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Stability of quantum statistical ensembles with respect to local measurements
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We introduce a stability criterion for quantum statistical ensembles describing macroscopic systems. An
ensemble is called “stable” when a small number of local measurements cannot significantly modify the
probability distribution of the total energy of the system. We apply this criterion to lattices of spins-1/2, thereby
showing that the canonical ensemble is nearly stable, whereas statistical ensembles with much broader energy
distributions are not stable. In the context of the foundations of quantum statistical physics, this result justifies
the use of statistical ensembles with narrow energy distributions such as canonical or microcanonical ensembles.
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I. INTRODUCTION

An isolated classical system always has a fixed value of the
total energy. In contrast, an isolated quantum system can be in
a superposition of states with different total energies [1]. This
entails the following difficulty for the foundations of statistical
physics: A typical isolated macroscopic quantum system is
generally expected to thermalize under the action of its internal
dynamics for the overwhelming majority of initial nonequi-
librium states appearing in nature or created in a laboratory
[2–12]. Thermalization implies that the density matrix of any
small subsystem within the large system approaches a form
consistent with the canonical Gibbs density matrix (canonical
ensemble) for the large system. A necessary condition for
an isolated many-particle quantum system to thermalize is a
sufficiently narrow initial probability distribution of its total
energy, as is, for example, the case for the canonical and
the microcanonical statistical ensembles (see below). At the
same time, for an isolated quantum system, the probability
of occupying an energy eigenstate remains unchanged with
time. Thus, a large isolated quantum system with a broad
initial distribution of the total energy thermalizes not to a
conventional equilibrium state with a well-defined temperature
but rather to a mixture or superposition of states with different
temperatures. The problem now is that the initial states
characterized by the narrow distribution of total energy are not
necessarily the most probable ones. For example, non-Gibbs
equilibrium for small subsystems emerges when initial states
are selected in the Hilbert space of a typical many-particle
system among quantum superpositions with a given energy
expectation value and without any constraint on the width of
the energy window for participating eigenstates [13–16]. The
latter condition defines the “quantum microcanonical” (QMC)
ensemble [13,17–21].

Given the above considerations, why do the initial nonequi-
librium quantum states of macroscopic systems not normally
exhibit the broad participation of energy eigenstates and hence
non-Gibbs statistics for small subsystems? In this paper, we
address the above question by introducing the criterion of
stability of quantum statistical ensembles with respect to local
measurements and then apply this criterion to lattices of spins
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1/2. Similar ideas in other contexts have been considered in
Refs. [22,23].

A quantum statistical ensemble for a macroscopic system
is defined by the probability p(E) of occupying an eigenstate
of total energy E. Given the density of energy states ν(E), the
probability distribution of the total energy is

g(E) = p(E)ν(E). (1)

We call g(E) broad when wg/(Eav − Emin) ∼ 1, where w2
g

is the variance of g(E), Eav is the average energy, and
Emin is the ground-state energy of the system. As shown in
Appendix A, a canonical ensemble with a positive temperature
T is narrow from the above perspective, because, in this
case, wg/(Eav − Emin) ∼ 1/

√
Ns � 1, where Ns ∼ 1023 is

the number of particles or microscopic subsystems in the
system, cf. Ref. [16].

The article is organized as follows. Section II provides
the definition of the stability criterion for quantum statistical
ensembles. In Sec. III, the effects of local measurements
are discussed qualitatively. Section IV includes an analytical
investigation of the stability of quantum ensembles for lattices
of spins-1/2, including noninteracting spins in a magnetic field
and systems of interacting spins. Section V presents the results
of numerical investigations for systems of interacting spins.
Final remarks and conclusions are given in Sec. VI. Longer
derivations are included in the Appendices.

II. DEFINITION OF THE STABILITY CRITERION

Let us now observe that accidental measurements of micro-
scopic particles in a macroscopic system cannot be excluded
under any foreseeable natural or experimental conditions.
We, therefore, introduce the following stability criterion: A
physically realizable quantum statistical ensemble describing
a stationary state of a macroscopic system must be stable
with respect to a small number of any arbitrarily chosen local
measurements within the system. The measurement is called
“local” if the measured quantity is localized in the three-
dimensional physical space [24]. The number of measurements
n is called small if n � √

Ns . The ensemble is called stable if

�G(n) ≡
∫ +∞

−∞
|gn(E) − g0(E)|dE � 1, (2)
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where g0(E) and gn(E) are the probability distributions before
and after the measurements, respectively.

The measurements in question are implied to occur natu-
rally, for example, when a passing photon becomes entangled
with the system and accidentally measured later. Without the
measurement, the above process would describe a decoherence
event [25–30].

In the following, we simplify the analysis by assuming
random instantaneous projective measurements of individual
particles in the system [31–35]. Furthermore, we mainly focus
on “strong instability,” which we define as the case when fewer
than 10 measurements lead to �G � 0.1 independent of Ns .

III. EFFECTS OF LOCAL MEASUREMENTS

A. Narrowing vs. broadening

Qualitatively, measurements can lead to both narrowing
and broadening of g(E). The broadening effect of a single
measurement is due to the off-diagonal elements of the
projection operator describing the measurement in the basis of
the total-energy eigenstates. The narrowing effect originates
from correlations between the total energy of the system
and the measurement outcomes. Indeed, broad probability
distributions g(E) can be considered as a mixture of micro-
canonical (or canonical) ensembles corresponding to different
temperatures T (E), which, in turn, imply different probability
distributions of local variables. When a given measurement
outcome is more likely for one represented temperature than
for another, the postmeasurement distribution will be narrower
than the initial one [32]. In terms of the energy scales, the
increase of the variance w2

g due to the off-diagonal elements
of a local projection operator should normally be of the order of
ε2

1 , where ε1 is an appropriately chosen single-particle energy.
The reason is that the quantum projections corresponding to the
local measurements are one-particle or a few particle operators.
At the same time, the decrease of w2

g for broad g(E) can
easily be of the order ε2

1N
2
s , i.e., much larger. Since we focus

primarily on broad g(E), we neglect the broadening effect of
the measurements unless explicitly specified otherwise. We
further limit our derivations to g(E) satisfying inequality∣∣∣∣dg(E)

dE

∣∣∣∣ � g(E)

wcan
, (3)

where wcan is the width of the energy distribution correspond-
ing to the canonical ensemble with the same average energy
as that of g(E).

B. Heating effect of measurements

For an ensemble with narrow energy distribution g(E), such
as the canonical ensemble, the above-mentioned broadening
effect also leads to heating, defined as the drift of the average
energy Eav in the direction of larger entropy S(Eav) (larger
value of ln[ν(Eav)]). This means that Eav increases for positive
temperatures and decreases for negative ones. Such a behavior
is consistent with the second law of thermodynamics, because
local measurements of individual particles can be viewed as
small nonadiabatic perturbations of the system. For positive
temperatures T , the increase of Eav due to one measurement
is of the order of the one-particle energy ε1.

A broad ensemble can be considered as a mixture of
canonical ensembles with different temperatures. The heating
for each of the contributing canonical ensembles occurs as
explained above. Therefore, the overall heating effect for a
broad ensemble corresponds to the combination of the heating
effects for the individual canonical ensembles. In a system
with a finite Hilbert space, the asymptotic shape of g(E)
corresponds to the canonical ensemble at infinite temperature,
which is, in turn, proportional to the density of states ν(E) of
the system.

C. Coarse graining of the energy axis

Our definition of g(E) implies averaging over energy bins
whose width �e satisfies the following inequalities:

ε1 � �e � T (Eav)
√

CV (Eav). (4)

In the case of negative temperatures, |T (Eav)| should be used
instead.

The left inequality in Eq. (4) together with the restriction
n � √

Ns and the inequality (3) allows us to neglect heating
described in the preceding part. The right inequality in
Eq. (4) assures that the energy eigenstates within each bin
approximately correspond to the same density matrices of
small subsystems within the entire system considered.

The probability distribution gn(E) is defined in terms of the
above energy bins as follows:

gn(E) = 1

�e

bin(E)∑
k

(ρn)kk, (5)

where the sum is taken over all energy eigenstates within
the given bin and (ρn)kk are the diagonal elements of the
density matrix ρn represented in the basis of the total-energy
eigenstates.

IV. LATTICES OF SPINS-1/2

Now we consider a lattice of Ns spins-1/2 and examine
how multiple random local measurements affect g(E). We
implement an individual local measurement by selecting a
random spin at a random time and then measuring its projection
on a random axis. The measurements are assumed to occur very
rarely with constant average rate per spin τ−1

m (τm is much
longer than the characteristic time of microscopic dynamics).
We label measurements by index n. Each measurement is
characterized by the parameters {mn,ϑn,ϕn}, where mn labels
the lattice site of the measured spin and (ϑn,ϕn) are the polar
and azimuthal spherical angles indicating the orientation of
the spin after the measurement.

A. Projection operator

The projection operator Pn, which represents the nth
measurement, is defined as

Pn ≡ · · · 1mn−1 ⊗ (|ϑnϕn〉〈ϑnϕn|)mn
⊗ 1mn+1 · · · , (6)

where 1i is the unit matrix acting on the Hilbert space associ-
ated with the spin at lattice site i and |ϑnϕn〉 = cos (ϑn

2 )|↑〉z +
sin (ϑn

2 )eiϕn |↓〉z is the quantum state of a spin polarized into the
direction given by the spherical angles (ϑn,ϕn). The operator
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(|ϑnϕn〉〈ϑnϕn|)mn
acts on the Hilbert space associated with the

spin at lattice site mn. The operator Pn satisfies the relations
P†

n = Pn and PnPn = Pn.
The operator Pn is related to the operator Sn of the mnth

spin projection in the direction (ϑn,ϕn) [36] as

Pn = 1
2 1 + Sn, (7)

where � = 1.

B. Evolution of the energy distribution g(E):
General formalism

We denote the density matrix of the total system after
n measurements as ρn and assume that the initial density
matrix ρ0 is diagonal in the basis of the energy eigenstates
(see Appendix B). The transformation from ρn−1 to ρn reads

ρn = Pne
−iH(tn−tn−1)ρn−1e

iH(tn−tn−1)P†
n

Tr
[
Pne−iH(tn−tn−1)ρn−1eiH(tn−tn−1)P†

n

] , (8)

where tn is the time of the nth measurement. The corresponding
probability distribution of the total energy after n measure-
ments gn(E) can be expressed as

gn(E) = 1

B

[
P†

1e
iH(t2−t1)P†

2 · · ·P†
n

×Pn · · ·P2e
−iH(t2−t1)P1

]
diag(E) g0(E), (9)

where B is a normalization factor, and [· · · ]diag(E) denotes the
diagonal elements of the operator in the energy basis averaged
over suitably chosen energy bins introduced in Sec. III C. The
derivation of Eq. (9) is given in Appendix B.

Since the measured spins are typically far away from each
other, the effect of individual measurements in Eq. (9) normally
factorizes, which leads to

gn(E) = 1

Bn

[Pn]diag(E) gn−1(E), (10)

where Bn is a normalization factor. The derivation of Eq. (10)
is given in Appendix C. Below we consider the case when two
measured spins are accidentally close to each other such that
the corresponding effect does not factorize.

The stability measure (2) averaged over all possible
outcomes of n measurements reads (see Appendix F)

�G(n) =
∫ ∣∣∣∣∣

n∏
i=1

1

Bi

[Pi]diag(E) − 1

∣∣∣∣∣g0(E)dE, (11)

where the bar denotes the result of averaging.

C. Noninteracting spins in a magnetic field

Let us now turn to the example of noninteracting spins in
magnetic field Hz with Hamiltonian

H = −Hz

∑
i

Siz, (12)

where Six , Siy , and Siz are the spin operators on the ith lattice
site. In this case, the outcome of a single spin measurement
normally correlates with the total energy of the system and,

g0(E)

E

1

0

E1 E2

[P1]diag
(E)

(a)

g1(E)

E

1

0

E1 E2

[P2]diag
(E)

(b)

g2(E)

E

1

0

Emin EmaxE1 E2

(c)

FIG. 1. Schematic representation of the evolution of a two-peak
energy distribution gn(E) (solid red lines) governed by Eq. (10):
g0(E) = 1/2[δ(E − E1) + δ(E − E2)]; g1(E) ∼= [P1]diag(E) g0(E);
and g2(E) ∼= [P2]diag(E) g1(E). Here [P1]diag(E) and [P2]diag(E)
(dashed blue lines) correspond to two single-spin measurements with
respective outcomes ϑ1 = π and ϑ2 = π substituted in Eq. (13).

therefore, leads to a significant narrowing of g(E) governed by
Eq. (10). A calculation based on Eq. (7) gives (see Appendix D)

[Pn]diag(E) = 1

2
− cos(ϑn)

E

Emax − Emin
, (13)

where Emax = HzNs/2 and Emin = −HzNs/2.
The action of transformation (10) consists of “cutting”

gn−1(E) by function [Pn]diag(E) and then renormalizing the
result. This “cutting” normally makes gn(E) narrower than
gn−1(E). The outcome of the next measurement can, in
principle, lead to the opposite effect, but it is more probable
that it will lead to further narrowing, because the probability
of subsequent measurement outcomes is determined by the
narrower gn(E). After many iterations, the drastic narrowing
of g(E) becomes overwhelmingly probable.

Figure 1 schematically illustrates the effect of a sequence of
transformations (10) applied to the initial two-peak distribution

g0(E) ≈ 1
2 [δ(E − E1) + δ(E − E2)], (14)

where δ(. . . ) is a Dirac δ function [37]. In this case, one
of the two peaks dominates gn(E) for n → ∞. Figure 2
presents computed �G(n) for the above g0(E). In each
case, we obtain that, after nine measurements, �G(n) > 0.1
independent of the number of spins in the system, which
implies “strong instability.” In Appendix F, we obtained the
analytical approximation

�G(n) ≈
√

1 − e−λn, (15)

where λ ∼= u2(E2 − E1)2 with u ≡ |d[Pn]diag(E)/dE| ∼ 1/

(Emax − Emin). This approximation is illustrated in Fig. 2.
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FIG. 2. Averaged ensemble stability measure �G(n) as a function
of the number of measurements n for a two-peak initial distribution
gn(E). Points represent exact numerically computed results as
explained in Appendix E. Lines correspond to the approximated
expression (15) with λ = 0.3 (E1−E2)2

(Emax −Emin)2 . Different colors represent

different pairs of values for (E1,E2): blue (circles) (−0.9,0.9), yellow
(squares) (−0.9,0.0), and green (rhombi) (−0.9, − 0.6) in units where
Emin = −1 and Emax = 1.

Let us now consider the initial Gaussian distribution

g0(E) ∼= exp

[
− (E − E0)2

2w2
g,0

]
, (16)

defined by parameters E0 and wg,0, where wg,0 �Emax−Emin.
After n measurements, gn(E) remains approximately Gaussian
with the width wg,n following the relation

1

w2
g,n

= 1

w2
g,0

+ u2n, (17)

which is derived in Appendix G. This relation leads to
�G(n) ∼ 1 when 1/w2

g,n ∼ 2/w2
g,0, which corresponds to

the number of measurements ncr ∼ 1/(w2
g,0u

2). According
to our criterion, the border case for the ensemble stability
corresponds to ncr ∼ √

Ns , which implies that the ensemble is
unstable for wg,0 � (Emax − Emin)/4

√
Ns . An ensemble with

wg,0 � (Emax − Emin)/ 4
√

Ns may still become narrower due to
measurements, but the criterion calls it “stable,” because the
narrowing is relatively slow.

1. Absolute stability of the canonical ensemble

We finally note that, for wg,0 ∼ ε1
√

Ns , where ε1 ≡
(Emax − Emin)/Ns is the characteristic single-spin energy, the
decrease of the variance as a result of one measurement
is w2

g,1 − w2
g,0 ≈ w4

g,0u
2 ∼ ε2

1 . This is of the same order of
magnitude as the earlier mentioned increase of w2

g associated
with the broadening effect of g(E) caused by the off-diagonal
elements of the projection operator. Therefore, it is reasonable
to expect that, for some wg,0 ∼ ε1

√
Ns , the narrowing effect of

measurements would compensate the broadening effect, and
hence such an ensemble is absolutely stable with respect to
measurements. Remarkably, this wg,0 is of the order of the
width of the canonical ensemble for T � ε1 [38,39].

2. Characteristic ensemble-narrowing time

Given that the system is measured on average once per time
τm/Ns , the above estimates for λ and for ncr imply that the
characteristic time to gain �G ∼ 1 for a broad ensemble with
the initial variance w2

g,0 is

τc ∼ τm

ε2
1Ns

w2
g,0

. (18)

For a macroscopic system, τc is, therefore, extremely short
unless wg,0 � ε1

√
Ns .

D. Interacting spins

Now we turn to the Hamiltonian of nearest-neighbor
interaction:

H = −
∑
i<j

JxSixSjx + JySiySjy + JzSizSjz, (19)

where Jx , Jy , and Jz are the coupling constants. In contrast
to the previous case (12), the outcome of a single-spin
measurement here is not correlated with the total energy of the
system, i.e., [Pn]diag(E) = const, and, hence, does not induce
narrowing of g(E). At least two accidental measurements
sufficiently close in space and time are required for this.
Let us consider two such measurements n and n − 1 at times
tn > tn−1. The same treatment that led to Eq. (10) now gives
(see Appendix H)

gn(E) = 1

Bn

[A†
n,n−1An,n−1]diag(E) gn−2(E), (20)

where An,n−1 = Pne
−iH(tn−tn−1)Pn−1. Substituting Eq. (7), we

obtain in Appendix H

[A†
n,n−1An,n−1]diag(E)

= 1
4 + 1

2 [{Sn−1(tn−1),Sn(tn)}]diag(E)

+ [Sn−1(tn−1)Sn(tn)Sn−1(tn−1)]diag(E), (21)

where { · · · , · · · } is the anticommutator.

1. Relation to equilibrium spin correlation functions

Once the spin orientations obtained in the (n − 1)-st and
the nth measurements are specified and the energy E is fixed,
the last two terms on the right-hand side of Eq. (21) can
be considered equilibrium spin correlation functions for the
microcanonical ensemble corresponding to energy E [40].
For macroscopic systems, these correlation functions equal,
in turn, the correlation functions for the canonical ensemble
with temperature T (E).

To give an example, let us assume that the outcome of
the first measurement is ϑ1 = 0, ϕ1 = 0 (spin 1 points into
the positive z direction) and the outcome of the second
measurement is ϑ2 = π

2 , ϕ2 = 0 (spin 2 points into the positive
x direction). For the two-spin term, we then obtain

[{S2(t2),S1(t1)}]diag(E) = 〈{Sx(�r2,t2),Sz(�r1,t1)}〉T (E), (22)

where �rn is the position of the nth measured spin.
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2. Characteristic ensemble-narrowing time

The above spin correlation functions depend on the time de-
lay and the distance between the two measurements. Therefore,
the cutting function in Eq. (21) is strongly influenced by the
presence of long-range magnetic order and integrals of motion.
We characterize the overall behavior of the spin correlation
functions by correlation time τcorr(E) and correlation length
ξ (E). If a system has constants of motion associated with spin
polarizations, this corresponds to an infinite τcorr(E). Likewise,
if a system exhibits long-range magnetic ordering in a range
of energies E, this means that for this range of energies ξ (E)
is infinite. [It is worth noting that the correlation functions
entering Eq. (21) differ from the conventional correlation
functions of spin fluctuations: For the latter the product of
single-spin expectation values is subtracted.]

Ordered phase. If a significant part of a broad g0(E)
corresponds to temperatures within the magnetically ordered
phase, then the characteristic time τc to gain �G ∼ 1 can be
estimated by expression (18). The reason is that, in the mag-
netically ordered phase, ξ (E) is infinite and, therefore, each
measurement correlates with all previous ones in the sense that,
for all subsequent measurements k, [Sn(tn)Sk(tk)]diag(E) �= 0.
The overall situation resembles the case of Hamiltonian (12),
with the external magnetic field replaced by the local field
created by the ordered neighbors of each spin.

Nonordered phase. In the nonordered (paramagnetic)
phase, ξ (E) is of the order of the nearest-neighbor distance
(except for the energy range in the proximity to the magnetic
phase transitions). We make the assumption justified by the
final result that τc � τcorr(E) for all energies E, where τcorr(E)
is the correlation time introduced above. Therefore, we set the
time delay entering the cutting function in Eq. (21) effectively
to zero. Since τc � τcorr, the outcome of the nth measurement
addressing a nearest-neighbor of a previously measured spin is
correlated with the total energy of the system. The probability
that the nth measurement does not address a nearest-neighbor
of a previously measured spin is Pn = 1 − (n − 1)NNN

Ns
for

n � Ns , where NNN is the number of nearest neighbors.
The probability that, among n measurements, there is no
nearest-neighbor pair measured, is

P (n) =
n∏

k=1

Pn =
n∏

k=1

[
1 − (k − 1)

NNN

Ns

]

≈ exp

(
−NNN

Ns

n∑
k=1

k

)
≈ e−n2 NNN

Ns (23)

for 1 � n � Ns . Using the relation n = Nst

τm
, we finally obtain

the probability that, after time t , no pair of nearest neighbors
is measured,

P (t) ≈ e
−NNNNs

t2

τ2
m . (24)

Accordingly, 1 − P (t) is the probability to measure at least
one pair of nearest neighbors. Therefore, for the paramagnetic
phase and wg,0 ∼ Emax − Emin, we obtain τc ∼ τm/

√
Ns [41].

If only single-spin measurements were allowed, then the latter
ensemble would be called stable according to our criterion.
However, the criterion admits any local measurements, in-
cluding, for example, the measurements of the total spin of

two neighboring spins. For such measurements, the estimate
(18) remains valid, thus rendering the ensemble unstable.

We additionally note here that applying an external mag-
netic field to the paramagnetic phase would drastically shorten
τc, because, in this case, single-spin measurements described
by Eq. (13) would cause a much faster ensemble narrowing.

E. General case

Beyond the Hamiltonians (12) and (19), we expect that, for
a broad class of systems with short-range interactions, local
measurements whose possible outcomes correlate with the
total energy of the system have a narrowing effect comparable
to that of single-spin measurements for Hamiltonian (12). In
the general case, the analog of the cutting function [Pn]diag(E)
is much more difficult to calculate directly but, otherwise,
can be reasonably expected to be nonlinear with the energy-
dependent slope of the order of 1/(ε1Ns). The latter implies
that the estimate (18) for the ensemble-narrowing time and the
argument for the proximity of the canonical ensemble to the
absolute stability threshold remain valid.

V. NUMERICAL INVESTIGATION OF SPIN SYSTEMS

In order to substantiate the conjectures made in the previous
section, we numerically investigate a periodic chain of 24
spins-1/2 governed by the Hamiltonian (19) with Jx = 0.47,
Jy = −0.37, and Jz = −0.79. The spins are measured in
pairs: An odd-numbered measurement is done on a randomly
selected spin, while one of its nearest neighbors is chosen
for the next even-numbered measurement. The time delays
tn − tn+1 are chosen randomly from the interval [0,2]. The
numerical techniques used for the calculations are described
in Appendix I.

In Fig. 3, we show a typical evolution of g(E) starting
with a two-peak g0(E) corresponding to the superposition
of two quantum states representing canonical ensembles
with temperatures T1 = 0.1 and T2 = −0.1. In this example,
one peak of g(E) becomes significantly suppressed, which
represents the narrowing sketched in Fig. 1.

FIG. 3. The energy distribution gn(E) is shown after each even-
numbered measurement as indicated in the legend. The system size
is Ns = 24.
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FIG. 4. The quantity Eav,n−Eav,0
Emax−Emin

is shown for the interacting spin
system introduced in Sec. V. The energy distribution corresponds to
the Gibbs distribution with the temperature T = 0.1. Different system
sizes were chosen as indicated in the legend. The plotted values have
been averaged over many iterations. The points are connected by lines
in order to guide the eye.

Adapting estimate (18) to the present case of spin-pair
measurements, we substitute Ns = 24, pair measurement time
τm ≈ 2Ns , pair energy ε2

1 ≈ 0.25(J 2
x + J 2

y + J 2
z ) = 0.25, and

wg ≈ 0.2Ns (see Fig. 3) to obtain from Eq. (18) τc ∼ 12
corresponding to n ∼ 12 and within a factor of two consistent
with the characteristic value n ∼ 6 extracted from Fig. 3.

We further tested the finite-size scaling of heating in small
spin systems. As expected, the individual peaks in Fig. 3 also
exhibit significant finite-size effects, namely peak broadening
and the drift of the peak maxima associated with heating,
which prevent us from computing �G(n) representative of the
macroscopic limit. However, as we show below, the finite-size
scaling of the heating is consistent with our expectation that
they can be neglected in the macroscopic limit.

In order to quantify the heating for the small system
sizes available in numerical investigations, we calculate the
deviation of the average energy Eav from its initial value
Eav,0 for a one-peak g(E) corresponding to the canonical
ensemble with the temperature T = 0.1. In Fig. 4, we show
the evolution of Eav,n−Eav,0

Emax−Emin
as a function of n. In this case,

we randomly measure spins individually (i.e., not in pairs)
after time delays chosen randomly from the interval [0,2]. The
results indicate that the heating becomes relatively weaker
with increasing system sizes, which is in agreement with the
general expectations from our analytical considerations.

VI. CONCLUSIONS

Let us now make two final remarks.
(1) According to our stability criterion, ensembles with

broad g(E) are not stable. In particular, the QMC ensemble
[13] is not stable with respect to local measurements, because
it implies g(E) having the form of two widely separated peaks
corresponding to T = 0 and T = ∞, respectively [13].

(2) Our stability analysis can also be applied to un-
conventional quantum ensembles in experiments with non-

macroscopic isolated quantum clusters [22,42–48]. Adapting
the obtained results to such systems implies that the above
experiments should avoid (i) external magnetic fields, (ii)
long-range order, and (iii) local constants of motion.

In conclusion, we have shown that even relatively rare local
measurements impose strict constraints on quantum statistical
ensembles. We introduced a stability criterion, according
to which quantum statistical ensembles characterized by a
total energy distribution significantly broader than that of
a canonical ensemble are unstable. This result justifies the
use of statistical ensembles with narrow g(E) for equilibrium
description of macroscopic systems.
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APPENDIX A: WIDTH OF g(E) FOR
THE CANONICAL ENSEMBLE

For the canonical ensemble,

g(E) = 1

Z
e−βEν(E) = 1

Z
e−βE+S(E), (A1)

where Z = ∫ ∞
−∞ e−βEν(E)dE is the partition function, β ≡ 1

T

(kB = 1) is the inverse temperature, and S(E) ≡ ln [ ν(E)
ν0

] is
the entropy (ν0 is an unimportant constant).

The distribution g(E) can be approximated by a Gaussian
function exp [− (E−Eav)2

2w2
g

], where Eav is defined by the condition

β = S ′(Eav) with S ′(E) ≡ dS(E)
dE

. Expanding the exponent in
Eq. (A1) at Eav up to the second order, we obtain

wg =
√

− 1
d2S(E)
dE2

∣∣
Eav

= T (Eav)

√
dE(T )

dT

∣∣∣∣
T (Eav)

= T (Eav)
√

CV [T (Eav)], (A2)

where CV (T ) ≡ dE(T )
dT

is the total specific heat of the system,
T (Eav) = 1

β(Eav) , and β(E) is the inverse function of E(β)

defined above. Typically, CV ∼Ns . Therefore, wg

Eav−Emin
∼ 1√

Ns
,

which means that g(E) is sharply peaked.

APPENDIX B: DERIVATION OF EQ. (9)

We denote the initial density matrix of the macroscopic
system as ρ0. We choose ρ0 to be diagonal in the basis of the
energy eigenstates |Ei〉,

ρ0 =
∑

i

(ρ0)ii |Ei〉〈Ei |. (B1)

By doing this, we assume that the off-diagonal elements of
ρ0, even if initially present, would have a negligible effect on
the subsequent evolution of g(E) due to the rapid dephasing
between states having macroscopically different values of
energy.
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The transformation from ρn−1 to ρn given in Eq. (8) can be
iterated to obtain the transformation from ρ0 to ρn,

(ρn)kl = 1

B
〈Ek|Oρ0O†|El〉, (B2)

where (ρn)kl = 〈Ek|ρn|El〉, B is a normalization factor, and

O = Pne
−iH(tn−tn−1)Pn−1 · · ·P2e

−iH(t2−t1)P1e
−iHt1 . (B3)

We are interested in the total-energy distribution and, therefore,
focus on (ρn)kk , i.e., the diagonal elements of the density matrix
in the total-energy basis. Substituting Eq. (B3) and Eq. (B1)
into Eq. (B2), we obtain after a transformation

(ρn)kk = 1

B
〈Ek|O

(∑
i

(ρ0)ii |Ei〉〈Ei |
)
O†|Ek〉, (B4)

= 1

B
(ρ0)kk〈Ek|O|Ek〉〈Ek|O†|Ek〉

+ 1

B
〈Ek|O

⎛
⎝∑

i,i �=k

(ρ0)ii |Ei〉〈Ei |
⎞
⎠O†|Ek〉. (B5)

Using the identity |Ek〉〈Ek| = 1 − ∑
i,i �=k |Ei〉〈Ei |, we further

rewrite Eq. (B5) as

(ρn)kk = 1

B
(ρ0)kk〈Ek|O†O|Ek〉

− 1

B

∑
i,i �=k

(ρ0)kk〈Ek|O†|Ei〉〈Ei |O|Ek〉

+ 1

B

∑
i,i �=k

(ρ0)ii〈Ei |O†|Ek〉〈Ek|O|Ei〉. (B6)

Now we introduce the coarse graining of the energy axis,
which means that we divide the energy axis into bins of width
�e introduced above. Substituting Eq. (B6) into Eq. (5), we
obtain

gn(E) = 1

�eB

bin(E)∑
k

(ρ0)kk〈Ek|O†O|Ek〉

− 1

�eB

bin(E)∑
k

∑
i,i �=k

(ρ0)kk〈Ek|O†|Ei〉〈Ei |O|Ek〉

+ 1

�eB

bin(E)∑
k

∑
i,i �=k

(ρ0)ii〈Ei |O†|Ek〉〈Ek|O|Ei〉, (B7)

where
∑

[without bin(E)] denotes a sum which is not
restricted to the bin.

Now we show that the first term in Eq. (B7) makes the main
contribution to gn(E), while the last two terms in Eq. (B7)
mainly compensate each other. To show this, we split each
unrestricted sum into two sums, where one sum extends over
the energy eigenstates within the bin, while the other one
extends over the energy eigenstates outside the bin. The latter

sum is to be denoted as
∑bin(E). We also use the relation

〈Ek|O†|Ei〉〈Ei |O|Ek〉 = |〈Ei |O|Ek〉|2. Hence, we obtain for

the last two terms in Eq. (B7)

− 1

�eB

bin(E)∑
k

bin(E)∑
i,i �=k

(ρ0)kk|〈Ei |O|Ek〉|2

− 1

�eB

bin(E)∑
k

bin(E)∑
i

(ρ0)kk|〈Ei |O|Ek〉|2

+ 1

�eB

bin(E)∑
k

bin(E)∑
i,i �=k

(ρ0)ii |〈Ek|O|Ei〉|2

+ 1

�eB

bin(E)∑
k

bin(E)∑
i

(ρ0)ii |〈Ek|O|Ei〉|2. (B8)

Now the two terms in Eq. (B8) where both sums are restricted
to bin(E) cancel each other. This can be readily seen after
exchanging the summation indices i and k in one of these
two terms. The remaining terms in Eq. (B7) can be further
rewritten as

gn(E) = 1

�eB

bin(E)∑
k

(ρ0)kk〈Ek|O†O|Ek〉

− 1

�eB

bin(E)∑
k

(ρ0)kk

⎛
⎝bin(E)∑

i

|〈Ei |O|Ek〉|2
⎞
⎠

+ 1

�eB

bin(E)∑
i

(ρ0)ii

(
bin(E)∑

k

|〈Ek|O|Ei〉|2
)

. (B9)

The last two terms of Eq. (B9) contain off-diagonal elements
|〈Ei |O|Ek〉|2 corresponding to transitions between energy
bins, because Ek and Ei lie in different bins. Let us denote the
characteristic energy range |Ek − Ei | of the off-diagonal ele-
ments 〈Ek|O|Ei〉 as �O. This range is limited by the condition

�O ∼ ε1n � �e. (B10)

Therefore, only small energy intervals of length �O near the
boundaries between the bins contribute to the sums. As shown
in Fig. 5, we label these energy intervals as X−, X−, X+ and
X+. With such notations, Eq. (B9) can be rewritten as

gn(E) = 1

�eB

bin(E)∑
k

(ρ0)kk〈Ek|O†O|Ek〉

− 1

�eB

X−∑
k

(ρ0)kk

⎛
⎝ X−∑

i

|〈Ei |O|Ek〉|2
⎞
⎠

− 1

�eB

X+∑
k

(ρ0)kk

⎛
⎝ X+∑

i

|〈Ei |O|Ek〉|2
⎞
⎠

+ 1

�eB

X−∑
i

(ρ0)ii

(
X−∑
k

|〈Ek|O|Ei〉|2
)

+ 1

�eB

X+∑
i

(ρ0)ii

(
X+∑
k

|〈Ek|O|Ei〉|2
)

. (B11)

062106-7



WALTER HAHN AND BORIS V. FINE PHYSICAL REVIEW E 94, 062106 (2016)

ΔO

bin(E)

ΔO ΔO ΔO

bin(E)bin(E)

Δe

X− X− X+ X+
E

FIG. 5. Schematic representation of the energy intervals bin(E), bin(E), X−, X−, X+, and X+, introduced in the text. The characteristic
size of the intervals �e and �O are indicated above.

Now we show that the last four terms in Eq. (B11) can
be neglected in comparison with the first one, provided g0(E)
does not change too fast. Specifically, we impose the condition
(3), which together with the inequalities (4) yields

∣∣∣∣dg0(E)

dE

∣∣∣∣ � g0(E)

wcan
� g0(E)

�e

, (B12)

where wcan = T (Eav)
√

CV (Eav) is the width of the energy
distribution corresponding to the canonical ensemble with the
same initial average energy as that of g0(E). The condition in
Eq. (B12) must be satisfied within the energy interval, where
g0(E) is large enough to make a non-negligible contribution
to the normalization integral

∫ ∞
−∞ g0(E)dE = 1.

In the first term of Eq. (B11), we expect that, even if (ρ0)kk

and 〈Ek|O†O|Ek〉 fluctuate with respect to their bin-averaged
values, they do it in an uncorrelated way. According to Eq. (5),
the bin-averaged value of (ρ0)kk is �eg0(E)/Nbin(E), where
Nbin(E) is the number of states within the bin. We define the
bin average of 〈Ek|O†O|Ek〉 as

[O†O]diag(E) ≡ 1

Nbin(E)

bin(E)∑
k

〈Ek|O†O|Ek〉. (B13)

Given the right inequalities in Eqs. (5) and (B12), both bin
averages change very weakly over the bin size �e. Therefore,
we can approximate the entire first term in Eq. (B11) as

1

�eB

bin(E)∑
k

(ρ0)kk〈Ek|O†O|Ek〉 ≈ 1

B

[
O†O

]
diag(E) g0(E).

(B14)

Each of the remaining four terms in Eq. (B11) has comparable
values. Let us estimate the first of them. We use the following
inequality

X−∑
i

|〈Ei |O|Ek〉|2 �
∑

i

|〈Ei |O|Ek〉|2 = 〈Ek|O†O|Ek〉,

(B15)

where, as before, the second sum extends over all energy
eigenstates of the system. Employing this inequality together

with the assumptions used for deriving Eq. (B14), we obtain

1

�eB

X−∑
k

(ρ0)kk

⎛
⎝ X−∑

i

|〈Ei |O|Ek〉|2
⎞
⎠

� 1

�eB

X−∑
k

(ρ0)kk〈Ek|O†O|Ek〉

≈ 1

�eB

X−∑
k

(ρ0)kk[O†O]diag(E)

≈ 1

B
[O†O]diag(E)

�O
�e

g0(E). (B16)

Since �O
�e

� 1, Eqs. (B11), (B14), and (B16) imply that

gn(E) ≈ 1

B
[O†O]diag(E) g0(E), (B17)

which is the same as Eq. (9).

APPENDIX C: DERIVATION OF EQ. (10)

Let us now consider the cutting function in Eq. (B17) or,
equivalently, in Eq. (9)

[O†O]diag(E)

= [
P†

1e
iH(t2−t1)P†

2 · · ·P†
nPn · · ·P2e

−iH(t2−t1)P1
]

diag(E)

= [
P†

1(t1)P†
2(t2) · · ·P†

n(tn)Pn(tn) · · ·P2(t2)P1(t1)
]

diag(E),

(C1)

where, in the last expression, we used P†
k (tk) ≡ eiHtkP†

k e
−iHtk ,

cf. Eq. (B13). Given that n � √
Ns , it is rather unlikely that

among the measured spins m1, m2, . . . ,mn there are two
spins which are close to each other. Therefore, we assume
the corresponding measurement operators P†

k (tk) to commute.
Rearranging the operators in the above expression and using
P†

k (tk)P†
k (tk) = P†

k (tk), we obtain

[O†O]diag(E) = [Pn(tn) · · ·P2(t2)P1(t1)]diag(E). (C2)

On the right-hand side of the above expression, there is
the n-particle correlation function for the microcanonical
ensemble. For systems with short-range interaction, we expect
that correlation functions of mutually independent quantities
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factorize, which leads to

[Pn(tn) · · ·P2(t2)P1(t1)]diag(E)

= [Pn(tn)]diag(E) · · · [P2(t2)]diag(E)[P1(t1)]diag(E). (C3)

This allow us to treat measurements iteratively. Since g(E)
does not change with time between the measurements, the
result does not depend on the particular values of t1, . . . ,tn
and, according to Eq. (B13), Pk(tk) = Pk(0) = Pk . Therefore,
we obtain

gn(E) = 1

Bn

[Pn]diag(E) gn−1(E), (C4)

which is the same as Eq. (10).
For macroscopic systems, the above analysis does not

depend on the particular value of τm. However, for small
clusters, Eq. (C4) is valid as long as the delay between
measurements τm is much longer than the characteristic
time scales of the system’s microscopic dynamics. These
characteristic time scales are, for example, of the order of

1
Hz

for Hamiltonian (12) or of the order of 1
J

= 1√
J 2

x +J 2
y +J 2

z

for

Hamiltonian (19).
There may be anomalous situations, when the expression

(9) for the measurement of a pair of neighboring spins cannot
be approximated by the result of two successive applications
of Eq. (C4) no matter how long the delay between the two
measurements is. An example is the Ising model defined
by Jx = Jy = 0 in Hamiltonian (19) which has anomalously
many local integrals of motion (z components of spins).

APPENDIX D: DERIVATION OF EQ. (13)

The Hamiltonian H = −Hz

∑
i Siz with Hz > 0 for spins

in a magnetic field is diagonal in the product basis of individual
spin states |↑〉z and |↓〉z. Therefore, we obtain for the
expectation value of the z polarization of spin at lattice site mn,

〈Snz〉 = 〈(Sz)tot〉
Ns

= − E

NsHz

= − E

Emax − Emin
. (D1)

With 〈Sn〉 = 〈Snz〉 cos(ϑn), this yields

[Sn]diag(E) = − cos(ϑn)
E

Emax − Emin
, (D2)

which, taking into account the relation Pn = 1
2 1 + Sn, results

in Eq. (13).

APPENDIX E: CALCULATION OF THE RESULTS
SHOWN IN FIG. 2

Substituting g0(E) = 1
2 [δ(E − E1) + δ(E − E2)] into

Eq. (11), we obtain

�G(n) = 1

2

∣∣∣∣∣
n∏

i=1

1

Bi

[Pi]diag(E1) − 1

∣∣∣∣∣
+ 1

2

∣∣∣∣∣
n∏

i=1

1

Bi

[Pi]diag(E2) − 1

∣∣∣∣∣, (E1)

where the bar denotes the result of averaging. The probability
for obtaining the given measurement outcomes equals the
normalization factor

∏n
i=1 Bi . Given Eq. (13), the above

expression only depends on the polar angles ϑ1, . . . ,ϑn

describing the measurement outcome. This leads to

�G(n) = 1

2

[∫ π

0

n∏
i=1

Bi

∣∣∣∣
n∏

i=1

1

Bi

[Pi]diag(E1) − 1

∣∣∣∣∣ sin(ϑ1)

· · · sin(ϑn) dϑ1 · · · dϑn

+
∫ π

0

n∏
i=1

Bi

∣∣∣∣∣
n∏

i=1

1

Bi

[Pi]diag(E2) − 1

∣∣∣∣∣ sin(ϑ1)

· · · sin(ϑn) dϑ1 · · · dϑn

]
(E2)

= 1

2

[∫ π

0

∣∣∣∣∣
n∏

i=1

[Pi]diag(E1) −
n∏

i=1

Bi

∣∣∣∣∣ sin(ϑ1)

· · · sin(ϑn) dϑ1 · · · dϑn

+
∫ π

0

∣∣∣∣∣
n∏

i=1

[Pi]diag(E2) −
n∏

i=1

Bi

∣∣∣∣∣ sin(ϑ1)

· · · sin(ϑn) dϑ1 · · · dϑn

]
. (E3)

Using Eq. (13), we further obtain
n∏

i=1

Bi =
∫ n∏

i=1

[Pi]diag(E)g0(E)dE

= 1

2

n∏
i=1

(
1

2
− cos(ϑi)

E1

Emax − Emin

)

+ 1

2

n∏
i=1

(
1

2
− cos(ϑi)

E2

Emax − Emin

)
. (E4)

Substituting the last expression into Eq. (E3), the two sum-
mands in Eq. (E3) are identical and this leads to

�G(n) = 1

2

∫ π

0

[∣∣∣∣∣
n∏

i=1

(
1

2
− cos(ϑi)

E1

Emax − Emin

)

−
n∏

i=1

(
1

2
− cos(ϑi)

E2

Emax − Emin

)∣∣∣∣∣
]

sin(ϑ1) · · · sin(ϑn) dϑ1 · · · dϑn. (E5)

Integrating the above expression numerically, we obtain the
results shown in Fig. 2.

APPENDIX F: DERIVATION OF THE APPROXIMATION
FOR �G(n) PLOTTED IN FIG. 2

In this section, we derive the analytical approximation for
�G(n) used in Fig. 2. From relation (C4), we obtain

gn(E) =
n∏

i=1

1

Bi

[Pi]diag(E) g0(E). (F1)

The substitution of this expression into Eq. (2) leads to

�G(n) =
∫ +∞

−∞

∣∣∣∣∣
n∏

i=1

1

Bi

[Pi]diag(E) − 1

∣∣∣∣∣g0(E)dE, (F2)

which, after averaging, gives Eq. (11).
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For the initial distribution g0(E) = 1
2 [δ(E − E1)

+ δ(E − E2)], Eq. (F1) leads to gn(E) = p1δ(E − E1) +
p2δ(E − E2) with some probabilities p1 and p2

(p1 + p2 = 1). We further note that for n → ∞, either
p1 → 0 or p2 → 0, such that �G(n) = |p1 − p2| → 1.

In order to find an approximate expression for �G(n), let
us first observe that

�G2(n) ≈ [�G(n) − �G(n − 1)]2 + �G2(n − 1), (F3)

because �G(n) − �G(n − 1) ≈ 0. Therefore, we make the
ansatz �G2(n) = ∑n

i=1 γ 2
i , where γi = �G(i) − �G(i − 1).

Since the individual summands γ 2
i become smaller as �G2(n)

approaches 1, we make the rough approximation γ 2
i

∼= 1 −
�G2(n), which, in the continuum limit for n, leads to the

differential equation d�G2(n)
dn

= λ[1 − �G2(n)], where λ is

some constant. Assuming that �G2(n) ≈ �G
2
(n), we obtain

�G(n) ≈
√

1 − e−λn. (F4)

We further adopt an approximation

λ = κ u2(E1 − E2)2, (F5)

where u ≡ |d[Pn]diag(E)/dE|, and κ is a fitting parameter.
The expression in Eq. (F5) can be justified by the following
considerations. The parameter λ must be equal to 0 when
E1 = E2. Also, λ must remain invariant under a sign change
of E1 − E2. Therefore, the lowest-order term allowed in
an analytical expansion of λ around 0 is proportional to
(E1 − E2)2. Assuming that the value of λ is only controlled
by u and E1 − E2, we conclude that u must also enter
quadratically in order for λ to be dimensionless.

In Fig. 2, all three curves have been plotted with the same

value for the parameter κ such that λ = 0.3 ( E1−E2
Emax−Emin

)
2
.

The above approximation can be further supported by
a more detailed calculation of �G(n) in which case the
expression for �G(n) in Eq. (F2) is to be averaged over
all possible measurement outcomes. For this average, �G(n)
must be weighed by the probability for a given set of n

measurement outcomes, which equals the normalization co-
efficient

∏n
i=1 Ni = ∫ ∏n

i=1 [Pi]diag(E) g0(E)dE. Let us now
make a simplifying assumption that the spin measurements
are only done along the z direction. Consequently, there are
two possible measurement outcomes: positive (ϑn = 0) and
negative (ϑn = π ). According to Eq. (D2), the projection
operator is thus [Pi]diag(E) = 1

2 ± E
Emax−Emin

. After averaging
over these two possibilities for each measurement, we obtain

�G(n) = 1

2

n∑
k=0

∣∣Dnp1 (k) − Dnp2 (k)
∣∣, (F6)

where Dnp(k) = (
n

k

)
pk(1 − p)n−k is the binomial distribution

and pi = 1
2 − Ei

Emax−Emin
. The value of �G(n) is governed by the

overlap as function of k between the two binomial distributions
Dnp1 (k) and Dnp2 (k). With an increasing n, this overlap
decreases approximately exponentially, which is consistent
with the asymptotic behavior of �G(n) that follows from
Eq. (F4) for large n.

APPENDIX G: NARROWING OF A GAUSSIAN
PROBABILITY DISTRIBUTION

For a Gaussian distribution

gn−1(E) ∼= exp

[
− (E − Eav)2

2w2
g,n−1

]
(G1)

with the variance w2
g,n−1 � (Emax − Emin)2, the “cutting” by

the linear function [Pn]diag(E) can be expressed as

gn(E) ∼ [Pn]diag(E) e
− (E−Eav)2

2w2
g,n−1 = e

ln([Pn]diag(E))− (E−Eav)2

2w2
g,n−1 . (G2)

It changes the width according to the relation

1

w2
g,n

− 1

w2
g,n−1

=
[

[Pn]′diag(Eav)

[Pn]diag(Eav)

]2

, (G3)

where [Pn]′diag(Eav) = d[Pn]diag(Eav)
dEav

. From Eq. (G3), we obtain[
1

w2
g,n

]
≈ 1

w2
g,0

+ u2 n, (G4)

where u = |[Pn]′diag(Eav)|, and we use [Pn]diag(Eav) ∼ 1.

APPENDIX H: DERIVATION OF Eq. (21)

If two measurements n − 1 and n accidentally occur close
in space and time, the corresponding projection operators
Pn−1(tn−1) andPn(tn) normally do not commute, and the effect
of the two measurements does not factorize. Assuming that all
other measured spins are far away from mn−1 and mn, we ob-
tain for the term describing the effect of the two measurements
entering the expression in Eq. (C3) [A†

n,n−1An,n−1]
diag

(E),

where An,n−1 = Pne
−iH(tn−tn−1)Pn−1. The expression for the

modification of g(E) analogous to Eq. (C4) reads

gn(E) = 1

Bn

[A†
n,n−1An,n−1]diag(E) gn−2(E). (H1)

For the function [A†
n,n−1An,n−1]

diag
(E), we obtain

[A†
n,n−1An,n−1]diag(E)

= [P†
n−1(tn−1)P†

n(tn)Pn(tn)Pn−1(tn−1)]diag(E)

= [Pn−1(tn−1)Pn(tn)Pn−1(tn−1)]diag(E). (H2)

Substituting Eq. (7) leads to Eq. (21), which we rewrite here
[49],

[A†
n,n−1An,n−1]diag(E)

= 1
4 + 1

2 [{Sn−1(tn−1),Sn(tn)}]diag(E)

+ [Sn−1(tn−1)Sn(tn)Sn−1(tn−1)]diag(E), (H3)

where {Sn−1(tn−1),Sn(tn)}≡Sn−1(tn−1)Sn(tn)+Sn(tn)Sn−1(tn−1).
When deriving Eq. (H3), we assumed that the outcomes of
single-spin measurements are not correlated with the total
energy as explained in the main text. This is formally expressed
as [Sn]diag(E) = 0. We further note that the three-spin term in
Eq. (H3) should typically be significantly smaller than the
two-spin term.
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APPENDIX I: NUMERICAL INVESTIGATION
OF SPIN SYSTEMS

For the numerical investigation of interacting spin systems,
we use the approach established in Refs. [50–52]. This
approach is based on the direct integration of the Schrödinger
equation and, hence, does not involve the diagonalization of
the Hamiltonian matrix.

For the numerical study, we employ the property of quantum
typicality, which means that, for quantum systems with very
large Hilbert spaces, a single wave function representing a
certain ensemble, for example, the ensemble given by g(E),
leads to the same average values of interest as the overall
ensemble, cf. Eq. (H3). Therefore, we study the stability of
energy distributions by considering randomly chosen wave
functions.

We prepare the two-peak g0(E) shown in Fig. 3 by creating a
quantum superposition of two pure states, each corresponding
to a canonical ensemble, one with temperature T1 = 0.1 and
the other with temperature T2 = −0.1. In order to prepare
the state at a temperature T1 (or T2), we use the method of
imaginary-time evolution. First, we randomly select a wave
function corresponding to the infinite-temperature limit [51].
Second, we use the relation e−H

T |ψ〉 = e−iHt |ψ〉, where t =
−i 1

T
. For the imaginary time evolution, we use the same

technique as for the one for the real-time evolution introduced
in Refs. [51,53,54] and also explained below.

For the real-time evolution, we use the fourth-order Runge-
Kutta method [51,53,54]

|ψ(t + �t)〉 ≈ |ψ(t)〉 + |ν1〉 + |ν2〉 + |ν3〉 + |ν4〉, (I1)

where |ν1〉 = −iH|ψ(t)〉�t , |ν2〉 = − 1
2 iH|ν1〉�t , |ν3〉 =

− 1
3 iH|ν2〉�t , and |ν4〉 = − 1

4 iH|ν3〉�t . For the Schrödinger
equation, this method corresponds to the fourth-order Taylor
expansion of the time-evolution operator. It was empirically
shown in Ref. [51] that this method is indeed accurate for the
time intervals of interest in the present calculations.

In order to measure individual spins, we first choose a
random direction (ϑn,ϕn) and then, using Eq. (6), calculate
Pn|ψ〉.

For the calculation of the energy distribution gn(E) after the
nth measurement at time tn, we perform the following Fourier
transform [52]

gn(E) ∼=
∫

〈ψ(t + tn)|ψ(tn)〉 eiEt dt. (I2)

In order to do this, we first generate a discrete time series
by time evolving the wave function immediately after each
measurement. In our calculations, the length of the time steps
is 0.025 and the number of these time steps is 2048. After
generating the time series, we multiply it by the Kaiser-Bessel
window function in order to improve the energy resolution.
The Kaiser-Bessel window function is defined as

K(k) ≡
I0

[
πα

√
1 − (

2k
N−1 − 1

)2
]

I0(πα)
, (I3)

where I0 is the zeroth-order modified Bessel function of the
first kind, α is a non-negative real number which determines
the shape of the window, and N = 2048. In our calculations,
we use α = 3. Finally, we Fourier transform the resulting time
series and normalize the distribution in order to obtain gn(E).
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