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We generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random
clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate
clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters. We study
the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard
scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the
smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tails of the density
are overpopulated, at the expense of the density of moderate-size clusters. We also study the complementary case
where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate
clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice
among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of
clusters.
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I. INTRODUCTION

The concept of choice plays a central role in queuing
theory, algorithms, and computer science [1–3]. In particular,
the so-called power of choice has been widely explored in
the Achlioptas processes that models evolution of random
graphs [4]. An intriguing, apparently discontinuous, per-
colation transition, termed explosive percolation, has been
observed in numerical studies of the original Achlioptas
process and several of its variants [4–11]. However, it was later
shown that this transition, albeit unusually steep, is actually
continuous [12–15].

The presence of choice can lead to lack of self-
averaging [16,17], truly discontinuous percolation transitions,
and multiple giant components [18,19]. The power of choice
has been studied also in the realm of growing networks [20,21]
and it has been shown that it leads to phase transitions,
including the emergence of a macroscopic hub [21]. The
classical evolving random graph model [22] is equivalent to an
aggregation process in which clusters merge with rate equal to
the product of their masses [23–25]. Yet theoretical analysis
of this aggregation process with choice has proven largely
elusive [4,12,14]. One of the two models we analyze in this
study is simply an Achlioptas process with a simpler uniform
aggregation rate.

In this study we generalize the most basic aggregation pro-
cess [23–25] to include choice. While a complete theoretical
description in the form of the explicit cluster-size density
appears to be out of reach, many features of this distribution can
be understood analytically. In particular, we find the density
of the smallest clusters and the tails of the size distribution. In
general, we demonstrate how choice can be used to control the
size distribution.

In ordinary aggregation, two clusters are chosen at random
and are joined to form a larger cluster. To incorporate choice,
we alter this aggregation process by randomly selecting one
target cluster and two candidate clusters. The target cluster
merges with the larger of the two candidate clusters, leaving
the smaller of the two candidate clusters unaffected. Starting

with a uniform size distribution, this elementary aggregation
event is repeated indefinitely.

We study the kinetics of this aggregation process and
focus on the long-time asymptotic behavior of the cluster-size
density. Our reference frame is the well-understood behavior in
the case of ordinary aggregation where the cluster-size density
is purely exponential. We find that the density of the smallest
clusters is anomalously large compared with typical-size
clusters. This anomaly is not captured by the scaling function
that characterizes the bulk of the density. We also find an
interesting change in the shape of the size density. In addition
to the overpopulation of smaller-than-typical clusters, there
is also an overpopulation of larger-than-typical clusters. The
small-size tail and the large-size tail are both enhanced at the
expense of moderate-size clusters. The enhancement of small
clusters is easy to appreciate as it is a direct consequence of
choosing the larger cluster. The enhancement of large clusters
is an indirect, perhaps counterintuitive, consequence of the
aggregation rules.

We also study a few other implementations of choice. First,
we consider the case where the smaller candidate cluster
participates in the merging event. In this case, we observe
an opposite change in the shape of the size density. Now,
both the small-size tail and the large-size tail of the size
density are suppressed, while the density of moderate-size
clusters is enhanced. Second, we study aggregation processes
where multiple candidates are drawn and the maximal (or
minimal) merges with the target cluster. In the maximal choice
case, we find an interesting sequence of distinct scaling laws
corresponding to the densities of the smallest clusters. Finally,
we also investigate a symmetric implementation of choice
where two candidate pairs are drawn at random and one of
the pairs undergoes aggregation. We find that the changes in
the shape of the size density, described above, are generic.

This paper is organized as follows. First, we briefly
review ordinary aggregation, the most basic process where
the merging clusters are chosen at random (Sec. II). Next,
we introduce the notion of choice by considering the case
where the larger of two randomly selected clusters merges with
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another randomly selected cluster. From the rate equation for
the cluster-size density, we obtain the density of the smallest
cluster, the small-size tail of the density, and the large-size tail
of the density (Sec. III). We also detail results of our numerical
simulations to gain insights into the entire size density. We
apply the same theoretical tools to the case where the smaller of
the two candidate clusters undergoes a merger (Sec. IV) and to
the case where multiple candidates clusters are drawn (Sec. V).
In Secs. III–V the choice is implemented asymmetrically as
the target cluster was selected from the outset. In Sec. VI
we introduce a symmetric implementation of choice where
two pairs of clusters are chosen and only one of these pairs
undergoes aggregation. We summarize in Sec. VII and provide
several technical details in the Appendixes.

II. ORDINARY AGGREGATION

In ordinary aggregation, two clusters are chosen at random
and merge to form a larger cluster [23–25]. This basic process
can be generalized to model polymerization [26], condensa-
tion [27], chemotaxis [28], and random structures [29,30].
Symbolically, we may represent the merger process as
i,j → i + j where the aggregation rate is independent of
cluster mass. This elementary aggregation step is repeated
indefinitely. Initially, the system consists of identical particles
whose mass can be set to unity. We tacitly take the thermody-
namic limit, that is, assume that the initial number of particles
is infinite.

Two clusters participate in each aggregation event and the
number of clusters declines by one. Hence, the total cluster
density c(t) obeys the rate equation

dc

dt
= −c2. (1)

Without loss of generality, we set the merging rate to unity.
Solving (1) subject to the initial condition c(0) = 1 yields

c(t) = (1 + t)−1. (2)

In the long-time limit we have c � t−1. (In our notation a ∼
b indicates that the ratio a/b approaches a constant when
t → ∞, while a � b indicates that the ratio approaches unity.)

Let ck(t) be the density of clusters of mass k at time t . This
quantity obeys the master equation

dck

dt
=

∑
i+j=k

cicj − 2cck. (3)

By summing (3) we can verify that the density c = ∑
k ck

obeys (1). The mass density M = ∑
k kck is conserved

dM/dt = 0, as also follows from (3).
We will consider the monodisperse initial condition

ck(0) = δk,1. (4)

We note that it suffices to use (4), because the asymptotic be-
havior is universal as long as the initial density decays rapidly
with mass. The density of the smallest clusters, monomers,
obeys dc1/dt = −2cc1, from which c1(t) = (1 + t)−2. The
monomer density decays more rapidly than the overall density,
c1 � t−2. Starting from (4), the cluster-size density remains

purely exponential,

ck(t) = t k−1

(1 + t)k+1
, (5)

throughout the evolution.
Using mass conservation and the density decay (2) alone,

we can deduce the average cluster size 〈k〉 = M/c or
〈k〉 = 1 + t . In the long-time limit, the size distribution attains
the scaling form

ck(t) � t−2F (kt−1). (6)

This form reflects the linear growth of the typical mass k ∼ t .
According to the density decay c � t−1 and mass conservation
M = 1, the scaling function must satisfy two constraints∫ ∞

0
dx F (x) = 1,

∫ ∞

0
dx x F (x) = 1. (7)

For ordinary aggregation Eq. (5) implies that the scaling
function is purely exponential, F (x) = e−x , a behavior that
holds for any (rapidly decaying) initial condition.

Ordinary aggregation provides a useful reference point
for our study. Throughout this study the density satisfies (1)
and mass is certainly conserved. Moreover, the size density
generally follows the scaling form (6), with the scaling
function satisfying the constraints (7).

III. MAXIMAL CHOICE

We now incorporate choice while preserving most features
of ordinary aggregation. In particular, aggregation remains a
binary process with two clusters joining to form one larger
cluster (Fig. 1). One cluster with size i is selected at random
and it is certain to participate in the aggregation process. The
aggregation partner is selected as the larger of two randomly
selected clusters of sizes j1 and j2. Schematically,

i,j1,j2 → i + max(j1,j2),min(j1,j2). (8)

We reiterate that while three clusters are drawn, only two
undergo aggregation. Mass is of course conserved and we
consider the monodisperse initial condition (4).

As in ordinary aggregation, two clusters are lost in each
aggregation event and one new cluster is formed. Hence,

FIG. 1. Illustration of the aggregation process with choice.
Clusters are shown as circles; the bigger the circle, the larger its size.
The target cluster (closed circle with two links) and two potential
merging partners are randomly drawn. The larger cluster is chosen as
the actual merging partner in the maximal choice case (closed circle).
In the minimal choice case, the smaller cluster (open circle) is chosen.

062119-2



KINETICS OF AGGREGATION WITH CHOICE PHYSICAL REVIEW E 94, 062119 (2016)

the total density obeys (1) and it decays according to (2).
Consequently, the growth of the typical mass as well as the
scaling form (6) with the constraints (7) holds.

The cluster-size density obeys the master equation

dck

dt
= c−1

∑
i+j=k

ci

(
g2

j − g2
j−1

) − cck − (
g2

k − g2
k−1

)
. (9)

Here gk = ∑
l�k cl is the cumulative size density, namely, the

density of clusters with size smaller than or equal to k. The
gain term has the same convolution structure as (3) with one
density corresponding to the target cluster and another density
corresponding to the larger of the two candidate clusters.
The quantity g2

k − g2
k−1 is proportional to the probability

that the largest of two randomly selected clusters has size k

and the multiplicative constant c−1 ensures proper normal-
ization. There are two loss terms. The first represents the
target cluster and the second accounts for the selected cluster.
One can verify that the total cluster density obeys (1).
As in the Achlioptas process [4], the master equation (9)
assumes “perfect mixing” as each cluster interacts with every
other cluster in the same way. In other words, we treat the
aggregation process on the mean-field level where the system
has no underlying spatial structure.

Throughout this study we repeatedly avoid the explicit
appearance of the concentration c in the master equation by
introducing the cluster-size distribution Ck and the modified
time variable τ , defined as

Ck = ck

c
, τ = ln(1 + t). (10)

The distribution Ck is normalized
∑

k Ck = 1 and it represents
the fraction of clusters of size k. The modified time variable
τ satisfies dτ/dt = c. With the transformations (10), the first
loss term in (9) is eliminated and we arrive at

dCk

dτ
=

∑
i+j=k

Ci

(
G2

j − G2
j−1

) − (
G2

k − G2
k−1

)
. (11)

Here Gk = ∑
l�k Cl is the cumulative size distribution, the

fraction of clusters with size not exceeding k.
For monomers k = 1 we have dC1/dτ = −C2

1 and since
C1(0) = 1, then C1(τ ) = (1 + τ )−1. In terms of the actual time
variable, the density of monomers reads

c1(t) = [(1 + t) + (1 + t) ln(1 + t)]−1. (12)

The asymptotic behavior c1 � (t ln t)−1 represents a substan-
tial enhancement over the monomer density c1 � t−2 for
ordinary aggregation.

A more elaborate calculation (see Appendix A) gives the
density of dimers

c2 = e−τ u3 I0(2)K0(2u) − K0(2)I0(2u)

I0(2)K1(2u) + K0(2)I1(2u)
. (13)

Here Iν and Kν are the modified Bessel functions with
index ν and u = (1 + τ )−1/2. Using the asymptotic relations
K0(2u) � ln(1/u) and K1(2u) � (2u)−1 when u → 0, we find
the asymptotic decay

c2(t) � 1

t

ln(ln t)

(ln t)2
. (14)

The dimer density is much smaller than the monomer density
c2
c1

� ln(ln t)
ln t

when t � 1. In comparison with ordinary aggre-
gation where c2 � t−2, the dimer density (14) is substantially
larger, however.

For trimers and other finite clusters k � 3, we can obtain
the leading asymptotic behavior. As for monomers and dimers,
the loss rate in (11) dominates when k 	 t . Indeed, the
concentration Ck decays with time, the gain term is cubic
in Ck , and the loss term is quadratic in Ck , as Eq. (A1) shows.
Furthermore, since C1 � C2 in the asymptotic regime, the
dominant term in Eq. (11) involves the monomer fraction

dCk

dτ
� −2C1Ck. (15)

We now substitute the asymptotic behavior C1 � τ−1 and
immediately obtain Ck ∼ τ−2. In terms of the physical time
variable

ck(t) ∼ 1

t

1

(ln t)2
(16)

for 3 � k 	 t . Hence, c1 � c2 � ck when k � 3. The ratio
c2
c3

∼ ln(ln t) diverges with time, but very slowly.
In summary, Eqs. (12), (13), and (16) show that there are

three distinct scaling laws for small clusters

ck ∼

⎧⎪⎪⎨
⎪⎪⎩

1
t

1
(ln t) , k = 1

1
t

ln(ln t)
(ln t)2 , k = 2

1
t

1
(ln t)2 , k � 3.

(17)

As a consequence of choice, there is a strong enhancement of
small clusters compared to ordinary aggregation. Further, three
different decay laws characterize the density of monomers,
dimers, and clusters of mass 3 � k 	 t . As we show below, the
scaling function underlying the cluster-size density captures
ck with k � 3. We stress that whether the logarithmic terms
in (17) are ignored or retained, the difference between maximal
choice and ordinary aggregation where ck ∼ t−2 becomes
more and more pronounced as time increases.

Our numerical simulations (see Fig. 2) confirm that the
cluster-size density adheres to the scaling form (6): In terms of
the properly normalized cluster size x = k/t , the size density
has a universal shape in the asymptotic regime. The scaling
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FIG. 2. Scaling function F (x) in the maximal choice model.
Shown is F (x) ≡ t2ck(t) versus the scaling variable x = k/t at three
different times.
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function F (x) satisfies the integro-differential equation

d[xF (x)]

dx
+

∫ x

0
dy F (x − y)

d�2(y)

dy
− d�2(x)

dx
= 0. (18)

Here �(x) = ∫ x

0 dy F (y) is the fraction of clusters with size
smaller than x = k/t in the long-time limit. To obtain (18)
we simply substitute (6) into the rate equation (11). The two
nonlinear terms in (18) correspond to the two nonlinear terms
in (11).

First, we consider the statistics of small clusters. As
mentioned above, the convolution term, which corresponds
to generation of larger clusters from smaller clusters through
aggregation, is negligible. Keeping only the leading terms
when x 	 1, we get

d

dx
[xF − �2(x)] = 0. (19)

Hence xF = �2, or alternatively x�′ = �2. Solving this
differential equation yields � = [ln(1/x)]−1 leading to the
asymptotic behavior

F (x) � 1

x

1

[ln(1/x)]2
(20)

as x → 0. This form is consistent with the cluster den-
sity (16) and it specifies the proportionality constant ck �
k−1[t(ln t)2]−1. The diverging small-x tail of the scaling func-
tion does not qualitatively capture the anomalous populations
of monomers and dimers (see Fig. 2). Indeed, according to
the definition (6), the form (20) implies the universal decay
ck ∼ [t(ln t)2]−1 for all small and finite k, in contradiction with
the three distinct types of asymptotic behavior summarized
in (17).

Next, let us consider statistics of large clusters. In the limit
x � 1, the convolution term is dominant and the governing
equation (18) becomes

xF ′(x) + 2
∫ x

0
dy F (y)F (x − y) = 0. (21)

Here, we also assumed xF ′ � F , which can be justified
a posteriori. Equation (21) is essentially the same as in
ordinary aggregation and therefore the tail is exponential,

F (x) � α

2
e−αx, (22)

when x → ∞. Our numerical simulations confirm this ex-
ponential asymptotic decay (see Fig. 3) with the constant
α = 0.57 ± 0.01. Obtaining the value α theoretically requires
a full solution of the nonlinear equation (18) and is an
interesting challenge for further investigation.

The tail (20) shows that the density of small clusters is
enhanced compared with ordinary aggregation: F (x) � e−x

when x → 0. This is an expected consequence of choice: Very
small clusters are less likely to participate in aggregation, so
their population is enhanced. Remarkably, the same holds
for large clusters: Since α < 1, the large-size tail (22) is
enhanced compared with ordinary aggregation, F (x) � e−x

when x → ∞. This is an indirect consequence of choice:
The population of large clusters is enhanced compared with
ordinary aggregation (see the large-x divergence in Fig. 4),
thereby indicating that large clusters are “shielded” from
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100

F

FIG. 3. Large-size tail of the scaling function F (x) showing the
exponential decay (22).

aggregation. This interesting phenomenon is directly tied to
the value α < 1 of the decay constant in (22). It is possible
that an upper bound for α can be obtained by analysis
of (18) and may not necessarily require a full solution of
this equation: In Sec. VI we follow such an approach to obtain
bounds for exponents characterizing the small-x tail of the size
distribution.

Figure 4 compares aggregation with choice with ordinary
aggregation and it demonstrates that there are three regimes
of behavior, as the normalized scaling function exF (x) is
nonmonotonic. Small clusters with size x < x1 are overpopu-
lated compared with ordinary aggregation. Large clusters with
size x > x2 are also overpopulated compared with ordinary
aggregation. The conservation laws (7) dictate that clusters of
moderate sizes x1 < x < x2 must be underpopulated. Further,
the divergences at small and large sizes show that the difference
between maximal choice and ordinary aggregation can become
unbounded at large times. Hence, introducing choice alters the
shape of the size density.

Monte Carlo simulations of aggregation processes are
rather straightforward when the aggregation rate is uniform
as is the case for the merging rule (8) and other rules studied
in this paper. Initially, the system consists of N0 identical
particles with unit mass. In each aggregation event, three
distinct particles are selected at random. One of these particles
is designated as the target particle and it merges with the
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0.4
0.6
0.8
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1.4
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1.8
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ex 
F

FIG. 4. Normalized scaling function exF (x) versus the scaling
variable x (solid line). Also shown for reference is the unit constant
corresponding to the ordinary aggregation case (dashed line).
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larger of the remaining two particles. When N0 is large, the
overall density (2) specifies time as t ≡ N0/N , where N is
the number of remaining aggregates. The simulation results
presented throughout this paper were obtained using N0 = 108

and an average over roughly 105 independent realizations.

IV. MINIMAL CHOICE

We now consider the complementary case where the target
cluster merges with the smaller of the two candidate clusters
(see also Fig. 1) according to the scheme

i,j1,j2 → i + min(j1,j2),max(j1,j2). (23)

As in maximal choice, mass is conserved and the total density
decays according to (2).

The size density ck(t) satisfies the master equation

dck

dt
= c−1

∑
i+j=k

ci

(
h2

j − h2
j+1

) − cck − (
h2

k − h2
k+1

)
(24)

subject to (4). The quantity hk = ∑
l�k cl is the density of

clusters of size larger than or equal to k. The cumulative
distributions hk and gk−1 appearing in (9) are complementary:
gk−1 + hk = c for all k � 1. As in Eq. (9), the first loss term
in Eq. (24) corresponds to the target cluster and the second to
the selected cluster. The quantity h2

k − h2
k+1 is proportional

to the probability that the selected cluster has size k. By
summing (24), we can verify that the density satisfies (1).

In terms of the modified time variable τ , the size distribution
Ck satisfies

dCk

dτ
=

∑
i+j=k

Ci

(
H 2

j − H 2
j+1

) − (
H 2

k − H 2
k+1

)
. (25)

Here Hk = ∑
l�k Cl . We note that Gk + Hk+1 = 1 and H1 = 1

at all times. The initial condition (4) becomes Ck(0) = δk,1.
According to (25) the density of monomers satisfies dC1

dτ
=

C2
1 − 2C1, with C1(0) = 1. This Bernoulli equation is solved

to yield C1(τ ) = 2/(1 + e2τ ). In terms of the original time
variable, the density of monomers reads

c1(t) = 2

(1 + t) + (1 + t)3
. (26)

In the long-time limit we have c1(t) � 2t−3, whereas in
ordinary aggregation c1(t) � t−2. Monomers are most likely
to participate in the aggregation process (23) and consequently
they decay rapidly.

One can also obtain the exact expression for the dimer
density (see Appendix A)

c2 = (e−τ v)3

8

J0(2)Y0(v) − Y0(2)J0(v)

Y0(2)J1(v) − J0(2)Y1(v)
. (27)

Here Jν and Yν are the Bessel functions with index ν and v =
[8/(1 + e−2τ )]−1/2. Asymptotically, the dimer density decays
according to c2(t) � A2t

−3 with the prefactor

A2 =
√

8
J0(2)Y0(

√
8) − Y0(2)J0(

√
8)

Y0(2)J1(
√

8) − J0(2)Y1(
√

8)
(28)

or A2 = 3.878012 . . .. In contrast with the behavior (17), the
ratio c2/c1 now approaches a nontrivial constant.
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FIG. 5. Scaling function F (x) in the minimal choice model.
Shown is F (x) ≡ t2ck(t) versus the scaling variable x = k/t at three
different times.

For finite but small k, the loss rate in (11) dominates.
By using Hk − Hk+1 = Ck we have dCk/dτ � −2Ck and
therefore Ck(τ ) ∼ e−2τ . In general, the density of small
clusters decays algebraically

ck(t) � Akt
−3 (29)

for finite k 	 t . As expected, small clusters are suppressed due
to choice. In contrast with maximal choice, however, there are
no anomalies associated with monomers or with dimers and
a single scaling law characterizes small clusters. As shown
below, the decay (29) is captured by the scaling function F (x).

Our numerical simulations confirm that once size is rescaled
by the typical size k � t , the size distribution becomes
universal in the long-time limit (see Fig. 5). By substituting
the scaling ansatz (6) into the governing equation (24), we find
that the scaling function obeys

d[xF (x)]

dx
−

∫ x

0
dy F (x − y)

d�2(y)

dy
+ d�2(x)

dx
= 0. (30)

Here �(x) = ∫ ∞
x

dy F (y) is the fraction of clusters of size
larger than x = k/t . Once again, the scaling function obeys
the two constraints in (7).

First, we discuss the statistics of small sizes. The convolu-
tion term is negligible when x 	 1 and using � ′(x) = −F (x)
we get xF ′(x) = F (x). Therefore, the scaling function is linear
(see Fig. 5)

F (x) ∼ x (31)

in the limit x → 0. The linear behavior confirms (29) and
further it shows that Ak ∼ k for large but finite k. In contrast
with maximal choice, the equation governing F (x) is linear in
the limit x → 0 and determining the proportionality constant
in F (x) � const × x requires a full solution of the nonlinear
equation (30).

Let us now consider the large-x behavior. Since the
convolution term is dominant in (30), we have

d[xF (x)]

dx
+ 2

∫ x

0
dy F (x − y)

d�2(y)

dy
= 0 (32)

when x � 1. We anticipate (and justify a posteriori) a sharp
decay of the scaling function. In this scenario, �(y) =∫ ∞
y

dz F (z)  F (y) and −F ′(x)  F (x). (We use the notation
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FIG. 6. Large-x tail of the scaling function F (x) showing the
superexponential decay (34) with β ∼= 1.26749.

A  B to imply that the logarithms of A and B have the same
asymptotic behavior ln A � ln B.) Further, we postulate that
the integral in (32) is maximal at y = σx, with 0 < σ < 1,
and therefore

F (x)  F 2(σx)F (x − σx). (33)

Taking the logarithm of both sides, we arrive at a linear func-
tional equation ln F (x) = 2 ln F (σx) + ln F (x − σx). This
equation admits a simple family of algebraic solutions
ln F (x) � −const × xβ or, equivalently,

F (x)  exp(−const × xβ) (34)

with exponent β > 1. The exponent β and the parameter σ are
related via

2σβ + (1 − σ )β = 1. (35)

An additional relation is needed to “select” β. Selection
problems arise in the context of nonlinear partial differential
equations [31] and nonlinear recurrences [32]. Typically, the
selection criterion is tied to an extremum, as is the case for
velocity selection in traveling waves [31]. Guided by these
examples, we postulate that β is selected by the requirement
that the quantity σ ≡ σ (β), determined by Eq. (35), increases
with maximal rate at the selected β, that is, dσ/dβ is maximal.
This extremum requirement specifies the selection criterion

d2σ

dβ2
= 0. (36)

Using Eqs. (35) and (36), we obtain (see Appendix B for further
details) β ∼= 1.267 49 and the corresponding σ ∼= 0.166 453.
Our simulation results support this value, as shown in Fig. 6.
The superexponential tail for large x is sufficiently sharp to
provide an a posteriori justification to the assumptions made
in deriving (35).

The small-size tail (31) confirms that when the smaller
of the two candidate clusters undergoes aggregation, the
population of small clusters is suppressed. The large-size
tail (34) is much steeper than exponential: F (x) 	 e−x for
large x. Figure 7 compares the scaling function for minimal
choice with ordinary aggregation. There are three regimes of
behaviors: In the small mass range x < x1 and in the large
mass range x > x2 the cluster-size density is underpopulated,
while in the intermediate size range x1 < x < x2 the density
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FIG. 7. Normalized scaling function exF (x) versus the scaling
variable x (solid line). Also shown for reference is the unit constant
corresponding to the ordinary aggregation case (dotted line).

is overpopulated. Hence, the effect on size density is the exact
opposite of that found for the maximal case.

V. MULTIPLE CHOICE

In Secs. III and IV we showed that choice between two
alternatives significantly affects the size density. What happen
if we allow choice between more than two alternatives? In the
context of other models [1–3], the general conclusion was that
multiple choice modifies the behavior only quantitatively. As
we show below, introduction of multiple choice in aggregation
has interesting consequences, including some qualitative
changes.

A. Maximal choice

We start with the maximal case and introduce multiple
choice as to preserve the binary nature of the aggregation
process. As in Sec. III, we choose a single target cluster along
with n candidate clusters. The target cluster merges with the
largest of these n clusters, while the rest of the n − 1 clusters
are not affected. This merger process preserves the total mass
and the total cluster density is given by (2).

The cluster-size density ck(t) obeys

dck

dt
=

∑
i+j=k

ci

gn
j − gn

j−1

cn−1
− cck − gn

k − gn
k−1

cn−2
, (37)

where gk = ∑
l�k cl is the cumulative density. The master

equation (37) reduces to (3) and (11) when n = 1 and 2,
respectively. The quantity gn

k − gn
k−1 is proportional to the

probability that the selected cluster has size k. From (37)
we can obtain the master equation governing the normalized
cluster-size distribution Ck = ck/c. Using the time variable
τ = ln(1 + t) and Gk = ∑

l�k Cl , we get

dCk

dτ
=

∑
i+j=k

Ci

(
Gn

j − Gn
j−1

) − (
Gn

k − Gn
k−1

)
. (38)

The density of monomers satisfies dC1/dτ = −Cn
1 , from

which C1(τ ) = [1 + (n − 1)τ ]−1/(n−1). In terms of the physical
time

c1(t) = (1 + t)−1[1 + (n − 1) ln(1 + t)]−1/(n−1). (39)
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This decay represents an enhancement over ordinary aggrega-
tion.

For finite cluster size k, it is possible to proceed with
asymptotic analysis of (11) and find Ck ∼ Ck

1 for k < n and
Ck ∼ Cn

1 for k > n. The three-tier asymptotic behavior (17)
generalizes as

ck(t) ∼

⎧⎪⎨
⎪⎩

1
t

1
(ln t)k/(n−1) , k < n

1
t

ln(ln t)
(ln t)n/(n−1) , k = n

1
t

1
(ln t)n/(n−1) , k > n.

(40)

Interestingly, there are n + 1 distinct scaling laws that char-
acterize the enhancement of small clusters. The density of
monomers is the largest, the density of dimers is the next
largest, and so on. Thus, multiple choice leads to multiple
anomalies in the cluster-size density.

The scaling function now obeys an integro-differential
equation

d

dx
[xF − �n(x)] +

∫ x

0
dy F (x − y)

d�n(y)

dy
= 0, (41)

which generalizes (18). Here �(x) = ∫ x

0 dy F (y) is the frac-
tion of clusters with size smaller than x. The tails of the scaling
function are derived by repeating the steps leading to (20)
and (22) to give

F (x) �
{

1
x

1
[(n−1) ln(1/x)]n/(n−1) , x 	 1

α
n

exp(−αx), x � 1.
(42)

The small-x tail captures the behavior of clusters with size
n < k 	 t and the logarithmic divergence reflects the relative
abundance of small clusters due to choice. The divergence in
the limit x → 0 becomes weaker and weaker as n grows. Based
on the behavior in the case n = 2 we anticipate that α < 1 in
general and that there is also an increase in the density of large
clusters compared with ordinary aggregation.

B. Minimal choice

In the complementary case of minimal choice, the target
cluster merges with the smallest of n candidate clusters.
In terms of the modified time variable τ , the cluster-size
distribution Ck satisfies

dCk

dτ
=

∑
i+j=k

Ci

(
Hn

j − Hn
j+1

) − (
Hn

k − Hn
k+1

)
, (43)

with Hk = ∑
l�k Cl . The master equation (43) general-

izes (25), which corresponds to the case n = 2.
For finite and small k, the leading asymptotic behavior is

purely algebraic as in (29),

ck(t) � Akt
−n−1. (44)

This behavior readily follows from (43) by noting that the
dominant term is linear, that is, dCk/dτ � −nCk . Hence,
Ck ∼ e−nτ and (44) follows. The small-cluster densities (44)
confirm that small clusters are suppressed when the minimal
cluster is chosen for aggregation.

For monomers, it is possible to obtain the constant A1

analytically. The monomer concentration obeys dC1/dτ =

TABLE I. Exponent β obtained by solving (49) and (B2) for
n = 2,20,200,2000,20 000.

n β

2 1.26749
20 2.14474
200 3.05326
2000 3.99381
20000 4.9607

(1 − C1)n − 1, from which∫ 1

C1

dv

1 − (1 − v)n
= τ. (45)

One can evaluate this integral in the asymptotic limit where
the lower limit of integration vanishes to confirm the de-
cay (44). Moreover, the general expression for the amplitude
is

A1 = exp

{∫ 1

0
dv

[
n

1 − (1 − v)n
− 1

v

]}
. (46)

The amplitudes A1 for n � 6 are listed in Appendix C.
The scaled mass distribution function F (x) satisfies the

general version of (30),

d[xF (x)]

dx
−

∫ x

0
dy F (x − y)

d�n(y)

dy
+ d�n(x)

dx
= 0. (47)

Here �(x) = ∫ ∞
x

dy F (y). By repeating the steps leading to
the tails (31) and (34), we obtain the leading asymptotic
behaviors

F (x) ∼
{

xn−1, x 	 1

exp(−const × xβ), x � 1.
(48)

The small-x tail is consistent with (44) and additionally it
indicates that Ak ∼ kn−1 when 1 	 k 	 t . The suppression
of small clusters becomes stronger and stronger as n grows.
In this sense, choice provides a mechanism for controlling the
size distribution. The large-x tail is steeper than an exponential
and the exponent β is determined by

nσβ + (1 − σ )β = 1, (49)

along with the selection criterion (36). Appendix B provides
additional details on the derivation of β and Table I lists several
values of β. Since β increases with n, suppression of large
clusters becomes stronger with increasing n.

VI. SYMMETRIC CHOICE

In Secs. III–V we implemented choice asymmetrically: One
cluster was selected from the outset, while its merging partner
was chosen from two or more alternatives. Asymmetric choice
can arise, for example, in network growth when a new node
considers a few provisional links and then implements only one
of these links according to a predetermined selection criterion.
We recall that the Achlioptas process is symmetric [4],
namely, two pairs of nodes are randomly chosen and the
link between nodes from one pair is made. This motivates
one to introduce choice using the very same procedure
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FIG. 8. Illustration of aggregation with symmetric choice. Two
pairs (two closed circles and two open circles) are randomly drawn.
The pair with bigger combined size (closed pair) is chosen in the
maximal choice case. In the minimal choice case, the pair with smaller
combined size (open pair) is chosen.

where clusters from one of the two randomly selected pairs
merge.

A. Maximal choice

In the symmetric version of aggregation with choice, we
choose two pairs of clusters with sizes i1,j1 and i2,j2. All four
clusters are chosen randomly. Without loss of generality, we
assume that i1 + j1 � i2 + j2. Under maximal choice, the pair
with the larger total mass undergoes aggregation (see Fig. 8):

i1,j1,i2,j2 → i1 + j1,i2,j2. (50)

Hence, the selection criterion is such that the total size
of the resulting aggregate is maximized. In the Achlioptas
process [4], in contrast, the selection criterion is different,
e.g., the product of the sizes can be sought to be maximal, so
the choice (50) is made if i1j1 � i2j2.

The aggregation process (50) involves four clusters and
the corresponding master equation governing the cluster-size
density is quartic

c2 dck

dt
=

∑
i+j=k

cicj

(
2

∑
k′<k

ci ′cj ′ +
∑
k′=k

ci ′cj ′

)

− 2ck

⎛
⎝2

∑
k′<k+j

cj ci ′cj ′ +
∑

k′=k+j

cj ci ′cj ′

⎞
⎠, (51)

with k′ = i ′ + j ′. There are two gain terms and two loss terms.
The first gain term accounts for the case where the two pairs
have different total size and the second gain term for the
complementary case of equal total size. The two loss terms
are similarly ordered.

Our numerical simulations show that the scaling function
F (x) maintains the same qualitative features as in the asym-
metric case. Figure 9 shows that the scaling function F (x)
diverges at small x, thereby indicating an overpopulation of
small clusters. Similarly, Fig. 10, which shows the normalized
scaling function exF (x), demonstrates that there is also
an overpopulation of large clusters. Once again, there are
three size regimes and at intermediate sizes the density is
suppressed.
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exp(-x)
min

FIG. 9. Scaling function F (x) versus the scaling variable x for
maximal choice (solid line), ordinary aggregation (dotted line), and
minimal choice (dashed line).

By substituting (6) into (51), we see that the scaling function
obeys

0 = xF ′(x) + 2F (x) + 2φ(x)
∫ x

0
dy F (y)F (x − y)

− 4F (x)
∫ ∞

0
dy F (y)φ(x + y). (52)

In deriving this equation we took into account that the second
gain term and the second loss term that correspond to the
case where i1 + j1 = i2 + j2 are asymptotically negligible.
The function φ(z) appearing in (52) is shorthand for the integral

φ(z) =
∫∫

x ′+y ′<z

dx ′dy ′F (x ′)F (y ′). (53)

The scaling function is subject to the normalization (7).
At small sizes, the convolution term in (52) is negligible

and it simplifies to xF ′ = (γ − 2)F with

γ = 4
∫ ∞

0
dy F (y)φ(y). (54)

The scaling function is therefore algebraic F (x) ∼ xγ−2 when
x 	 1. This algebraic behavior implies the algebraic decay

ck ∼ t−γ (55)

0 1 2 3 4 5x
0

1

2

3

ex 
F

max
min

FIG. 10. Normalized scaling function exF (x) versus the scaling
variable x. Shown are the cases of maximal choice (solid line),
ordinary aggregation (dotted line), and minimal choice (dashed line).
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FIG. 11. Monomer density c1(t) versus time t for symmetric
aggregation with maximal choice (solid line) and minimal choice
(dashed line).

for finite k 	 t . Indeed, it is possible to derive (55) with (54)
directly from the master equation (51) together with the scaling
form (6). The behavior (55) also holds for monomers and there
is no longer an anomaly associated with minimal clusters.

The exponent γ , which according to (54) requires full
knowledge of F (x), appears to be nontrivial. Our numerical
simulations yield γ = 1.25 ± 0.01 (Fig. 11). If we ignore the
logarithmic correction in (20), then the corresponding value
for the asymmetric case is γ = 1. We have not determined γ

analytically, but in Appendix D we derive the bounds

1 � γ < 4
3 . (56)

According to these bounds, the scaling function diverges in
the limit x → 0 (see Fig. 9).

At large sizes, the convolution term dominates and φ → 1,
so Eq. (52) simplifies to (21). Consequently, F (x) decays
exponentially according to (22). Numerically, we find the
decay constant α = 0.53 ± 0.01, which is slightly smaller
than the value α = 0.57 ± 0.01 for the asymmetric case. The
extremal behaviors of the scaling function are therefore

F (x) ∼
{

xγ−2, x → 0

e−αx, x → ∞.
(57)

Thus, many of the features obtained for aggregation with
asymmetric choice extend to aggregation with symmetric
choice. The densities of very small and very large clusters
are enhanced at the expense of moderate-size clusters. The
normalized size density again diverges at small sizes and,
interestingly, this divergence is characterized by a nontrivial
exponent. There is one difference between the two cases how-
ever. The scaling function captures the asymptotic behavior
at all scales and there is no anomaly associated with small
clusters.

B. Minimal choice

We now consider the complementary case where the
pair with the minimal total mass undergoes aggregation.
Aggregation proceeds according to (50) except that now
i1 + j1 � i2 + j2. Repeating the above analysis, one finds that

the scaling function satisfies

0 = xF ′(x) + 2F (x) + 2ψ(x)
∫ x

0
dy F (y)F (x − y)

− 4F (x)
∫ ∞

0
dy F (y)ψ(x + y). (58)

This equation differs from (52) in that φ(y) is replaced by the
complementary integral

ψ(y) =
∫∫

x ′+y ′>y

dx ′dy ′F (x ′)F (y ′), (59)

so ψ(y) + φ(y) = 1 for all y. Asymptotic analysis of Eq. (58)
yields

F (x) ∼
{
xγ−2, x → 0
e−const×x2

, x → ∞.
(60)

In the small-x limit, the algebraic behavior is compatible
with the linear behavior F (x) ∼ x in (31). Hence, for the
asymmetric case, we have γ = 3, as also follows directly from
the asymptotic behavior (29) and the definition (55).

The small-x behavior is characterized by the nontrivial
exponent γ , which is given by the analog of (54),

γ = 4
∫ ∞

0
dy F (y)ψ(y). (61)

Numerically, we find the value γ = 3.5 ± 0.1 (Fig. 11), which
is somewhat larger than the value γ = 3 for minimal choice
with asymmetric implementation [see Eq. (29)]. Hence, the
suppression of small clusters becomes stronger under the
symmetric aggregation process (50). In Appendix D we obtain
the bounds

8
3 � γ � 4. (62)

The small-x tail (60) implies that the density of small clusters
decays algebraically with time according to (55).

To estimate the large-size tail, we first note that for a
sharply decaying F (x), the integrand in (59) is maximal at
x ′ = y ′ = x/2 and as a result ψ(x)  F 2(x/2). Following
this reasoning, we estimate that the convolution term in (58)
behaves as F 2(x/2). For large x, the derivative term and the
convolution term dominate and balancing these two terms
gives

−xF ′(x)  F 4(x/2). (63)

We now substitute the superexponential form (34) and obtain
1 = 4/2β from which we deduce β = 2, leading to the
Gaussian tail in (60). Compared with the value β = 1.267 49
in the asymmetric case, we deduce that the tail is now sharper.

Figures 9 and 10 compare the scaling function F (x) with
the exponential decay e−x , which corresponds to ordinary
aggregation. As in the case of symmetric aggregation, the pop-
ulations of very small and very large clusters are suppressed,
while the population of intermediate clusters is enhanced. We
conclude that the qualitative behaviors of the size density
for aggregation with symmetric and asymmetric choices are
similar.
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VII. CONCLUSION

In summary, we generalized the most basic aggregation
process to include choice. In our implementation, several
clusters are drawn at random and two clusters merge while the
rest are not affected. The merging clusters are chosen in a way
that maximizes or minimizes the aggregate size. We considered
several versions and found a number of common features. In all
cases, the size density adheres to standard scaling, in contrast
with some aggregation processes in which scaling is violated
(see, e.g., [33–36].)

In general, introduction of choice changes the shape of
the cluster-size distribution. When the merger maximizes
the size of the final aggregate, the small-size tail of the
distribution is enhanced because small clusters are less likely
to undergo aggregation. Surprisingly, the large-size tail of the
distribution is also enhanced. The opposite effect emerges
when the merging clusters minimize the aggregate size. These
qualitative features are general and hold regardless of the
number of clusters involved in the aggregation process.

We found a number of interesting features for aggregation
with choice. In the asymmetric version with maximal choice,
the scaling function does not capture the entire size density.
In particular, when n clusters are involved in the aggregation
process, there are n distinct scaling laws that characterize the
density of monomers, dimers, up to n-mers. The population
of these small clusters is anomalously large compared with
that of typical clusters. In the asymmetric version with
minimal choice, the large-x tail is superexponential F (x) ∼
exp[−const × xβ] and it is governed by a nontrivial exponent
β > 1. This exponent is selected from a spectrum of possible
values according to a principle that is reminiscent of velocity
selection in nonlinear traveling waves.

Aggregation with choice involves extremal dynamics: A
minimal or a maximal cluster is selected to participate in the
aggregation process. We note that extremal dynamics occur in
many coarsening processes. In particular, in one dimension,
the shortest domain is selected to merge with its neighbors.
Such extremal dynamics describe, for example, the late stages
of coarsening arising in the zero-temperature time-dependent
Ginzburg-Landau equation [37–42]. In coarsening, questions
of interest include the typical growth of the domain size and the
domain-length distribution [37,43–45] and these are analogous
to the typical cluster size and the cluster-size distribution in our
study. Aggregation processes governed by extremal dynamics
have been observed experimentally in studies of coarsening
in vibrofluidized compartmentalized granular gases [46] and
coarsening of vertically vibrated granular Faraday heaps [47].
Scaling features such as the typical growth of the domain size
reflected in (6) or the tails of the size distribution (34) are
certainly of interest in the context of such physical coarsening
processes.

A related model of aggregation with symmetric choice
that would be interesting to explore is the following: Pick
up randomly three clusters and merge two of them, e.g., the
smallest or the largest. We analyzed our models only in the
mean-field case and another extension is to aggregation in
finite spatial dimensions. For instance, clusters may occupy
a single lattice site and hop to adjacent sites with the same
mass-independent rate, and when three clusters occupy the

same site, two of them, say, the smallest, merge, and the third
(largest) cluster thus plays the role of a catalyst.
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APPENDIX A: THE FRACTION OF DIMERS C2

For maximal choice, the fraction of dimers obeys

dC2

dτ
= C3

1 + C2
1 − (C1 + C2)2. (A1)

Using C1 = 1/(1 + τ ), we obtain the Riccati equation

dC2

dτ
= −C2

2 − 2

1 + τ
C2 + 1

(1 + τ )3
. (A2)

To find the solution we first linearize the first-order nonlinear
differential equation (A2) by making the transformation
C2 = −[2u3f (u)]/f ′(u) with u = (1 + τ )−1/2. The quantity
f (u) obeys the Bessel equation and thereby we arrive at the
dimer fraction

C2 = u3 I0(2)K0(2u) − K0(2)I0(2u)

I0(2)K1(2u) + K0(2)I1(2u)
. (A3)

For minimal choice, we have

dC2

dτ
= 2C2

1 + C2
2 − C3

1 + 2C1C2 − 2C2. (A4)

We now write

C2 = e−2τU2(T ), T = e−2τ . (A5)

Recalling that C1 = 2/(1 + e2τ ) = 2T/(1 + T ) and
using (A5) we recast (A4) into

dU2

dT
= −1

2
U 2

2 − 2

1 + T
U2 − 4

(1 + T )3
. (A6)

This Riccati equation should be solved subject to the initial
condition C2(T = 1) = 0. We use the same procedure as
before: We linearize (A6) by making the transformation U2 =
[v3f (v)]/[8f ′(v)] with v = √

8/(1 + T ). Again, the function
f (v) obeys the Bessel equation and

U2 = v3

8

J0(2)Y0(v) − Y0(2)J0(v)

Y0(2)J1(v) − J0(2)Y1(v)
. (A7)

By combining (A5) and (A7), we arrive at the announced
result (27) for the dimer density.

APPENDIX B: THE EXPONENT β

To determine the large mass decay in the minimal choice
model, we must solve (35) and (36). We explain the procedure
in the general case of n alternatives. Let us set n > 1
and examine σ as a function of β. The derivative dσ/dβ

reaches maximum at a single point. Indeed, σ (β) is a
monotonically increasing function that sharply vanishes when
β → 1 and algebraically approaches unity when β → ∞,
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that is,

σ →
{

n−1/(β−1), β → 1

1 − β−1 ln n, β → ∞.
(B1)

Thus we seek a solution to Eqs. (36) and (49). The explicit
form of the former equation is rather cumbersome,

2

β
= (1 − σ )β[ln(1 − σ )]2 + nσβ[ln σ ]2

S

+ 2
nσβ−1 ln σ − (1 − σ )β−1 ln(1 − σ )

(1 − σ )β−1 − nσβ−1

+ S
β − 1

β

(1 − σ )β−2 + nσβ−2

[(1 − σ )β−1 − nσβ−1]2
, (B2)

where S = (1 − σ )β ln(1 − σ ) + nσβ ln σ . The two transcen-
dental equations (49) and (B2) can be solved using, e.g.,
Mathematica.

APPENDIX C: THE AMPLITUDE A1

Here we list explicit expressions for ln A1 for n � 6,

ln A1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, n = 1

ln 2, n = 2
π

√
3

6 + 1
2 ln 3, n = 3

π
2 + ln 2, n = 4

π
2

√
1 + 2√

5
+

√
5

2 arctan
[

1√
5

] + 1
4 ln 5, n = 5

π
√

3
2 + 1

2 ln 3 + ln 2, n = 6.

In particular, when n = 2 we recover A2 = 2, consistent with
the exact solution (26).

APPENDIX D: THE EXPONENT γ

First, we derive the bounds (62). The quantity ψ(y) defined
in (59) is monotonically decreasing and since ψ(0) = 1 we

have ψ(y) � 1. The upper bound readily follows:

γ = 4
∫ ∞

0
dy F (y)ψ(y) � 4

∫ ∞

0
dy F (y) = 4. (D1)

To derive the lower bound, we narrow the integration range
in the integral in (59) from x ′ + y ′ > y to the union of the
vertical strip 0 < x ′ < y and y ′ > y, the horizontal strip x ′ >

y and 0 < y ′ < y, and the quadrant x ′ > y and y ′ > y. The
contribution to ψ(y) from the vertical strip is

∫ y

0
dx ′F (x ′)

∫ ∞

y

dy ′F (y ′) = [1 − �(y)]�(y), (D2)

where �(y) = ∫ ∞
y

dz F (z). The contribution from the hori-
zontal strip is also given by Eq. (D2). The contribution to
ψ(y) from the quadrant x ′ > y and y ′ > y is �2(y). Summing
these contributions, we obtain

ψ(y) � �2(y) + 2[1 − �(y)]�(y) = 2�(y) − �2(y). (D3)

The lower bound is obtained as

γ � 4
∫ ∞

0
dy

(
−d�

dy

)
[2�(y) − �2(y)]

= 4
∫ 1

0
d�(2� − �2) = 8

3
. (D4)

To establish the upper bound in Eq. (56) we extend the
integration range in φ(y) [Eq. (53)] from the triangle x ′ +
y ′ < y to the square 0 < x ′ and y ′ < y. This gives φ(y) �
[1 − �(y)]2 and therefore

γ � 4
∫ ∞

0
dy

(
−d�

dy

)
[1 − �(y)]2 = 4

3
. (D5)

The lower bound in (56) follows from c1(t) � c(t).
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[27] J. Černák, Phys. Rev. E 82, 061116 (2010).
[28] S. Fedotov, Phys. Rev. E 83, 021110 (2011).
[29] E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 71, 026129

(2005).
[30] A. A. Lushnikov, Phys. Rev. E 91, 022119 (2015).
[31] W. van Saarloos, Phys. Rep. 386, 29 (2003).
[32] S. N. Majumdar and P. L. Krapivsky, Physica A 318, 161

(2003).
[33] R. W. Samsel and A. S. Perelson, Biophys. J. 37, 493 (1982).

[34] E. M. Hendriks and M. H. Ernst, J. Colloid Interface Sci. 97,
176 (1984).

[35] F. Leyvraz and S. Redner, Phys. Rev. Lett. 57, 163 (1986); Phys.
Rev. A 36, 4033 (1987).

[36] M. Mobilia, P. L. Krapivsky, and S. Redner, J. Phys. A 36, 4533
(2003).

[37] T. Nagai and K. Kawasaki, Physica A 120, 587 (1983); K.
Kawasaki and T. Nagai, ibid. 121, 175 (1983); T. Nagai and
K. Kawasaki, ibid. 134, 483 (1986).

[38] J. Zhuo, G. Murthy, and S. Redner, J. Phys. A 25, 5889 (1992).
[39] I. Ispolatov, P. L. Krapivsky, and S. Redner, Phys. Rev. E 54,

1274 (1996).
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