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Extracting work from a single reservoir in the non-Markovian underdamped regime
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We derive optimal-work finite time protocols for a colloidal particle in a harmonic well in the general
non-Markovian underdamped regime in contact with a single reservoir. Optimal-work protocols with and without
measurements of position and velocity are shown to be linear in time. In order to treat the underdamped regime
one must address forcing the particle at the start and at the end of a protocol, conditions which dominate the
short time behavior of the colloidal particle. We find that for protocols without measurement the least work by
an external agent decreases linearly for forced start-stop conditions while those only forced at starting conditions
are quadratic (slower) at short times, while both decrease asymptotically to zero for quasistatic processes. When
measurements are performed, protocols with start-end forcing are still more efficient at short times but can be
overtaken by start-only protocols at a threshold time. Measurement protocols derive work from the reservoir but
always below that predicted by Sagawa’s generalization of the second law. Velocity measurement protocols are
more efficient in deriving work than position measurements.
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I. INTRODUCTION

Systems described by stochastic thermodynamics are char-
acterized by having observable slow degrees of freedom
associated with “small” objects such as colloidal particles,
biopolymers, molecular engines, etc., and unobservable fast
degrees of freedom associated with the fluid reservoir in which
the small particle is immersed. The time scale separation
between the fast and the slow degrees of freedom allows for
an appropriate thermodynamic description with a well-defined
temperature [1]. For the slow degrees of freedom, an ensemble
of trajectories can be defined through the distribution of
initial states and the system evolves through the dynamics
determined by both external driving forces and the thermal
stochastic forces of the fluid reservoir. For this system, new
fluctuation theorems have been developed that are applicable
far from equilibrium (time-dependent driving) and steady state
(constant driving) situations [2,3]. Driving such systems in
a particular manner, so as to achieve a desired result, e.g.,
a certain amount of work be performed, has been called a
protocol [1,4,5]. Such a protocol can be subject to constraints,
such as specified displacement or time, or can be required to
be optimal, thus allowing the derivation of new laws in this
mesoscopic realm of thermodynamics.

New refined optical and mechanical techniques have al-
lowed the design of protocols performed after a measurement
is executed [6] on, e.g., a colloidal particle. These kinds
of systems emulate the thought experiment of Maxwell’s
demon [7] and they are known as feedback closed-loop
controlled systems [8]. This approach has been followed by
Abreu and Seifert [4] and Pal et al. [9], who propose ways to
extract work from a single heat bath. The study of these systems

has suggested new or extended fluctuation relations that
evidence a generalization of the second law of thermodynamics
that includes the information gained from measurement [10].

In this work we study protocols that optimize the work
applied to the colloidal particle in both the absence and
presence of a measurement of the particle’s position (a
localizing laser) and velocity (Doppler effect) [11–13]. Here
we contemplate both inertial and non-Markovian effects for
the colloidal particle. Therefore, our treatment departs from
the generalized Langevin equation (GLE), which includes a
memory in the form of a friction kernel [14]. The GLE was used
previously in the study of generalized fluctuation theorems
(FTs) [15,16].

The analysis of non-Markovian fluctuations described by
GLEs can be done through alternative approaches such as
the FTs of stochastic thermodynamics. They evaluate the
probability distribution of functionals, like work, heat, and
entropy changes, along an ensemble of trajectories with a given
well-defined initial distribution [1]. In fact, for the problem
posed in Eq. (1), Mai and Dhar [15], Speck and Seifert [16],
and Ohkuma and Ohta [17] determined that for an exponential
kernel [18], the Jarzynski equality [2], the transient FT [3],
and the Crooks FT [19] are shown to be exact. These results
directly validate Berne’s exponential model [18] as a choice
for the memory kernel in the GLE. Moreover, their definitions
of work, heat, and energy change coincides with the ones
used in this work. A compilation of recent works in stochastic
thermodynamics can be found in Ref. [20].

The structure of the paper is as follows. In Sec. II we assume
the dynamics of the colloidal particle in a harmonic potential
as non-Markovian; that is, it is inertially driven by a GLE. Its
associated bivariate Fokker-Planck equation (FPE) is provided.
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Additionally, we show in this section the expressions for work
and heat performed on the Brownian particle. The initial state
of the system for the three measurement cases considered in
this work—position, velocity, and both position and velocity—
are treated in Sec. III. In Sec. IV, we derive the work performed
for the instantaneous protocol as a reference for performance,
while in Sec. V, we show that the average velocity of the center
of the trap obeys an integral equation in order to optimize
the average work. In the latter, we compare a few functional
forms for the velocity of the center of the harmonic potential
that accomplish this optimal criterion. In Sec. VI we take the
optimal protocol for the work function of the previous section
and add the information gained by the measurement. Finally
in Sec. VII we show a nonoptimal but intuitive protocol that
offers results comparable to the optimal ones during a specific
range of time. We end with the conclusions.

II. THE MODEL

A. Dynamics

We treat the simple model consisting of a colloidal particle
of mass m under the action of a harmonic potential whose
position is described by the GLE

mẍ(t) +
∫ t

0
�(t − s)ẋ(s)ds + κ(x(t) − λ(t)) = R(t), (1)

where �(t) is the friction kernel, κ is the harmonic well spring
constant, λ(t) is the position of the center of the harmonic well,
and R(t) is a homogeneous, stationary, zero mean Gaussian
colored noise with correlation function given by the fluctuation
dissipation theorem, i.e., 〈R(t)R(s)〉 = 2kBT �(t − s), where
kB and T are the Boltzmann constant and temperature,
respectively.

The average properties of the particle described by the
equation of motion require that one knows P (x,v,t) associated
with the solution of Eq. (1). In order to find the expression for
P (x,v,t), we resort to the stochastic Liouville equation [21]
and Novikov’s theorem [22], as described in Ref. [14] (see
Appendix A for details):

∂tP (x,v,t) = −∂xJx − ∂vJv, (2)

where Jx and Jv are the probability currents

Jx = vP (x,v,t),

Jv = −
[∫ t

0

�(t − s)

m
v(s)ds + κ

m
(x − λ(t))

]
P (x,v,t)

− kBT

m2

∂P (x,v,t)

∂v

∫ t

0
�(t − s)

dχv(t − s)

dt
ds

− kBT

m2

∂P (x,v,t)

∂x

∫ t

0
�(t − s)χv(t − s)ds,

and χv(t) is a Green’s function obtained from the solution
of Eq. (1). The initial conditions for χv(t) are assumed to be
χv(0) = 0 and dχv(t)/dt |t=0= 1. It satisfies the relation

χ̂v = m

mk2 + k�̂(k) + κ
, (3)

where the hat symbol indicates the Laplace transform. As
described in Ref. [23], Eq. (2) shows an extra diffusive

term, proportional to ∂2P (x,v,t)/∂v∂x, that disappears in the
Markovian limit. From now on we denote ensemble average
values, with respect to P (x,v,t), with bold fonts.

B. Thermodynamics

Work on the system is performed by manipulating λ(t), the
position of the center of the harmonic well [see Eq. (1)]. The
time dependence of this parameter is known as the protocol.
In order to write down an expression for the work, we depart
from the conservation of energy for a trajectory x(t) [24].
Conservation of energy along a trajectory x(t) dictates

dW = dE − dQ, (4)

where E is the internal energy and Q the exchanged heat; dW

represents the work applied to the system and dQ is the heat
transferred to it.

The van Kampen lemma [21] shows the equivalence
between computing the average over the realizations of noise
R(t) distributed according to P (R(t)) and computing the
average over P (x,v,t). This is essentially because the average
of the density of points in x,v space over realizations of R(t)
is P (x,v,t). This useful principle [as it is easier to analytically
perform calculations with P (x,v,t)] is used in the classic
works on heat and work in the stochastic thermodynamics
of Sekimoto, and particularly in the references we have cited
by the Seifert group.

Averaging with respect to P (x,v,t) and integrating in time
between zero and tf , we obtain the ensemble average work
performed on the particle as

W = E(tf ) − E(0) +
∫ tf

0

〈dQ〉
dt

dt, (5)

where tf is a predetermined final time. The energy of the
system, E, is given by the sum of the kinetic and the potential
energies,

E(t) = mv2

2
+ κ

m
[x − λ(t)]2, (6)

and the heat transferred is given by [24]
〈dQ〉
dt

=
∫

(Jx∂xE + Jv∂vE) dx dv. (7)

Substituting Eqs. (6) and (7) into Eq. (5), and making use of
the equation of motion for the probability P (x,v,t) [Eq. (2)],
we obtain

W = κ

2
{[x(tf ) − λ(tf )]2 − [x(0) − λ(0)]2}

+ m

2
(v(tf )2 − v(0)2)

+
∫ tf

0
v(t)

∫ t

0
�(t − s)v(s) ds dt. (8)

The minimum work that can be performed on the system to
change its state is bounded by the expression

W � �F, (9)

where F is the free energy of equilibrium states with λ(t) held
constant, and is given by

F ≡ − ln

(∫
exp(−E/kBT )dx

)
. (10)
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The equality in Eq. (9) is achieved in the quasistatic limit, i.e.,
for sufficiently slow protocols.

In order to minimize the work performed in Eq. (8), one
needs to define the initial distribution of the system. In the
case that no initial measurement is performed on the system,
we assume an equilibrium distribution; otherwise we must
account for the new information in the initial distribution as
discussed in the following section.

III. MEASUREMENTS

Making a measurement of the position and/or the velocity of
the particle renders information necessary to infer the state of
the system. In our model, the particle is at equilibrium when the
measurement takes place so that, at that time, the velocity and
the position are uncorrelated. The latter implies that measuring
one of the variables does not change the distribution of the
other. Thereby, the strategy of Abreu and Seifert [4] can be
used to analyze the underdamped regime.

We assume that the measured value of position, xm, is
distributed as a Gaussian probability distribution around the
actual position of the particle x:

P (xm|x) = 1√
2π�2

x

e
− (xm−x)2

2�2
x ,

where �2
x is the error associated with the measurement. The

distribution of the position at equilibrium, Peq(x), is also
Gaussian distributed,

Peq(x) = 1√
2π kBT

κ

e
− (x−λ0)2

2
kBT

κ ,

around the center of the harmonic well λ0. The probability that
one makes a measurement at xm, P (xm), can be derived from

P (xm) =
∫

Peq(x)P (xm|x)dx

= 1√
2π

(
�2

x + kBT
κ

)e
− (x−λ0)2

2(�2
x+ kBT

κ ) , (11)

where we can see that the uncertainty due to the equilibrium
distribution is compounded by the error in the measurement.
With this result and Bayes’s theorem, P (x|xm)P (xm) =
Peq(x)P (xm|x), it is possible to write the probability distri-
bution for the particle’s actual position x, P (x|xm):

P (x|xm) = 1√
2πy2

x

e
− (x−bx )2

2y2
x , (12)

where

y2
x = kBT �2

x

kBT + κ�2
x

,

bx = kBT xm + �2
xλ0κ

kBT + κ�2
x

.

The joint probability that the particle is actually at x

and has velocity v at the beginning of the protocol is

Pi(x,v) = Peq(v)P (x|xm), where

Peq(v) = 1√
2π kBT

m

e
− v2

2
kBT
m

is the velocity distribution in equilibrium. In the same fashion
one can obtain the distribution of velocities after performing a
measurement vm:

P (v|vm) = 1√
2πy2

v

e
− (v−bv )2

2y2
v , (13)

where

y2
v = kBT �2

v

kBT + m�2
v

,

bv = kBT vm

kBT + m�2
v

.

In this case, the initial distribution is expressed as Pi(x,v) =
Peq(x)P (v|vm). When one performs both position and velocity
measurements, the initial distribution will be given by

Pi(x,v|xm,vm) = P (x|xm)P (v|vm). (14)

A way to quantify the amount of information gained in a
measurement involves the Kullback-Leibler distance [25] I (·),
where the centered dot indicates the measured variable that
compares the probability distributions after the measurement
with the equilibrium distribution. Thus, we have that informa-
tion gained by measuring position, velocity, or both is given
by

I (xm) = 1

2
log

(
kBT

κ�2
x

+ 1

)
, (15)

I (vm) = 1

2
log

(
kBT

m�2
v

+ 1

)
, (16)

I (xm,vm) = 1

2
log

[(
kBT

κ�2
x

+ 1

)(
kBT

m�2
v

+ 1

)]
, (17)

where we have averaged the results with respect to the
marginal probabilities, P (xm) and P (vm), in order to obtain
a more general result. The information gained on making
a measurement modifies the limit imposed by the second
law [26,27] in terms of minimal work applied on the system
as

W � �F − IkBT . (18)

IV. INSTANTANEOUS WORK

A limiting form of work which is useful to analyze is that
associated with an instantaneous process, i.e., to change the
potential center from a position λi = 0 to a position λf in
zero time. In an experimental setup, this case is when the laser
focus is changed instantaneously. Here there is no exchange
of heat with the environment, nor are there average changes in
positions and velocities. Then, Eq. (8) reduces to

WIns = κ

2
([x(tf ) − λf ]2 − [x(0) − λi]

2)

+ m

2
(v(tf )2 − v(0)2). (19)
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The particle begins at equilibrium at x(0) = λi . Since the
change in position of the potential is instantaneous, the
instantaneous values of position and velocity of the particle do
not change, i.e., x(0) = x(tf ) and v(0) = v(tf ); the resulting
work is then

WIns =κ

2
λ2

f . (20)

This result is a consequence of the fact that on average we will
find the particle in the center of the well with λi = 0.

V. OPTIMAL WORK FOR PRESCRIBED DISPLACEMENT
PROTOCOLS

In this section we derive the minimum work protocol done
on the system as we move the potential center λ(t) from an
initial value λi = 0 to a fixed final value λf in a finite time
interval tf [28]. For this we need the functional form for v that
optimizes the integral in Eq. (8):

f [v] =
∫ tf

0
v(t)

∫ t

0
�(t − s)v(s) ds dt. (21)

To optimize, we find that v must conform to the expression
(see Appendix B) ∫ tf

0
�(t − s)v(s)ds = c, (22)

where c is a constant to be determined. This is a Fredholm
integral of the first kind, that can be solved by choosing
the appropriate kernel. The memory effects here represent
physically the inertial aspects of the dynamics. The colloidal
particle remembers its mechanical state tending to conserve
momentum during the characteristic time of the kernel. This
consideration brings a whole new regime not dominated by
fluctuations and should always be borne out for sufficiently
short time scales. It will be more pronounced for heavier
particles or less frictional fluids.

Choosing the well-known kernel [14] �(t) = γαe−α|t |,
where α fixes the memory decay rate, the solution is given
by [29]

v = c θ (t),
x = (ct + d) θ (t), (23)

where d is the average initial position of the particle and θ (t) is
the Heaviside function. Thus we have shown that the optimal
protocol that minimizes the work done on the system for a fixed
total displacement is always linear in time. To find the value of
c that minimizes W, we insert these expressions into Eq. (8)
along with the initial conditions at equilibrium, xeq = λi and
veq = 0, and obtain

W = κ

2
[(ctf + d) − λ(tf )]2 + m

2
c2 + γ c2G(tf ), (24)

where

G(tf ) = 1 + e−α tf − 1

α tf
(25)

reflects the non-Markovian character of the system.
When α → ∞ we retrieve the Markovian limit G(tf ) = 1
(see Fig. 1).

G
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0.0
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0.4

0.6

1 52 3 4 6

α=∞~

t~f

α=5~

α=0.5

α=0.1

~

~

increasing
memory

Markovian

FIG. 1. The inertial function G(tf ) for different values of the
memory parameter α̃. As α̃ increases we approach the Markovian
limit. Note the discontinuity at tf = 0 when α̃ → ∞.

The value of c that minimizes Eq. (24) is

c = κλf tf

m + κt2
f + 2tf G(tf )γ

; (26)

therefore, the minimum work is given by

WG = κλ2
f

2
− κ2t2

f λ2
f

2
(
κt2

f + m + 2tf γG(tf )
) , (27)

where G stands for general conditions, i.e., non-Markovian
and underdamped. One can derive the functional form for
λ(t), associated with the minimal work, by averaging Eq. (1),
then using Eq. (23), obtaining

λG(t) = κλf tf

m + κt2
f + 2tf γG(tf )

(
t + γ

κ
(1 − e−αt )

)

+ mλf tf

m + κt2
f + 2tf γG(tf )

δ(t), (28)

where δ(t) is the Dirac delta function to account for the sudden
change in velocity at the beginning of the protocol.

In Ref. [30], the underdamped and Markovian (no memory
effects) limits of this problem were addressed. They required,
as part of the protocol associated with optimal work, that
the velocity return to the equilibrium value at the end of the
process [4,28,30,31]. The way to enforce this condition is to
build into the protocol a final velocity by placing an ad hoc δ

function at the end of the process. To make contact with this
limit (a sudden thermalization of the particle) we also imposed
this condition, and obtained

WS = κ

2
[(cStf + d) − λ(tf )]2 + γ c2

SG(tf ), (29)

where the subscript S indicates the protocol of sudden particle
thermalization at tf . It should be noted that there is no mass-
dependent term, because the final jump of velocity to zero
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eliminates any kinetic energy change. For this protocol we
have that

cS = κλf

κtf + 2G(tf )γ
, (30)

and then

WS = κ

2
λ2

f − tf κ2λ2
f

2(κtf + 2G(tf )γ )
, (31)

with the protocol

λS(t) = κλf

κtf + 2γG(tf )

(
t + γ

κ
(1 − e−αt )

)

+ mλf

κtf + 2γG(tf )
[δ(t) − δ(tf − t)]. (32)

In the Markovian limit (α → ∞), we recover the results in
Ref. [30].

It is useful to compare, for illustrative purposes, the latter
protocol with the case where the final state of the velocity is not
required to be at equilibrium. Here, the final state of the system
is out of equilibrium in general and will reach equilibrium
outside the operation of the protocol. We have not optimized
again without the condition of relaxation to equilibrium at the
final time which would have yielded WG. For this illustrative
comparison, the protocol is given by

λN(t) = κλf

κtf + 2G(tf )γ

(
t + γ

κ
(1 − e−αt )

)

+ mλf

κtf + 2G(tf )γ
δ(t), (33)

where the label N denotes nonequilibrium final state. The
corresponding optimal work WN performed is

WN = κ

2
λ2

f + m

2

(
κλf

2[κtf + 2G(tf )γ ]

)

− tf κ2λ2
f

2[κtf + 2G(tf )γ ]
. (34)

The difference with WS is in the second term, which in the
nonequilibrated WN represents the kinetic energy that the
particle acquires because of the initial velocity applied by
the protocol, i.e., the effect of inertia. This contribution is
countered in WS by the resetting required to the equilibrium
velocity at tf . Obviously, these velocity contributions are not
an issue in the overdamped regime because the velocity of the
particle is instantaneously thermalized.

All plots for the optimal work are now discussed in terms of
the reduced variables: t̃f = κtf /γ , α̃ = γα/κ , m̃ = κm/γ 2,
λ̃ = λ/

√
kBT/κ , and W̃ = W/kBT . Note that the parameter

m̃ indicates the regime of the oscillator, either underdamped
(m̃ > 1/4) or overdamped (m̃ < 1/4).

First, we depict the optimal work performed in the Marko-
vian limit, α̃ → ∞. Figure 2 shows that the smallest amount of
work is performed by protocol S, WS. When tf = 0, WG and
WS coincide and give the instantaneous protocol value, i.e.,
only the kinetic contribution. For times tf > 0 the S protocol
is better (costs less work) due to the energy put into the system
used to achieve the starting velocity λG(t), departing from

W~G W~Ins

W~S W~Ins

1.0

0.8

0.0

0.2

0.4

0.6

2 84 6 10

Markovian Limit
α=∞

m=2~ m=20~

t~f

m=50~

FIG. 2. Comparison between WS and WG for the Markovian limit
(̃α → ∞) for different particle mass values. As the mass increases,
the protocol G is less efficient and is always improved upon by the
S protocol. We consider parameters λ̃f = 2, and work values are
normalized to the WIns.

the equilibrium value. This energy is lost at the final time
because the system is left out of equilibrium (see discussion
of protocol N above). At long times the two cases coincide
since friction dampens the initial states, eventually yielding the
overdamped case. Note the zero slope of the work function at
tf = 0 is indicative of inertial effects as the decay is quadratic
in tf from small tf . The slope of WS is −κ2λ2

f /4γ so the
decay of WS is linear close to tf = 0; that is, we can make
it decay more rapidly by increasing the spring constant of the
potential or decreasing the friction parameter γ . As the inertial
effects increase (greater mass), one can see that the G protocol
increases its cost for the same time duration.

The different optimal work functions show marked differ-
ences in the presence of non-Markovian effects. In Fig. 3 we
depict the S and G protocols, normalized by the instantaneous
limit, as a function of the protocol time tf and for different

1.0

0.8

0.0

0.2

0.4

0.6

2 84 6 10

W~G W~Ins

W~S W~Ins α=0.05~

α=0.5~

α=5~
Non-Markovian

t~f

FIG. 3. Comparison between WS and WG for a range of memory
parameters α̃. As the memory increases, the G protocol becomes more
efficient but never improves on the S protocol. Here we take λ̃f = 2
and m̃ = 2.
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values of α̃, the memory parameter. For short protocols
t̃f → 0, WG is the most costly due to the contribution of
the velocity jump at the start of the protocol. WS does not
coincide with WG at tf = 0 [the difference being α̃/(1 + α̃)]
because the former does not include inertial effects [in Eq. (29)
the mass does not appear]. In the end jump, the equilibrium
velocity is imposed and the state of the system is reset, but
the memory of the reservoir is not, so there is a time scale
inconsistency at short times. When memory effects are more
pronounced (α smaller), i.e., less Markovian, the G protocol
enhances its efficiency but never overtakes the S protocol.

VI. OPTIMAL WORK FOR FINITE TIME PROTOCOLS
AND INFORMATION

In this section we generalize our approach to include
measurements on the particle (position and/or velocity) and
thus generate out-of-equilibrium initial states. For the case
where one measures the position of the particle, the initial
distribution is given by Pi(x,v) = Peq(v)P (x|xm). Thus the
process of measuring alters the initial conditions for the
protocol by changing the distribution of positions based on
the measured value. Using these initial conditions in Eq. (8)
we arrive at

W = κ

2
[(cxtf + bx) − λ(tf )]2 + m

2
c2
x + γ c2

xG(tf ). (35)

We repeat the analysis of the previous section and find that cx

now takes the value

cx = κtf (λf − bx)

m + κt2
f + 2tf γG(tf )

, (36)

where the subscript x indicates a position measurement, and
bx [given under Eq. (12)] is averaged over the distribution
P (x|xm). Starting from this value we compute the optimal
work

Wx = κ

2
λf (λf − 2bx) − κ2t2

f (λf − bx)2

2
[
m + κt2

f + 2γ tf G(tf )
] , (37)

and the corresponding protocol is

λx(t) = κtf (λf − bx)

m + κt2
f + 2tf G(tf )

(
t + γ

κ
(1 − e−αt )

)

+ mtf (λf − bx)

m + κt2
f + 2tf G(tf )

δ(t). (38)

Averaging over the distribution P (xm) [see Eq. (11) to obtain],

Wx = κλ2
f

2
−

κ2t2
f

(
λ2

f + (kBT )2

κ(kBT +κ�2
x )

)
2
[
m + κt2

f + 2γ tf G(tf )
] . (39)

According to Eq. (18), the lower limit of Wx is given by the
difference

�F − I (xm) = −1

2
log

(
kBT

κ�2
x

+ 1

)
. (40)

Nevertheless, the limit value for the optimal work in the
quasistatic limit from Eq. (39) is

lim
tf →∞ Wx = −kBT

2

1
κ�2

x

kBT
+ 1

. (41)

1.0

0.0

0.5

2 84 6 10
t~f

-0.5
120 14

W~G W~InsW~S W~Ins

W~x W~Ins

Markovian limit

work to external 
agent

FIG. 4. Comparison of work performed for the Markovian system
(̃α → ∞), using the optimal protocols G and S, compared to
the optimal after measuring position x. While WS and WG have
asymptotes at zero work, Wx can return work to the external
agent (shaded region). Wx becomes more efficient than any of
the nonmeasuring protocols at a threshold value of time. Here the
parameters take on the values �̃2

x = 0.2, λ̃f = 2, and m̃ = 2.

If we could convert all information into work, the limits of
Eqs. (40) and (41) should be the same. Their difference shows
the impossibility of taking advantage of all the information
obtained from the measurement even with the optimal proto-
col. In Ref. [4], Abreu and Seifert showed, in the overdamped
case, that it was necessary to manipulate both λ and κ together
in order to take advantage of all information.

In Fig. 4 we compare the result in Eq. (39) with WG and WS

in the Markovian limit. In the underdamped regime we see that
the three protocols depart from the same point, and even though
WS is the minimum of the three, Wx becomes the optimal after
a time t̃∗f =

√
1 + m̃λ̃2

f (1 + �̃2
x) − 1, where �̃2

x = κ�2
x/kBT .

This crossing is due to short time inertial dynamics of the
particle that beyond t̃∗f , due to memory effects, turns into a
faster reduction of the work performed by the external agent.

Figure 5 depicts the effect of increasing memory effects
(decreasing α), where we observe that Wx decays more rapidly
as α decreases, indicating that the protocol takes advantage of
the reservoir’s memory. For tf → ∞, Wx ceases to depend on
α, as the reservoir’s memory is erased.

For measurements of velocity, the distribution after the mea-
surement is given by Pi(x,v) = Peq(x)P (v|vm). Performing
the analysis for this distribution we express the work in Eq. (8)
as

Wv = κ

2
[(cvtf + d) − λ(tf )]2 + m

2

(
c2
v + b2

v

)
+ γ c2

vG(tf ), (42)

where bv is averaged over the distribution P (v|vm). We
find that the value of cv is the same as that found in
Eq. (26) (with no measurements), and thus the protocol is the
same. Nevertheless, the optimal work function Wv is indeed
different:

Wv = κλ2
f

2
− κ2t2

f λ2
f

2
[
m + κt2

f + 2γ tf G(tf )
] − b2

v

2
. (43)
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1.0

0.0

0.5

2 84 6 10
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120 14
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Non-Markovian

α = ∞~

α = 0.01~

α = 0.1~
α = 0.5~

work to external 
agent

FIG. 5. Comparison between Wx for different values of the
memory parameter α̃. As the memory increases, the protocol becomes
more efficient in extracting work. We selected the values �̃2

x = 0.2,
λ̃f = 2, and m̃ = 2.

Averaging with respect to P (vm) one arrives at

Wv = κλ2
f

2
− κ2t2

f λ2
f

2
[
m + κt2

f + 2γ tf G(tf )
]

− (kBT )2

2
(
kBT + m�2

v

) . (44)

One obtains different work functions departing from the same
protocol λ(t) [Eq. (28)], due to the fact that the measurement
changes the initial state. The final time-independent term
yields an intrinsic advantage to measuring the velocity over
measuring the position that can be seen as an downward offset
at tf = 0.

The behavior at long times, when the velocity is measured,
is given by

lim
tf →∞ Wv = −kBT

2

1
m�2

v

kBT
+ 1

. (45)

For this case, Eq. (18) gives

�F − I (vm) = −1

2
log

(
kBT

m�2
v

+ 1

)
, (46)

which is again different from the work Wv in the long time
limit, so that the information gained is not all made available
to do work.

When one performs a simultaneous measurement of posi-
tion and velocity, the initial distribution is given by Pi(x,v) =
P (x|xm)P (v|vm). The work according to Eq. (8) is given by

Wxv = κ

2
[(cxvtf + bx) − λ(tf )]2 + m

2

(
c2
xv + b2

v

)
+ γ c2

xvG(tf ). (47)

In this case we see that the result is a combination of the
previous cases: we find that cxv = cx and that the work is
modified in the same way as when we measure the velocity.
This way we see that the work Wxv averaged with respect to

1.0

0.0

0.5

2 84 6 10
t~f

-0.5 120 14

W~G W~Ins

W~xv W~Ins
W~v W~Ins

W~x W~Ins

FIG. 6. Comparison of the work performed for the protocols W,
Wx , Wv , and Wxv for the non-Markovian evolution (̃α = 0.5). All
measured protocols are able to return work to the external agent. The
information derived from the velocity is more advantageous than that
of the position. The parameter values used are �̃2

x = 0.2, �̃2
v = 0.2,

λ̃f = 2, and m̃ = 2.

the probabilities P (xm) and P (vm) has the form

Wxv = κλ2
f

2
−

κ2t2
f

(
λ2

f + (kBT )2

κ(kBT +�2
xκ)

)
2
[
m + κt2

f + 2γ tf G(tf )
]

− (kBT )2

2
(
kBT + m�2

v

) , (48)

depicted in Fig. 6. Note that the work with velocity measure-
ments does not agree with the instantaneous work because the
measurement has an effect similar to that of forcing a condition
on the system. We see also that more information is recovered,
implying more work extracted from the particle. In the long
time limit

lim
tf →∞ Wxv = −kBT

2

⎛
⎝ 1

κ�2
x

kBT
+ 1

+ 1
m�2

v

kBT
+ 1

⎞
⎠, (49)

this quantity is smaller than that in either position [Eq. (40)] or
velocity [Eq. (46)] measurements. Nevertheless, for simultane-
ous measurements the Sagawa relation given by Eq. (18) yields

�F − I (xm,vm) = −1

2
log

[(
kBT

κ�2
x

+ 1

) (
kBT

m�2
v

+ 1

)]
,

(50)

still smaller than can be achieved from manipulating the center
of the well in the quasistatic limit. This is to be expected since
the measurement leads to a factorizable result, each of which
cannot take advantage of the full information attained.

VII. ZERO WORK PROTOCOL WITH VELOCITY
MEASUREMENT

In this section we show that it is possible to concoct
a nonoptimal work protocol that can improve on optimal
measurement protocols within a range of times.

We propose to do this by setting v(0) = bv , after a
measurement of the velocity, and imposing the condition
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FIG. 7. λov plots for the parameters in the legend. The dotted lines
show the Markovian limit, while the solid lines are for α̃ = 0.5.

x(t) − λov(t) = c, so that the particle will see a constant
potential. The velocity of the particle will be given by Eq. (1)
averaged with respect to P (x,v,t),

mv̇ +
∫ t

0
�(t − s)v(s) ds + κc = 0, (51)

where the value of c is given by the initial condition. If the
particle is at equilibrium then x(0) = λi so that c = 0.

It is easy to show, for these conditions, that Wov = 0 for
all values of tf , so this protocol is better at short times (before
the work done on the system becomes negative). To obtain the
functional form of λov(t) one should solve Eq. (51) using the
Laplace transform

v̂(s) = bv

m

ms + �̂
,

for the kernel �(t) = γαe−α|t |. One obtains the expression

λov(t) = bve
−αt/2

ωγ

[(
γ − mα

2

)
(sinh[ωt]

−mω cosh[ωt]) + mωeαt/2

]
+ x(0), (52)

where ω = √
α(α/4 − γ /m). We observe that this protocol

does not depend on λf or tf or demand velocity jumps at the
beginning or end of the protocol. The shortest tf for which
Wxv = 0 is reached in the limit α → 0 is given by

t∗f =

√√√√√ m
(
κλ2

f − (kBT )2

kBT +m�2
v

)
κ (kBT )2

kBT +m�2
v
+ (kBT )2

kBT +κ�2
x

. (53)

This will be the longest interval for which the proposed
protocol λov will be of benefit; for longer times the optimal
protocol λv will be more efficient. In Fig. 7 we compare
protocol λov for different regimes. We note that both in the
underdamped as well as in the overdamped regime, the systems

with memory allow one to attain longer λf that again give
special benefits to protocols measuring the velocity.

VIII. SUMMARY AND CONCLUSIONS

For the paradigm of a colloidal particle bound in a harmonic
potential, we have studied how to extract work controlling the
center of the potential λ(t). We contemplate memory effects,
i.e., non-Markovian properties, in the underdamped regime
and the measurement of position and velocity. We first derive
the general result that optimal work protocols with and without
measurements of position and velocity are shown to be linear
in time, for an exponential memory kernel, as in the Markovian
case. When dealing with the underdamped and non-Markovian
regime one must address forcing the particle at the start and
at the end of a protocol, since the velocities are not instan-
taneously relaxed by the reservoir. Such forcing conditions
dominate the short time dynamics of the colloidal particle.

For protocols without measurement of the position or
velocity, the least work by an external agent decreases linearly
for forced start-stop conditions while those only forced at
starting conditions are quadratic (slower to reduce work by
agent) at short times, while both decrease asymptotically to
zero work for quasiprocesses.

When measurements are performed, protocols with start-
end forcing are still more efficient at short times but can be
overtaken by start-forced protocols at a threshold time. It is
only for measurement protocols that one can extract work from
the particle, for long enough times. Nevertheless, the work
derived is always below the maximum predicted by Sagawa’s
generalization of the second law. Velocity measurement
protocols are more efficient in deriving work than position
measurements, and simultaneous measurements from equilib-
rium states have additive properties in the quasistatic limit.

Finally we derived a nonoptimal protocol that uses velocity
measurements to perform zero work for the short time
dynamics, thus surpassing optimal protocols until the latter
reaches the time at which work can be derived from the system.

As far as we know there are no works in the literature
addressing optimal protocols in non-Markovian systems with
inertia as the one posed in this manuscript. However, it is
relevant to mention work on the inertial Markovian Langevin
equation by Gomez-Marin et al. [30] which was used as the
seminal procedure to treat our problem. As we have shown,
our results coincide with theirs at vanishing decay rate α

of the colored noise. This approach does not exclude other
methodologies to attack this problem without resorting to
the GLE. In fact, Sivak and Crooks [32] derived optimal
protocols by calculating the time variation of work due
to external perturbations through an analysis of the metric
distance, thermodynamic length [33], between equilibrium
states. They found a similar protocol to that of Gomez-Marin
et al. without considering the ad hoc velocity discrete delta
jumps at the beginning and end, because the intrinsic velocity
of protocols in their description changes smoothly at the
boundaries. We assume that our non-Markovian results should
be consistent with this approach and add more information
about the behavior of the system.

Analytical treatment of nonharmonic profiles could be
treated by the following strategy: First derive an appropriate
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fluctuation-dissipation relation for the static external potential
applied in order to arrive at the appropriate GLE. The gener-
alized Fokker-Planck equation follows (subject to analytical
tractability) from which the procedures in this paper can be
used. This is already feasible for the case treated here of a
particle confined in a harmonic potential, but more general
relations have been obtained for smoothly varying external
potential which can include anharmonicities [34]. The authors
in Ref. [14] have also derived fluctuation-dissipation theorems
when there is a time-dependent potential.
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APPENDIX A: THE WORK FUNCTIONAL

To derive the work functional that we use we start from the
expression for the heat in Eq. (7), substituting the form for the
probability currents given in Eq. (2):

〈dQ〉
dt

= kBT

m

∫ t

0
�(t − s)

dχv(t − s)

dt
ds

−
〈
v(t)

∫ t

0
�(t − s)v(s)ds

〉
. (A1)

Substituting into Eq. (5) together with the expression for the
energy, we have

〈W 〉 = m

2
〈v(tf )2〉 + k

m
〈[x(tf ) − λ(tf )]2〉

− m

2
〈v(0)2〉 − k

m
〈[x(0) − λ(0)]2〉

−
∫ tf

0

[∫ t

0

kBT

m
�(t − s)

dχv(t − s)

dt
ds

−
〈
v(t)

∫ t

0
�(t − s)v(s)ds

〉]
dt.

Rewriting in terms of variances and average values one can
write

〈W 〉 = m

2

(
σ 2

v (tf ) − σ 2
v (0)

) + k

2

(
σ 2

x (tf ) − σ 2
x (0)

)
+ k

2
{[〈x(tf )〉 − λ(tf )]2 − [〈x(0)〉 − λ(0)]2}

+ m

2
(〈v(tf )〉2 − 〈v(0)〉2)

−
∫ tf

0

[∫ t

0

kBT

m
�(t − s)

dχv(t − s)

dt
ds

−
〈
v(t)

∫ t

0
�(t − s)v(s)ds

〉]
dt.

To simplify this expression we resort to Eq. (2), from which
we can derive the system of dynamical equations for the first

moments of the positions and velocities,

d〈x〉
dt

= 〈v〉,
d〈v〉
dt

= −
〈∫ t

0

�(t − s)

m
v(s)ds

〉

− k

m
(〈x〉 − λ(t)),

and for their second moments,

d〈x2〉
dt

= 2〈xv〉,
d〈v2〉
dt

= −2

〈
v(t)

∫ t

0

�(t − s)

m
v(s)ds

〉

+ 2
κ

m
(λ(t)〈v〉 − 〈xv〉)

+ kBT

m

∫ t

0
�(t − s)

dχv(t − s)

dt
ds,

d〈vx〉
dt

= 〈v2〉 −
〈
x(t)

∫ t

0

�(t − s)

m
v(s)ds

〉

+ k

m
(λ(t)〈x〉 − 〈x2〉)

+ kBT

m

∫ t

0
�(t − s)χv(t − s)ds.

Using the previous expressions we can write

k

m

dσ 2
x (t)

dt
+ dσ 2

v (t)

dt
+ 2

〈
v(t)

∫ t

0

�(t − s)

m
v(s)ds

〉

− 2
kBT

m

∫ t

0
�(t − s)

dχv(t − s)

dt
ds

= 2〈v(t)〉
〈∫ t

0

�(t − s)

m
v(s)ds

〉
.

Integrating with respect to t from zero to tf one finds∫ tf

0
〈v(t)〉

〈∫ t

0
�(t − s)v(s)ds

〉
dt

= m

2

(
σ 2

v (tf ) − σ 2
v (0)

) + k

2

(
σ 2

x (tf ) − σ 2
x (0)

)
−

∫ tf

0

[∫ t

0

kBT

m
�(t − s)

dχv(t − s)

dt
ds

−
〈
v(t)

∫ t

0
�(t − s)v(s)ds

〉]
dt,

which we can use to reduce the work function to the form

〈W 〉 = m

2
(〈v(tf )〉2 − 〈v(0)〉2) + k

2
{[〈x(tf )〉 − λ(tf )]2

− [〈x(0)〉 − λ(0)]2}

+
∫ tf

0
〈v(t)〉

〈∫ t

0
�(t − s)v(s)ds

〉
dt.

Once we recognize the notation where bold fonts represent
averages over P (x,v,t) we obtain Eq. (8).
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APPENDIX B: OPTIMIZATION PROCEDURE

Given the functional

f [v] =
∫ tf

0
v(t)

∫ t

0
�(t − s)v(s) ds dt, (B1)

which can be more generally written as

f [x] =
∫ tf

0
F(t,x,v)dt, (B2)

then the functional derivative δf [x] is given by

δf [x,h(t)] =
[
df

dε

]
ε=0

=
∫ tf

0

δF(t,x,v)

δx
h(t)dt, (B3)

where h is the variation of x, an auxiliary function, and ẋ = v.
The functional derivative can be expressed as

δf [x,h(t)] =
[

d

dε

∫ tf

0
F(t,x + εh(t),ẋ + εḣ(t))dt

]
ε=0

=
∫ tf

0

[∫ t

0
ḣ(t)�(t − s)ẋ(s)ds

+
∫ t

0
ẋ(t)�(t − s)ḣ(s)ds

]
dt. (B4)

Interchanging the integral limits for the second term, we obtain

δf [x,h] =
∫ tf

0

[∫ t

0
ḣ(t)�(t − s)ẋ(s)ds

+
∫ tf

t

ẋ(s)�(s − t)ḣ(t)ds

]
dt. (B5)

Taking advantage of the parity of the kernel, one can simplify
it to

δf [x,h] =
∫ tf

0
ḣ(t)

∫ tf

0
�(t − s)ẋ(s) ds dt, (B6)

and then integrate by parts to obtain

δf [x,h] =
∫ tf

0
h(t)

d

dt

(∫ tf

0
�(t − s)ẋ(s)ds

)
dt. (B7)

To optimize, the last equation must be set to zero; hence we
find that v must conform to the expression

∫ tf

0
�(t − s)v(s)ds = c. (B8)
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