the bottom panel of Fig. 7, κ(t) is shown as function of
time for Pe = 100 and different values of τ0, that is to say τ0 =
0.1D	, D	, 10D	, and 100D	. It is natural to expect that no
traces of rotational motion are observed in the particle position
distribution if the period of rotation is less or of the order of
the persistence time (the lines that have a deeper minima);
however, if the rotation period is larger than the persistence
time, oscillations are present (barely distinguishable in the case
τ0/D	 = 100).

C. Uniformly distributed random directions of chirality:
“Anomalous, yet Brownian, diffusion”

Last, we consider the case at which each chiral active
particle has its “own” axis of rotation, constant in time, but
arbitrary. We choose the simple case that corresponds to an
ensemble of chiral particles whose rotation axes are uniformly
distributed on the unitary sphere. In that situation, it is observed
from numerical simulations (see Fig. 8) that the stationary
value of the kurtosis κs = limt→∞ κ(t) of the distribution of
positions departs from the Gaussian one with the intensity
of chirality for Péclet numbers larger than 1. As shown, κs

increases for τ0/D	 � 1, indicating a non-Gaussian “flatten”
distribution of the particles positions caused by chirality.
This asymptotic non-Gaussian regime is characterized by
normal diffusion as has been checked from the numerical

0.1 1 10 100
τ0/DΩ

15

20

25

30
κs

Pe = Infinity
Pe = 1000
Pe = 100
Pe = 10
Pe = 1

10 10 10

DΩt
10

10

10

10

M
SD

~t

τ0/DΩ = 10

FIG. 8. Asymptotic values of the kurtosis, κs, vs. the dimension-
less chirality, τ0/D	, for the values of the Péclet number: infinite,
1000, 100, 10, and 1. Dotted lines are guides for the eye. Inset
contains the time dependence of the mean squared displacement for
an ensemble of particles moving with a chirality direction uniformly
distributed in the sphere and τ0/D	 = 10. The linear dependence
with time is shown in the long-time regime.
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simulations (see inset in the same figure). This phenomenon
has been observed in systems where tracers diffuse within
complex fluids different systems and it is currently referred
to as “anomalous, yet Brownian, diffusion” [87–89]. The
phenomenon has been also observed in financial data analysis,
particularly, the mean-squared displacement of the logarithm
of the returns of the price of an asset in a financial market,
grows linearly with time, while the probability density function
of the log-returns is strongly non-Gaussian due to long-range
memory effects of the absolute value of the log returns
[90]. The phenomenon has been also addressed theoretically
in different one-dimensional models [90–92]. In Ref. [90]
the effects of long-range correlations of the direction of
motion, introduced by particular microscopic rules of the
displacements, on a random-walk are considered. In there,
the authors find a departure from the expected Gaussian
distribution of the particle positions, notwithstanding the
mean-squared displacement being linear in time, an effect they
referred to as “weakly anomalous diffusion.” Alternatively,
a nonpersistent random walk model (in that there is no
correlations in the displacement direction) that leads to the
same phenomenon is considered in Ref. [91]. Such a model
considers a stochastic, diffusion coefficient, from which the
authors recover the main features observed in the experiments
[87,88]. More recently the phenomenon has been reported
as a consequence of delocalization in a model [92] for the
diffusion of energy along an anharmonic, disordered lattice at
finite temperature. Our results point out that “anomalous, yet
Brownian, diffusion” occurs in a two-dimensional model of
diffusing active, chiral particles subject to memory effects in
the direction of motion (persistence). A more detailed analysis
on the origin of this effect is necessary and will be discussed
elsewhere.

VI. CONCLUSIONS AND FINAL REMARKS

The diffusion of chiral, active Brownian particles in
free, three-dimensional space has been considered. Particular
attention was conceded to the probability density, P (x,t),
of finding a particle at position x at time t independently
of its swimming direction, a quantity that is susceptible of
experimental sampling by the use of single-particle tracking
techniques. A systematic method, based on the multipole
expansion of the complete probability density P (x,v̂,t), where
v denotes the particle’s direction of motion, allows us to
find Smoluchowski-like equations for P (x,t) that includes the
effects of chirality for different time regimes.

For the rotationally invariant motion, i.e., in the absence of
chirality, diffusion is described by the standard telegrapher’s
equation, which emerges from the method in the long-time
regimen when the hierarchy can be cut up to the dipole
terms. Notwithstanding the nature of the approximation, the
telegrapher’s equation provides the exact time dependence
of the mean-squared displacement for arbitrary values of the
Péclet number as was verified by numerical simulations using
the corresponding Langevin equation for active Brownian
particles. We found that such is the case even when the
effects of chirality are taken into account, in that instance, the
telegrapher’s equation is modified by an extra term that carries
the information about the anisotropy due to the rotational

component of the motion. Previous reported expressions for
the effective diffusion coefficient were recovered from our
theoretical framework.

The fourth moment of P (x,t) was also calculated and
the kurtosis, which measures the “shape” of the probability
density, was analyzed. For this, the quadrupole terms of the
expansion were included in the analysis, which resulted into
a generalization of the telegrapher’s equation from which
analytical expressions for the fourth moment, and therefore for
the kurtosis, were obtained in the rotationally invariant case.
Numerical simulations were performed to verify the exactness
of the time dependence of the kurtosis. In the isotropic case
(τ0 = 0) κ(t) is bounded from below by 9, a value that
corresponds to a spherical shell distribution, and from above by
invariant value for a Gaussian distribution, 15, and exhibits a
nonmonotonic behavior for finite values of the Péclet number
in the form of a global minimum, which is related to the
persistence effects. On the other hand, the particles trace
stochastic helical trajectories along the ẑ direction as chirality
breaks rotational invariance, making diffusion anisotropic. For
large enough Péclet numbers, the transient of the probability
density shows an interesting oscillating behavior between
a Gaussian shape and a spherical shell one. No analytical
expressions were obtained in this case; however, it is possible
to obtain analytical expression of the kurtosis of the marginal
distribution of the particles position in the plane orthogonal to
the axis of rotation.

The case for which a chiral active particle moves rotating
along an axis of rotation uniformly distributed on the sphere
is presented. A statistical analysis of the trajectories obtained
from numerical simulations of the Langevin equations indi-
cates that the asymptotic regime presents normal diffusion
described by non Gaussian distribution, revealing an instance
where “anomalous, yet Brownian, diffusion” is exhibited.

The results presented in this paper has proven that the
method employed to obtain analytical expressions of the exact
time dependence for standard experimental data, namely, the
mean-squared displacement and the kurtosis of the particles
position distribution, is valuable and complements the com-
mon approach based only on Langevin equations, particularly
for the description of the combined effects of chirality and
active motion, a situation that is of interest in biological and
man-made systems. Though we have restricted our analysis to
the case of free diffusion it is of interest to extend the method
presented in this paper to the case when particles diffuse under
the action of position- and velocity-dependent forces.
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APPENDIX A: THE LANGEVIN EQUATIONS FOR THE
SPHERICAL ANGLES

The numerical solution of the Langevin equations in three-
dimensional Euclidean coordinates given by Eqs. (1), as such,
present instabilities if direct integrators are used, basically
because they fail to preserve the norm of v̂ during the time
evolution.
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Equation (1b) can be written in a simple form as

dv̂λ(t) = [ελμν dWμ] v̂ν(t), (A1)

for which the multiplicative nature of the stochastic equations
is made apparent. In Eq. (A1), ελμν is the completely
antisymmetric or Levi-Civita tensor, dWμ(t) = ξRμ(t) is the
Wiener process, and the Einstein convention, i.e., sum over
repeated index, has been used. The first factor within square
parenthesis in Eq. (A1) corresponds to the elements Rλμ,
of a stochastic skew-symmetric matrix R. The statistical
properties of rotational noise ξR(t) were given in Sec. II,
namely 〈ξRμ(t)〉 = τμ and 〈ξRμ(t)ξRν(s)〉 = 2D	δ(t − s)δμν .

First, consider the case for which τμ = 0 for each μ.
Since the constriction v̂i v̂i = 1 is satisfied straightforwardly in
spherical coordinates, a change of variables to such coordinate
system is required, namely,

v̂x(t) = sin θ (t) cos ϕ(t), (A2a)

v̂y(t) = sin θ (t) sin ϕ(t), (A2b)

v̂z(t) = cos θ (t). (A2c)

The corresponding Langevin equations for the azimuthal ϕ(t)
and polar θ (t) angles can be obtained by the use the standard
Itó interpretation of Eqs. (A1) as follows. Equations (A2a) and
(A2b) can be written in the complex plane as

v̂x(t) + i v̂y(t) = sin θ (t)eiϕ(t) = eα(t)+iϕ(t), (A3)

after application of Itó calculus [66] to Eqs. (A2c), (A3), and
some algebraic steps we have that ϕ(t) and θ (t) satisfy [93]

dθ (t) = D	

tan θ (t)
dt + dWθ (t), (A4a)

dϕ(t) = dWϕ(t)

sin θ (t)
, (A4b)

where dWθ (t), dWϕ(t) are two statistically independent
Wiener processes defined thorough the transformations

dWθ (t) = cos ϕ(t)dWy(t) − sin ϕ(t)dWx(t), (A5)

dWϕ(t) = sin θ (t)dWz(t) − cos θ (t)dW+(t), (A6)

dW+(t) = cos ϕ(t)dWx(t) + sin ϕ(t)dWy(t) being a third in-
dependent Wiener process.

For finite τμ �= 0, Eq. (A1) can be written as

dv̂λ(t) = [ελμν (τμ + dWμ)] v̂ν(t), (A7)

and we can apply the same procedure as before leading, after
some algebra, to Eqs. (2).

APPENDIX B: THE FOKKER-PLANCK EQUATION

The probability density function of finding a particle at x
moving in the direction v̂ at time t is defined as the ensemble
average over the trajectories obtained from the Langevin
Eq. (1) of δ(3)[x − x(t)]δ(3)[v̂ − v̂(t)], that is to say P (x,v̂,t) ≡
〈δ(3)[x − x(t)]δ(3)[v̂ − v̂(t)]〉, where δ(3)(q) = δ(qx)δ(qy)δ(qz)
denotes the three-dimensional Dirac δ.

Derivation of the corresponding Fokker-Planck equation
for P (x,v̂,t), Eq. (3), is straightforward by use of the theorem
of Novikov (this is the procedure used in this paper) applied to
the Langevin Eq. (1) assuming Gaussian white noises. There
is, however, a general phenomenological derivation of related
diffusion-like transport equations that has been considered in
Ref. [70]. After differentiation of P (x,v̂,t) with respect to
time, we get

∂

∂t
P (x,v̂,t) + v0v̂ · ∇P (x,v̂,t) = ∇v̂ · (v̂ × τ )P (x,v̂,t) + ∇v̂ · [v̂ × 〈ξR(t)δ(3)[x − x(t)]δ(3)[v̂ − v̂(t)]〉]

−∇ · 〈ξT (t)δ(3)[x − x(t)]δ(3)[v̂ − v̂(t)]〉, (B1)

where explicit use of Eq. (1) has been carried out. In the same spirit of Appendix A, we make use of a better notation to write,
using the Einstein convention,

∂

∂t
P (x,v̂,t) + v0v̂μ

∂

∂xμ

P (x,v̂,t) = ∂

∂v̂μ

εμνλv̂ντλP (x,v̂,t) + ∂

∂v̂μ

εμνλv̂ν

〈
ξRλ(t)

∏
σ

δ[xσ − xσ (t)]δ[v̂σ − v̂σ (t)]

〉

− ∂

∂xμ

〈
ξT μ(t)

∏
σ

δ[xσ − xσ (t)]δ[v̂σ − v̂σ (t)]

〉
. (B2)

Novikov’s theorem [67,94] allows us to write〈
ξRλ(t)

∏
σ

δ[xσ − xσ (t)]δ[v̂σ − v̂σ (t)]

〉
= D	

〈
δ

δξRλ

∏
σ

δ[xσ − xσ (t)]δ[v̂σ − v̂σ (t)]

〉

and 〈
ξT λ(t)

∏
σ

δ[xσ − xσ (t)]δ[v̂σ − v̂σ (t)]

〉
= DB

〈
δ

δξT λ

∏
σ

δ[xσ − xσ (t)]δ[v̂σ − v̂σ (t)]

〉
,
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and a direct calculation leads to〈
δ

δξRλ

∏
σ

δ[xσ − xσ (t)]δ[v̂σ − v̂σ (t)]

〉
= −ελνμ v̂ν

∂

∂v̂μ

P (x,v̂,t),

〈
δ

δξT λ

∏
σ

δ(x − x(t))δ(v̂ − v̂(t))

〉
= − ∂

∂xλ

P (x,v̂,t),

respectively, where Eqs. (A7) were used explicitly. By substitution of these results into Eq. (B2) we get the Fokker-Planck
equation

∂

∂t
P (x,v̂,t) + v0v̂μ

∂

∂xμ

P (x,v̂,t) = ∂

∂v̂μ

εμνλv̂ντλP (x,v̂,t) − D	

∂

∂v̂μ

εμνλv̂νελσρv̂σ

∂

∂v̂ρ

P (x,v̂,t) + DB

∂

∂xμ

∂

∂xμ

P (x,v̂,t),

which by the use of the relation εμνλελσρ = δμσ δνρ − δμρδνσ and that v̂i v̂i = 1, the last equation can be rewritten as

∂

∂t
P (x,v̂,t) + v0v̂ · ∇P (x,v̂,t) = ∇v̂ · (v̂ × τ )P (x,v̂,t) + DB∇2P (x,v̂,t) + D	

[∇2
v̂ − v̂ · ∇v̂ − (v̂ · ∇v̂)2]P (x,v̂,t).

In spherical coordinates, θ , ϕ, that specify the direction of v̂ in the unit sphere, it is satisfied that v̂ · ∇v̂ = 0 since ∇v̂ =
θ̂ ∂θ + ϕ̂ 1

sin θ
∂ϕ where θ̂ and ϕ̂ are unit vectors of the spherical coordinates. Thus, we get the Fokker-Planck

∂

∂t
P (x,v̂,t) + v0v̂ · ∇P (x,v̂,t) = DB∇2P (x,v̂,t) + 1

sin θ

∂

∂ϕ
[(v̂ × τ ) · ϕ̂P (x,v̂,t)]

+ 1

sin θ

∂

∂θ
[sin θ (v̂ × τ ) · ϕ̂P (x,v̂,t)] + L(v̂)P (x,v̂,t), (B3)

where L(v̂) is the Laplace-Beltrami or rotational diffusion operator, explicitly given by

L(v̂) = D	

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
. (B4)

APPENDIX C: THE MATRIX ELEMENTS Iμ
m,m′
n,n′

The matrix elements Iμ
m,m′
n,n′ defined in Eqs. (17) can be computed directly in a standard fashion by the use of the explicit

expression of the spherical harmonics Yn
m(v̂) = (−1)m

√
(2n+1)

4π

(n−m)!
(n+m)! P m

n (cos θ ) eimϕ , and the following recurrence relations for

the associated Legendre polynomials:

(2n + 1) sin θ P m
n (cos θ ) = P m+1

n+1 (cos θ ) − P m+1
n−1 (cos θ ),

(2n + 1) cos θ P m
n (cos θ ) = (n + m)P m

n−1(cos θ ) + (n − m + 1)P m
n+1(cos θ ).

After some simple algebra we get

Ix
m,m′
n,n′ = 1

2
δn′,n+1

{
δm,m′+1

[
(n′ − m′ − 1)(n′ − m′)

(2n′ − 1)(2n′ + 1)

]1/2

− δm,m′−1

[
(n′ + m′ − 1)(n′ + m′)

(2n′ − 1)(2n′ + 1)

]1/2
}

+ 1

2
δn′,n−1

{
δm,m′−1

[
(n′ − m′ + 2)(n′ − m′ − 1)

(2n′ + 1)(2n′ + 3)

]1/2

− δm,m′+1

[
(n′ + m′ + 2)(n′ + m′ + 1)

(2n′ + 1)(2n′ + 3)

]1/2
}

, (C1a)

Iy
m,m′
n,n′ = 1

2i
δn′,n+1

{
−δm,m′+1

[
(n′ − m′ − 1)(n′ − m′)

(2n′ − 1)(2n′ + 1)

]1/2

− δm,m′−1

[
(n′ + m′ − 1)(n′ + m′)

(2n′ − 1)(2n′ + 1)

]1/2
}

+ 1

2i
δn′,n−1

{
δm,m′+1

[
(n′ + m′ + 2)(n′ + m′ + 1)

(2n′ + 1)(2n′ + 3)

]1/2

− δm,m′+1

[
(n′ − m′ + 2)(n′ − m′ + 1)

(2n′ + 1)(2n′ + 3)

]1/2
}

, (C1b)

Iz
m,m′
n,n′ = δn′,n+1δm,m′

[
(n′ − m′)(n′ + m′)
(2n′ − 1)(2n′ + 1)

]1/2

+ δn′,n−1δm,m′

[
(n′ + m′ + 1)(n′ − m′ + 1)

(2n′ + 1)(2n′ + 3)

]1/2

. (C1c)

062120-15



FRANCISCO J. SEVILLA PHYSICAL REVIEW E 94, 062120 (2016)

APPENDIX D: THE MULTIPOLE EXPANSION

The expansion Eq. (11) is akin to the expansions in powers of the v̂ introduced in Ref. [70] and used in Ref. [71] in the context
of active particles. In Fourier space, the expansion Eq. (11) can be written in terms of powers of v̂ by gathering terms of the same
order in l as

P̂ (k,v̂,t) = �̃(k,t) + e−2D	t Ṽ (k,t) · v̂ + e−6D	t v̂ · Q̃(k,t) · v̂ + . . . ,

where

�̃(k,t) = e−DB k2tP 0
0 (k,t)/

√
4π

is interpreted as the Fourier transform of the density of particles and is related with the uniform distribution of the direction of
motion on the sphere (monopole), which is the only term that remains in the asymptotic limit (t → ∞) of free diffusion. The
next term, Ṽ (k,t) · v̂, is identified with e−DB k2t

∑
m e−iτ0mt P̂ m

1 (k,t) Ym
1 (v̂), and it refers to the dipole distribution of the direction

of motion of the particles; in the context of the fluctuating hydrodynamics, it refers to the Fourier transform of the dimensionless
velocity field Ṽ (k,t), whose components are given explicitly by

Ṽx(k,t) =
√

3

8π
e−DB k2t

[
eiτ0t P̂ −1

1 (k,t) − e−iτ0t P̂ 1
1 (k,t)

]
,

Ṽy(k,t) = −i

√
3

8π
e−DB k2t

[
eiτ0t P̂ −1

1 (k,t) + e−iτ0t P̂ 1
1 (k,t)

]
,

Ṽz(k,t) =
√

3

4π
e−DB k2t P̂ 0

1 (k,t).

Analogously, the next multipole term v̂ · Q̃(k,t) · v̂ that corresponds to quadrupole distribution of the particle direction of
motion, is identified with the sum of all the terms that contain the l = 2 spherical harmonics, i.e.,

∑
m P̂ m

2 (k,t)Ym
2 , from which

the symmetric, traceless tensor Q̃(k,t) can be recognized, namely

Q̃(k,t) =
√

15

32π
e−DB k2t

⎛⎜⎜⎜⎝
ei2τ0t P̂ −2

2 + e−i2τ0t P̂ 2
2 −

√
2
3 P̂ 0

2 i
[
e−i2τ0t P̂ 2

2 − ei2τ0t P̂ −2
2

]
eiτ0t P̂ −1

2 − e−iτ0t P̂ 1
2

i
[
e−i2τ0t P̂ 2

2 − ei2τ0t P̂ −2
2

] −ei2τ0t P̂ −2
2 − e−i2τ0t P̂ 2

2 −
√

2
3 P̂ 0

2 −i
[
eiτ0t P̂ −1

2 + e−iτ0t P̂ 1
2

]
eiτ0t P̂ −1

2 − e−iτ0t P̂ 1
2 −i

[
eiτ0t P̂ −1

2 + e−iτ0t P̂ 1
2

]
2
√

2
3 P̂ 0

2

⎞⎟⎟⎟⎠,

where the arguments of the P̂ ’s have been omitted for the sake of writing.
In the case of free diffusion, the case analyzed in this paper, the dipole and higher multipoles vanish asymptotically with time,

leaving the rotationally symmetric monopole; however, this would not be the case if the particle diffuses under the influence
of velocity-dependent forces. One situation of interest corresponds when the particles are under the effects of polar or nematic
aligning forces [95].
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Eichhorn, G. Volpe, H. Löwen, and C. Bechinger, Phys. Rev.
Lett. 110, 198302 (2013).

[52] F. Kümmel, B. ten Hagen, R. Wittkowski, D. Takagi, I. Buttinoni,
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