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Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution
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We extend a recently introduced free-energy formalism for homogeneous Fokker-Planck equations to a wide,
and physically appealing, class of inhomogeneous nonlinear Fokker-Planck equations. In our approach, the
free-energy functional is expressed in terms of an entropic functional and an auxiliary potential, both derived
from the coefficients of the equation. With reference to the introduced entropic functional, we discuss the entropy
production in a relaxation process towards equilibrium. The properties of the stationary solutions of the considered
Fokker-Planck equations are also discussed.
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I. INTRODUCTION

Since the seminal work of Einstein [1] on the Brownian
motion, linear Fokker-Planck equations (FPEs) [2] have played
a central role in the study of normal diffusion processes
and in the investigation of nonequilibrium in general. It is
well known, however, that many physical phenomena are
associated to an anomalous diffusive behavior that cannot be
properly described by a linear FPE. For this reason, nonlinear
FPEs [3,4], alongside with fractional linear FPEs [5,6], have
become natural candidates for modeling anomalous diffusion
processes. Models based on nonlinear FPEs are indeed able
to reproduce the experimentally observed dispersion laws. In
the last decades, nonlinear FPEs have been put in relation with
generalized thermostatistics [7] and successfully describe dif-
fusion in porous media [8], stellar dynamics and turbulence [9],
or surface dynamics [10]. Similarly, fluctuations in granular
media can be properly treated by means of nonlinear FPEs [11],
as recently experimentally verified by Combe et al. [12]. In
Ref. [13] a nonlinear FPE was adopted to model the evolution
of stock price returns, finding a remarkable agreement with
the market data.

The reconstruction of the microscopical dynamics corre-
sponding to a given nonlinear FPE is, however, a nontrivial
task. In this regard, Borland [14] proposed a phenomenological
model in which the evolution at the microscopic level can be
simulated to successfully reproduce the macroscopic quanti-
ties: the equations of motion for the microscopic components,
however, depend on the solution of the nonlinear FPE itself.
Macroscopic and microscopic evolution are therefore coupled,
suggesting that the model can be used as a heuristic description
only, as stressed by the author herself.

The nontrivial relation between macroscopic and micro-
scopic evolution in nonlinear FPEs may be relevant in the
study of thermodynamics. To be more precise, let us recall
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that a diffusion process in d dimensions can be studied in
the 2d-dimensional one-particle phase space, considering a
particle distribution density f (r, v,t) around the space position
r and the velocity value v at time t . The evolution of f is
described by the so-called Klein-Kramers equation (KKE, or
FPE in the one-particle phase space) [15], having the form

df

dt
=

[
∂

∂t
+ v · ∇r + 1

m
F(r) · ∇v

]
f = K[f ], (1)

where F(r) is an external force acting on the particle of mass
m, and K[f ] is a functional of f determined by the underlying
kinetics. The Boltzmann equation is a particular case of Eq. (1).
The possible emergence of nonlinearity in the KKE is due to
the structure of the functional K[f ]. Kaniadakis [16] proposed
a very general kinetic interaction principle that is able to unify
many relevant particular cases in one single picture. He also
associated to f an entropic functional S(f ), satisfying the H

theorem, such that

df

dt
+ ∇v ·

[
D(v)γ (f )∇v

δS(f )

δf

]
= 0, (2)

where D(v) is a velocity-dependent diffusion coefficient and γ

is a function of f only, related to the kinetics K . The relation
between a KKE and the corresponding equations for ρr (r,t) =∫

f (r, v,t)ddv and ρv(v,t) := ∫
f (r, v,t)ddr (usually called

Smoluchowski equation, or SE, and FPE, respectively) is
however not trivial [17]. For example, for a Brownian particle
in a fluid, we have [2,16]

K[f ] = λ∇v · (vf + λD∇vf ). (3)

In the expression above, λ is a friction coefficient and D > 0
is a diffusion constant. The SE corresponding to the KKE
obtained using Eq. (3) is typically written as

∂ρr

∂t
+ ∇r ·

(
ρrF
λm

+ D∇rρr

)
= 0, (4)

to be associated with a proper initial condition ρr (r,0) =∫
f (r, v,0)ddv. This equation, however, is obtained assuming

λ � 1. It is expected that, for a generic value of λ, the
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evolution of ρr should depend on f (r, v,0) and not on
ρr (r,0) only, and that, therefore, Eq. (4) must be corrected.
A first study of the corrections to Eq. (4) was performed
by Wilemski [17], and later by Chaturvedi and Shibata, San
Miguel and Sancho [18,19] in the case of a position-dependent
external force in the one-dimensional case. In Refs. [20]
and [21] the exact SE corresponding to a given KKE was
obtained, in which the coefficients of the SE depend on the
coefficients of the KKE and, moreover, on its initial condition
f (r, v,0).

With these considerations in mind, it is clear that a
thermodynamical approach based on the coefficients of a FPE
or a SE, even in the linear case, is not equivalent (in general)
to a direct investigation on the corresponding KKE, and that a
SE or a FPE are usually obtained under certain hypotheses and
subject to corrections. In the limits of validity of a SE or a FPE,
however, a thermodynamical functional approach remains of
great interest and can give useful information about both
the relaxation process and fluctuations. For example, Bertini
et al. [22] recently introduced a remarkable set of ideas, now
called macroscopic fluctuation theory, for a nonequilibrium
thermodynamics of systems described by a general evolution
law of the type of a nonlinear SE [23], avoiding reference to
the microscopical details.

A different approach to the thermodynamics of nonlinear
FPEs1 has been independently proposed by Schwämmle
et al. [24,25]. Their formalism is analogous to the one
introduced in Ref. [16] for KKEs and it was inspired by the
contribution of Plastino and Plastino [7]. They considered
a nonlinear FPE for a probability density ρ in (1 + 1)
dimensions, in the form

∂tρ(x,t) + ∂xj (x,ρ) = 0,

j (x,ρ) = χ [ρ(x,t)]E(x)

−Dω[ρ(x,t)]∂xρ(x,t),

lim
x→±∞ j (x,ρ) = 0. (5)

Here χ (ρ) and ω(ρ) are positive quantities depending on the
density ρ only, D is a positive diffusion constant, and E(x) is
an external field. They showed that it is possible to construct
a free-energy functional F (ρ) which is consistent with ther-
modynamics and which satisfies ∂tF (ρ) � 0. The expression
for F (ρ) is given explicitly in terms of the coefficients of
the equation. Following this approach, nonlinear FPEs are
typically (but not always) associated to entropic functionals
that are different from the Boltzmann-Gibbs entropy, obtained
in the linear case. The stationary distribution of a given
nonlinear FPE coincides with the one that maximizes the
corresponding entropy with an appropriate energy constraint.
Due to the fact that nonlinear FPEs appear in the study of vortex
diffusion in superconductors and inspired by the formalism
above, Andrade et al. [26] claimed that a nonextensive
thermostatistics, different from the Boltzmann-Gibbs one,

1In the following we will not distinguish between FPE and SE, due
to the fact that they have a similar mathematical structure. We will
simply say that the considered equation is a FPE.

is necessary for the study of the overdamped motion of
interacting vortices at zero temperature [27,28].

In the present paper we show that the approach of
Schwämmle et al. can be generalized to inhomogeneous
nonlinear FPEs, i.e., to nonlinear FPEs having a diffusion
coefficient D depending on x, D = D(x). Nonlinear
inhomogeneous FPEs describe, for example, anomalous
diffusion processes in which, in addition to the nonlinearity,
a local inhomogeneity of the medium is present, inducing a
space-dependent friction coefficient [29]. Position dependent,
or velocity dependent, diffusion coefficients are not
uncommon in the literature. For example, in Ref. [16] a
velocity-dependent diffusion coefficient appears in the study
of generalized kinetics, developed in the proper one-particle
phase space. We will focus, however, on the Fokker-Planck
picture. In Sec. II we introduce, in particular, a functional
	 that has (locally) the structure of a free energy rescaled
by D(x). In the linear homogeneous case, assuming the
Einstein-Smoluchowski relation D ∝ T between the diffusion
coefficient and the temperature of the bath, our rescaled func-
tional reduces to 	 ∝ T −1F , where F is the usual free energy.
We also study the time evolution of the entropy in a relaxation
process towards equilibrium. In Sec. III we discuss the relation
between 	 and the stationary solution of the considered
nonlinear FPE, and a possible definition of a temperaturelike
quantity in this context. In Sec. IV, we study, as a particular
example, a FPE for the diffusion processes in inhomogeneous
porous media. Finally, in Sec. V, we give our conclusions.

II. MODIFIED FREE-ENERGY FUNCTIONAL

A general nonlinear Fokker-Planck equation in (1 + 1)
dimensions describes the evolution with time of a probability
density function ρ(x,t) defined on the open interval 
 :=
(x−,x+) of the real line. We admit 
 ≡ R as a particular case.
The equation has the general form of a probability conservation
law

∂ρ(x,t)

∂t
+ ∂j (x,ρ)

∂x
= 0. (6a)

The current of probability j introduced above has the struc-
ture [22,30,31]

j (x,ρ) := E(x)χ [ρ(x,t)] − D(x)ω[ρ(x,t)]∂xρ(x,t), (6b)

where χ (ρ) > 0 is the mobility and E(x) is a drift coefficient
related to the presence of an external potential V (x),

E(x) = −dV (x)

dx
. (7)

In the present paper, we assume that the diffusion coefficient
D(x,ρ) := D(x)ω(ρ) in Eq. (6b) is in this specific factorized
form; we will also assume that both the factors are strictly
positive, i.e., D(x) > 0 and ω(ρ) > 0, for (almost) all values
of their arguments. Equation (6b) is typically obtained through
a set of approximations from a microscopical model and
assuming a linear response to the action of the external field.
The type of approximations strongly depend on the considered
model and on the assumptions about the underlying dynamics.
Moreover, in the one-dimensional case the conservation of
probability implies some additional constraints on j , namely,
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the fact that the current has the same value on the boundary
for all values of t . We will consider reflecting boundary
conditions [32] for the probability current j , i.e., our problem
has the form

∂tρ(x,t) + ∂xj (x,ρ) = 0,

j (x,ρ) = χ [ρ(x,t)]E(x)

−D(x)ω[ρ(x,t)]∂xρ(x,t),

lim
x→x±

j (x,ρ) = 0. (8)

Reflecting boundary conditions imply that the stationary state
�(x) has j (x,�) = 0 on the entire domain, i.e., the stationary
solution is the equilibrium solution, and nonequilibrium
stationary solutions are not allowed.2

Schwämmle et al. [24,25] observed that a FPE in the form
in Eq. (6) can be associated to a trace-form free-energy-like
functional decreasing in time. In the original paper, D was
supposed to be a constant. Inspired by their result, we will show
that a similar functional can be obtained in the inhomogeneous
case. In particular, we search for a functional in the form

	(ρ) :=
∫




φ[x,ρ(x,t)]dx := Ū (ρ) − S(ρ), (9)

such that the following inequality holds,

d	

dt
� 0, t � 0. (10)

Observe that 	 has the structure of a free energy rescaled by
the temperature. The first term

Ū (ρ) :=
∫




V̄ (x)ρ(x,t)dx (11)

corresponds to an “energy contribution” expressed in terms of
an auxiliar potential V̄ (x), in general different from V (x). The
second term corresponds to an entropic contribution

S(ρ) :=
∫




s[ρ(x,t)]dx, s(0) = s(1) = 0. (12)

Both the form of V̄ (x) and of s(ρ) can be determined by
imposing the condition in Eq. (10). This result is sometimes
called the “H theorem” in the literature [24,33,34]. In
particular, the Boltzmann-Gibbs entropy will be recovered
for linear FPEs, while other commonly used generalized
entropies are naturally associated to a wide class of nonlinear
FPEs [24,35,36]. Differentiating Eq. (9) we have

d	

dt
=

∫



∂ρ

∂t

∂φ(x,y)

∂y

∣∣∣∣
y=ρ

dx

= −
∫




[
−E(x)χ (ρ) + D(x)ω(ρ)

∂ρ

∂x

]

× ∂

∂x

∂φ(x,y)

∂y

∣∣∣∣
y=ρ

dx

2In the present paper, we say that a solution � is stationary
if j (x,�) = constant on the domain 
. In particular, a stationary
solution is an equilibrium solution if j (x,�) = 0 on 
.

= −
∫




dx D(x)χ (ρ)

[
− E(x)

D(x)
+ ω(ρ)

χ (ρ)

∂ρ

∂x

]

×
[
dV̄ (x)

dx
− d2s(y)

dy2

∣∣∣∣
y=ρ

∂ρ

∂x

]
. (13)

We have omitted the explicit dependency on x and t in ρ for
simplicity of notation. Comparing the previous result with the
condition in Eq. (10), we have that the inequality is always
satisfied if

dV̄ (x)

dx
= −E(x)

D(x)
= 1

D(x)

dV (x)

dx
, (14a)

− d2s(ρ)

dρ2
= ω(ρ)

χ (ρ)
, s(0) = s(1) = 0. (14b)

Similar equations have been obtained by Schwämmle
et al. [24,25] in the case of a homogeneous Fokker-Planck
equation, i.e., D(x) ≡ D = constant. In particular, we recover
the same expression for the entropy, while the potential is
replaced by a more general “effective” potential that reduces
to the usual one in the homogeneous case. Indeed, in the case
of a constant friction coefficient, the natural identification
V̄ (x) ≡ βV (x) holds, where β = D−1. Being D(x) > 0, if
V (x) is bounded from below, then V̄ (x) is bounded from
below as well. This implies that the functional 	 is bounded
from below. We stress again that the expression for 	 and the
inequality in Eq. (10) has been obtained assuming zero current
on the boundary of the domain.

Properties of the functional �

Let us now discuss some properties of the function 	. As
in the homogeneous case, s(ρ) is strictly concave, and the
rescaled free energy 	 is strictly convex with respect to ρ,

δ2	

δρ2
= −d2s(y)

dy2

∣∣∣∣
y=ρ(x,t)

= ω(ρ)

χ (ρ)
> 0. (15)

The relation above can be written as ω(ρ) = χ (ρ)∂2
ρφ(x,ρ).

Moreover, Eq. (6) becomes

∂ρ

∂t
= ∂

∂x

(
χ (ρ)D(x)

∂

∂x

δ	

δρ

)
,

j (x,ρ) = −D(x)χ (ρ)
∂

∂x

δ	

δρ
. (16)

In a relaxation process towards the equilibrium distribution
�(x), using the boundary condition in Eq. (8), the time
derivative of the entropy S(ρ) is

dS(ρ)

dt
=

∫



j 2(x,ρ)

χ (ρ)D(x)
dx −

∫



j (x,ρ)E(x)

D(x)
dx. (17)

Equation (17) is, up to a global positive factor, a generalization
of a corresponding expression obtained by Casas et al. [37] for
the case D(x) = D = constant. In particular, the first integral
can be identified with the entropy production contribution, and
it is always positive. Both terms in the equation approach zero
as ρ(x,t) → �(x). Finally, introducing the average energy

U (ρ) :=
∫




V (x)ρ(x,t)dx, (18)
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the energy dissipation rate is given by

U̇ = −
∫




E(x)j (x,ρ)dx. (19)

In the case of a homogeneous medium, D(x) ≡ D, we can
define the free-energy density and the free energy as

f (x,ρ) := Dφ(x,ρ), F (ρ) :=
∫




f (x,ρ)dx, (20)

respectively. The free-energy density satisfies the relation

D(ρ) := Dω(ρ) = χ (ρ)∂2
ρf (x,ρ), (21)

which has the structure of a local Einstein fluctuation-
dissipation relation. Moreover, the FPE can be written as

∂ρ

∂t
= ∂

∂x

(
χ (ρ)

∂

∂x

δF

δρ

)
, j (x,ρ) = −χ (ρ)

∂

∂x

δF

δρ
. (22)

In the homogeneous case, Eq. (17) has a more clear interpreta-
tion. Indeed, in an electromagnetic analogy, we can think of j

as a current of charges in an external electric field E, flowing
in a medium whose resistance is given by χ . Therefore the
first term plays the role of a dissipation power contribution,
while the second term is related to the rate of energy exchange
between the external field and the charges, and it indeed
coincides with Eq. (19) up to a constant multiplicative factor.

III. EQUILIBRIUM SOLUTION ON THE REAL LINE

Let us assume now that our domain is the real line, i.e., 
 ≡
R. Adopting reflecting boundary conditions, it is immediately
seen that the equation for the stationary solution of Eq. (6) is
the equation for the equilibrium state �, i.e.,

j (x,�) = 0 ⇔ d�(x)

dx
= E(x)χ (�)

D(x)ω(�)
. (23)

On the other hand, because of the required integrability of �,
we ask

lim
x→±∞ �(x) = lim

x→±∞
d�(x)

dx
= 0. (24)

To prove that the limit distribution, for any initial condition,
is uniquely identified and coincides with �, we first follow the
arguments of Frank and Daffertshofer [33] for the homoge-
neous case, with proper modifications to adapt them to our
case. From Eq. (23), we have

E(x)

D(x)
= −dV̄ (x)

dx
= ω(�)

χ (�)

d�(x)

dx
= − d

dx

[
ds(z)

dz

∣∣∣∣
z=�

]
.

(25)

Let us now introduce the function

exps(x) :=
[

ds

dx

]−1

(−x), (26)

inverse of the function ∂ps(p) evaluated in −x. The function in
Eq. (26) exists, being ∂2

ρs(ρ) < 0 strictly, i.e., ∂ρs(ρ) is strictly
decreasing for ρ > 0. Denoting by

x0 := − lim
ρ→0

∂ρs(ρ) < 0, (27)

the function exps(x) is positive and strictly increasing in (x0, +
∞) (here x0 can be also not finite) and we impose that it is
identically zero in (−∞,x0), being limx→x+

0
exps(x) = 0. For

future convenience, we define also

logs(x) = exp−1
s (x), logs(x) : R+

0 → (x0, + ∞), (28)

the inverse function of exps(x). For a linear FPE, s(p) =
−p ln p, then exps(x) = ex−1 and logs(x) = ln x + 1. By
means of the introduced function, we can write, for some c

to be determined,

�(x) = exps[c − V̄ (x)]. (29)

In the previous expression, we have supposed that the arbitrary
additive constant in V̄ is somehow fixed. It is important to
prove that the normalization constant c in Eq. (29) exists and
that it is uniquely identified. For this purpose, observe that the
function

h(y) :=
∫ +∞

−∞
exps[y − V̄ (x)]dx (30)

is strictly monotonically increasing, being

h′(y) = −
∫ +∞

−∞

dx

s ′′{exps[y − V̄ (x)]} > 0. (31)

Moreover, we have that limy→−∞ h(y) = 0 and

h(y) �
∫ +∞

−∞
θ (y − 1 + V̄ (x)) exps[y − V̄ (x)]dx

� exps(1)
∫ +∞

−∞
θ (y − 1 + V̄ (x))dx

y→∞−−−→ +∞. (32)

It follows that the normalization constant exists and it is unique.
The constant c, uniquely identified, satisfies the identity c ≡
V̄ (x) + logs [�(x)]. Using the fact that V̄ is defined up to an
additive constant, we can absorb c in the auxiliar potential in
such a way that

V̄ (x) = − logs[�(x)]. (33)

This gives δρ	|ρ=� = 0. Moreover, the convexity of 	 implies
that � is a minimum for 	. On the other hand, from Eq. (13)
we have that

d	

dt

∣∣∣∣
ρ=�

= 0. (34)

The uniqueness of the stationary solution in the hypotheses
specified, together with the result in Eq. (10), guarantees that
the limiting distribution is the stationary distribution.

This result can be proven in a different, and more explicit,
way without invoking Eq. (10). Let us suppose that the entropy
density s(ρ) is known from the coefficients in Eq. (6). From the
functional S(ρ) and again following the approach of Frank and
Daffertshofer [33], we can construct the following generalized
divergence between two probability distribution densities ρ1 =
ρ1(x,t) and ρ2 = ρ2(x,t):

�s(ρ1‖ρ2) := S(ρ2) − S(ρ1)

+
∫ +∞

−∞

[
[ρ1(x,t) − ρ2(x,t)]

∂s(z)

∂z

∣∣∣∣
z=ρ2

]
dx.

(35)
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The quantity �s is always non-negative due to the strict
concavity of the function s(ρ). In particular, �s(ρ1‖ρ2) =
0 ⇔ ρ1 = ρ2. In the case of Boltzmann-Gibbs entropy,
s(ρ) = −ρ ln ρ, �s is the Kullback-Leibler divergence [38]

�BG(ρ1‖ρ2) ≡ DKL(ρ1‖ρ2) :=
∫ +∞

−∞
ρ1(x,t) ln

ρ1(x,t)

ρ2(x,t)
dx.

(36)

If we consider now the case ρ2 ≡ �(x), a unique stationary
solution of our equation, and ρ1 = ρ(x,t) a solution at the time
t of the considered nonlinear FPE for a given initial condition,
we have

d�s(ρ,�)

dt
= −

∫ ∞

−∞
D(x)χ (ρ)

(
ω(�)

χ (�)

∂�

∂x

∣∣∣∣
�=�

�=ρ

)2

dx � 0.

(37)

It follows then that

lim
t→∞ ρ(x,t) = �(x). (38)

Effective temperature

It is clear that, in the general case, a definition of a
temperaturelike quantity is difficult, and the meaning itself
of “temperature” might depend on the specific considered
model [39]. A possible definition of effective inverse temper-
ature β̄, however, can be given by the usual thermodynamic
relation

β̄ := ∂S(�)

∂U (�)
, (39)

expressing the variation of entropy with respect to the average
energy with reference to the equilibrium state, which is
supposed to be unique. Observing that � is a minimum of
the functional 	(ρ), we can write the previous relation as

β̄ = ∂Ū (�)

∂U (�)
. (40)

In particular, if D(x) ≡ D = constant, then we obtain the well-
known result

β̄ = 1

D
> 0. (41)

IV. A NONLINEAR FPE FOR DIFFUSION
IN INHOMOGENEOUS POROUS MEDIA

From the observations above, it is evident that the knowl-
edge of the external potential V (x) and of the entropic form
s(ρ) is not sufficient to identify the stationary distribution. On
the other hand, the observation of a specific limit distribution
does not allow us to infer the entropic form unless a careful
investigation of the structure of the effective potential is
performed. This simple fact has been already pointed out in
the study of elementary probabilistic toy models [40–42]. To
further exemplify it and apply our formalism, let us consider,
for example, the nonlinear inhomogeneous FPE for a fluid in
a porous medium. The conservation of mass imposes

dρ(x,t)

dt
= ∂ρ(x,t)

∂t
+ ∂

∂x
[ẋρ(x,t)] = 0 (42)

for the density ρ(x,t). On the other hand, in the case of
diffusion in a porous medium, Darcy’s law holds [8],

ẋ = E(x) − κ(x)
∂P (x,t)

∂x
, κ(x) > 0, (43)

where P (x,t) is the pressure of the fluid at the position x and
at time t , and E(x) = −∂xV (x) is an external force (we are
working in the overdamping limit) resulting from an external
potential V (x). The dependence of the coefficient κ(x) on
x expresses exactly the lack of homogeneity of the medium
(e.g., a porosity depending on x). Imposing the equation for
polytropic gases

P (x,t) = αρλ(x,t), λ > 0, α > 0, (44)

we get the porous medium equation in the presence of an
external field

∂ρ(x,t)

∂t
= ∂

∂x

[
− E(x)ρ(x,t) + D(x)ρν−1(x,t)

∂ρ(x,t)

∂x

]
,

(45)

where we have defined ν = λ + 1 to uniform our notation with
that adopted in Refs. [7] and [11], and

D(x) := α(ν − 1)κ(x). (46)

Diffusion equations similar to Eq. (45) have been proposed,
for example, in Refs. [7,16,43] with E(x) = −γ x, γ > 0, for
the velocity distribution of one particle in one dimension.
In particular, Plastino and Plastino [7] considered the case
D(x) ≡ D > 0. Kaniadakis and Lapenta [43] assumed a time-
dependent diffusion coefficient D(t) that is homogeneous in
space. In Ref. [43] the linear (ν = 1) inhomogeneous case is
also considered. Equations (14) take the form

dV̄ (x)

dx
= −E(x)

D(x)
, (47a)

d2s(ρ)

dρ2
= −ρν−2, s(0) = s(1) = 0. (47b)

The last equation gives, in particular,

s(ρ) = ρ − ρν

ν(ν − 1)
≡ sν(ρ)

ν
, (48)

where sq(ρ) is the nonadditive entropy introduced in Refs. [44]
and [45],

Sq(ρ) :=
∫ +∞

−∞
sq[ρ(x,t)]dx = 1 − ∫ +∞

−∞ ρq(x,t)dx

q − 1
. (49)

Equation (23) gives the stationary solution

�(x) = ρ0 e
− V̄ (x)−V̄ (0)

ρ
ν−1
0

2−ν , (50)

where ρ0 is fixed by the normalization condition. In the
previous expression we have introduced the so-called q-
exponential function with q ∈ R,

ex
q := [1 + (1 − q)x]

1
1−q

+ , with [x]+ := x θ (x). (51)
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The q-exponential is indeed related to the expsq
(x) in Eq. (26),

being

expsq
(x) = e

x−1
q

2−q . (52)

Even at fixed entropic form, we can therefore obtain a wide
class of limit distributions by an appropriate choice of the
argument of the q-exponential, and in particular of D(x).
Namely, to have a limit distribution �(x), it suffices that

E(x)

D(x)
= [�(x)]ν−2 d�(x)

dx
. (53)

As an example, let us consider a q-Gaussian limit distribu-
tion

�q(x) =
√

a

Cq

e−ax2

q , a > 0, q < 3, (54)

where we have introduced the normalization constant

Cq :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
√

π�

(
1

1−q

)
(3−q)

√
1−q�

(
3−q

2(1−q)

) if q < 1,
√

π if q = 1,
√

π�

(
3−q

2(q−1)

)
√

q−1�

(
1

q−1

) if q ∈ (1,3).

(55)

The Gaussian distribution with parameter a > 0 is recovered
as a special case for q → 1. It is immediately seen that the
following relation between E and D must hold:

D(x) = − [1 − a(1 − q)x2]+
2ax[�q(x)]ν−1

E(x). (56)

If, for example, we consider the case of Boltzmann-Gibbs
entropy (ν = 1), we have

D(x) = − [1 − a(1 − q)x2]+
2ax

E(x). (57)

In particular, in the presence of an external harmonic potential,

V (x) = γ x2

2
⇒ E(x) = −γ x, γ > 0, (58)

it is sufficient to modulate D(x) as

D(x) = γ
[1 − a(1 − q)x2]+

2a
, q � 1, (59)

to obtain as a stationary distribution a q-Gaussian, despite
the fact that the entropy associated to the considered equation
is the Boltzmann-Gibbs entropy and the external potential is
harmonic. Observe also that for q → 1+ we recover the well-
known result D(x) = constant. A particular case, in a different

formalism, has been analyzed in Refs. [43] and [46] for a
specific choice of the coefficients E(x) and D(x), that indeed
satisfy the relation above.

V. CONCLUSIONS AND PERSPECTIVES

In the present paper we have discussed a generalization
to the inhomogeneous case of the free-energy formalism
introduced by Schwämmle et al. [24] for the study of nonlinear
FPEs. We have shown that a modified free-energy functional
	, defined on the space of distributions, can be introduced
in such a way that the stationary solution is a minimum for
	. This functional is explicitly expressed in terms of the
coefficients of the considered FPE, and it involves an auxiliary
potential and an entropic density. We have also shown that
in a relaxation process towards the stationary distribution
on the real line, 	 decreases monotonically, reaching the
minimum value on the stationary distribution. Some basic
properties of the stationary solutions of nonlinear FPEs have
been analyzed. In particular, the solutions can be expressed
in terms of a generalized exponential function associated to
the entropy, having the auxiliary potential appearing in 	 as
argument. We have then applied our formalism to a nonlinear
FPE for the macroscopic description of diffusion processes in
inhomogeneous porous media.

The full understanding of the thermodynamical meaning of
the discussed free-energy functionals is still an active research
topic [47]. As discussed in the Introduction, a FPE is usually
obtained from a KKE that properly describes the evolution of
the density in the one-particle phase space. In this sense the
relation between the thermodynamical functionals introduced
for a general nonlinear FPE and the ones for the corresponding
KKE deserve further analysis. Further investigations are also
needed in light of the fast-developing field of stochastic
thermodynamics [48,49] and in relation to macroscopic fluc-
tuation theory [22,23]. The possible connections between the
entropy associated to a FPE following the recipe presented here
and fluctuation theory might shed new light on foundational
aspects of thermodynamics, apart from possible experimental
applications. We hope to address these problems in future
publications.
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[24] V. Schwämmle, E. M. F. Curado, and F. D. Nobre, Eur. Phys. J.

B 58, 159 (2007).
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