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We study the relation between flow structure and fluid deformation in steady flows through two-dimensional
heterogeneous media, which are characterized by a broad spectrum of stretching behaviors, ranging from sub- to
superlinear. We analyze these behaviors from first principles, which uncovers intermittent shear events to be at the
origin of subexponential stretching. We derive explicit expressions for Lagrangian deformation and demonstrate
that stretching obeys a coupled continuous-time random walk, which for broad distributions of flow velocities
becomes a Lévy walk. The derived model provides a direct link between the flow and deformation statistics, and
a natural way to quantify the impact of intermittent shear events on the stretching behavior.
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I. INTRODUCTION

The deformation dynamics and stretching history of ma-
terial fluid elements are fundamental for the understanding
of hydrodynamic phenomena ranging from scalar dispersion,
pair dispersion [1–3], mixing [4–9] and reaction [10–13] to
the alignment of material elements [14], and the distribution
of stress in complex fluids [15]. Fluid elements constitute
the Lagrangian support of a transported scalar. Thus, their
deformation histories determine the organization of the scalar
distribution into lamellar structures [16–19]. Observed broad
scalar concentration distributions are a manifestation of a
broad distribution of stretching and compression rates and
can explain intermittent patterns of scalar increment distribu-
tions [16,17]. The temporal scaling of the average elongation
〈�(t)〉 of material lines controls the decay of scalar variance, the
effective kinetics of chemical reactions, and the distribution of
scalar gradients [20]. The mechanisms of linear stretching due
to persistent shear deformation, and exponential stretching in
chaotic flows have been well understood [20]. Observations
of subexponential and nonlinear fluid elongation [19,21,22],
pair dispersion [1–3,23,24], and scalar variance decay [25,26],
however, challenge these paradigms and ask for new dy-
namic frameworks. As a consequence, different mechanisms
of subexponential stretching have been proposed, including
fractal or spiral mixing (see, e.g., Ref. [26]), nonsequential
stretching (see, e.g., Ref. [22]), and modified Richardson laws
(see, e.g., Ref. [25]). The dynamics of particle pair separation,
for example, has been described using Lévy processes and

*marco.dentz@csic.es

continuous-time random walks [1,3,27]. Elongation time
series for stretching in d = 2 dimensional heterogeneous
porous media flows have been modeled as geometric Brownian
motions [8]. Most stochastic stretching models, however, do
not provide relations between the deformation dynamics and
the local Lagrangian and Eulerian deformations and flow
structure. This means the fluctuation mechanisms that cause
observed algebraic stretching are often not known.

We focus here on fluid deformation in flows through
heterogeneous porous media, which play a key role for the
understanding of mixing and reaction processes in natural and
engineered materials [28,29]. For such flows, the mechanisms
of (anomalous) particle dispersion have been the subject of
intense theoretical and experimental studies [30–42]. The
mechanisms of fluid stretching, however, are much less known.
Here, we study the relation between velocity fluctuations
and fluid deformation in nonhelical steady flows through
random media, specifically, we refer to steady d = 2 pore-
scale and d = 2 and d = 3 dimensional Darcy-scale flows
in heterogeneous media [28]. The Darcy equation, which
governs flow through porous media, implies that helicity is 0
in d = 3 dimensions [43,44], and prohibits closed streamlines
in d = 2 [45]. Thus, flows through heterogeneous porous
media are characterized by open streamlines, along which
fluid particles may sample the full velocity spectrum [32,46–
48]. We derive here the mechanisms of subexponential and
power-law stretching behaviors in such flows. To this end,
we formulate Lagrangian deformation in streamline coordi-
nates [49], which allows relating elongation to Lagrangian
velocities and shear deformation from first principles. The
consequences of this coupling are studied in the framework of
a continuous-time random walk (CTRW) [36,50–52] that links
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transit times of material fluid elements to elongation through
Lagrangian velocities. The CTRW framework has been used
extensively for the quantification of particle motion in flows
through heterogeneous media [36]. We develop here a CTRW
framework to quantify the stretching of material fluid elements.

II. FLUID DEFORMATION

Our analysis starts with the equation of motion of a fluid
particle in a steady spatially varying flow field. The particle
position x(t |a) in the divergence-free flow field u(x) evolves
according to the advection equation

dx(t |a)

dt
= v(t), (1)

where v(t) = u[x(t |a)] denotes the Lagrangian velocity. The
initial condition is given by x(t = 0|a) = a. The particle
movement along a streamline can be formulated as

ds(t)

dt
= v(t), dt = ds

vs(s)
, (2)

where s(t) is the distance traveled along the streamline,
v(t) = |v(t)|, and the streamwise velocity is vs(s) = |v[t(s)]|.
With these preparations, we focus now on the evolution of
the elongation of an infinitesimal material fluid element,
whose length and orientation are described by the vector
z(t) = x(t |a + δa) − x(t |a). According to (1), its evolution is
governed by

dz(t)

dt
= ε(t)z(t), (3)

where ε(t) = ∇u[x(t |a)]� = ∇v(t)� is the velocity gradient
tensor. Note that z(t) = F(t)z(0) with F(t) the deformation
tensor. Thus, F(t) satisfies Eq. (3) and the following analysis
is equally valid for the deformation tensor. The elongation �(t)
is given by �(t) = |z(t)|. We transform the deformation process
into the streamline coordinate system [49], which is attached
to and rotates along the streamline described by x(t |a),

x′(t) = A�(t)[x(t) − x(t |a)], (4)

where the orthogonal matrix A(t) describes the rotation
operator which orients the x1 coordinate with the orienta-
tion of velocity v(t) along the streamline such that A(t) =
[v(t),w(t)]/v(t) with w(t) · v(t) = 0 and |w(t)| = v(t). From
this, we obtain for z′(t) = A�z(t) in the streamline coordinate
system

dz′(t)
dt

= [Q(t) + ε̃(t)]z′(t), (5)

where we defined ε̃(t) = A�(t)ε(t)A(t) and the antisymmetric
tensor Q(t) = dA�(t)

dt
A(t). Thus, the velocity gradient tensor

ε(t) transforms into the streamline system as ε′(t) = Q(t) +
ε̃(t). A quick calculation reveals that the components of Q(t)
are given by Q12(t) = −Q21(t) = ε̃21(t), where we use that
dv(t)
dt

= ε(t)v(t). This gives for the velocity gradient in the
streamline system the upper triangular form

ε′(t) =
[
ε̃11(t) σ (t)

0 −ε̃11(t)

]
, (6)

where we define the shear rate σ (t) = ε̃12(t) + ε̃21(t) along
the streamline. Note that ε̃11(t) = dvs[s(t)]/ds by definition.
Furthermore, due to the incompressibility of u(x), ε̃22(t) =
−ε̃11(t). For simplicity of notation, in the following we drop the
primes. The upper triangular form of ε(t) permits an explicit
solution of (5) and reveals the dynamic origins of algebraic
stretching.

Thus, we can formulate the evolution equation (5) of a
material strip in streamline coordinates as

dz1(s) = dvs(s)

vs(s)
z1(s) + σ (s)

vs(s)
z2(s)ds, (7a)

dz2(s) = −dvs(s)

vs(s)
z2(s), (7b)

where we used (2) to express z(t) = z[s(t)] in terms of the
distance along the streamline. The system (7) can be integrated
to [53]

z1(s) = vs(s)

vs(0)

[
z1(0) + z2(0)

∫ s

0
ds ′σ (s ′)

vs(0)2

vs(s ′)3

]
, (8a)

z2(s) = vs(0)

vs(s)
z2(0). (8b)

Note that the deformation tensor F(t) in the streamline
system has also an upper triangular form. Its components can
be directly read off the system (8). The angle of the strip z(t)
with respect to the streamline orientation is denoted by φ(t)
such that z1(t) = �(t) cos[φ(t)] and z2(t) = �(t) sin[φ(t)]. The
strip length is given by �(t) ≡ �[s(t)] with �(s) = [z1(s)2 +
z2(s)2]1/2.

The system (8) is of general validity for d = 2 dimensional
steady flow fields. It reveals the mechanisms that lead to an
increase of the strip elongation, which is fully determined by
the shear deformation σ (s) and the velocity vs(s) along the
streamline. For a strip that is initially aligned with the stream-
line, z2(0) = 0, the elongation is �(s) = z2(0)vs(s)/vs(0)
because z2(s) ≡ 0 remains zero. This means �(s) merely
fluctuates without a net increase [53]. Only if the strip is
oriented away from the streamline can the streamwise velocity
fluctuations be converted into stretching. This identifies the
integral term in (8a) as the dominant contribution to the strip
elongation. It represents the interaction of shear deformation
and velocity with a linear contribution from the shear rate and a
nonlinear contribution from velocity as 1/vs(s)3, which may be
understood as follows. One power comes from the divergence
of streamlines in low velocity zones, which increases z2(s) and
thus leads to enhanced shear deformation. The second power
is purely kinematic due to the weighting with the residence
time in a streamline segment. The third power stems from
the fact that shear deformation in low velocity segments is
applied while the strip is compressed in streamline direction.
This deformation is then amplified as the strip is stretched due
to velocity increase. As a result of this nonlinear coupling, the
history of low velocity episodes has a significant impact on
the net stretching as quantified by the integral term in (8b).
This persistent effect is superposed with the local velocity
fluctuations. These mechanisms are illustrated in Fig. 1. While
for a stratified flow field with u(x) = u(x2) velocity and shear
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FIG. 1. (a) Illustration of the evolution of length (rescaled) and
orientation of material strips along streamlines in a steady d = 2
dimensional divergence-free random flow [19]. The color scales
illustrate the velocity magnitude decreasing from blue to yellow.
Strips are drawn along streamlines at equidistant times. We observe
persistent stretching in low velocity zones. This is reflected in the
bottom panels, which illustrate (b) strip elongations �(t) for two
distinct streamlines characterized by high (green dashed) and low
(red solid) velocities, (c) strip velocity time series, and (d) shear
deformation corresponding to the strip evolutions illustrated in the
left panel by the same colors.

deformation are constant along a streamline such that �(t) =
{[z1(0) + z2(0)σ t]2 + z2(0)2}1/2, that is, it increases linearly
with time, stretching can in general be sub- or superlinear,
depending on the duration of low velocity episodes. In the
following, we will analyze these behaviors in order to identify
and quantify the origins of algebraic stretching.

III. DEFORMATION CTRW

To investigate the consequences of the nonlinear coupling
between shear and velocity on the emergence of subexponen-
tial stretching, we cast the dynamics (8) in the framework
of a CTRW for the Lagrangian flow velocities vs(s) [48].
Thus, we assume that the random flow field is stationary and
ergodic [54]. Furthermore, we assume Lagrangian ergodic-
ity [55], which means that fluid elements can sample the full
velocity spectrum along a streamline [56]. As outlined in the
Introduction, flow through heterogeneous porous media are in
general characterized by open streamlines so that fluid particles
can sample the full velocity spectrum as they move along a
trajectory. This is not the case for flows in stratified media,
in which velocities are perfectly correlated. Thus, here we

consider random flows u(x) whose velocities fluctuations are
controlled by a characteristic correlation length scale and focus
on the impact of broad velocity point distributions rather than
on that of long range correlations [30,57]. This is particularly
relevant for porous media flows. It has been observed at the
pore and Darcy scales that the streamwise velocity, that is, the
velocity measured equidistantly along a streamline, follows
a Markov process [38,40,41,46,58]. Thus, if we choose a
coarse-graining scale that is of the order of the streamwise
correlation length λc, (2) can be discretized as

sn+1 = sn + λc, tn+1 = tn + λc

vn

. (9)

The vn = vs(sn) are identical independently distributed ran-
dom velocities with the probability density function (PDF)
pv(v). A result of this spatial Markovianity is that the
particle movement follows a continuous-time random walk
(CTRW) [32,51]. The PDF of streamwise velocities pv(v)
is related to the Eulerian velocity PDF pe(v) through flux
weighting [48] as pv(v) ∝ vpe(v). The Eulerian velocity PDF
in d = 2 dimensional pore networks, for example, can be
approximated by a Gaussian-shaped distribution, which breaks
down for small velocities [59]. For Darcy-scale porous and
fractured media the velocity PDF can be characterized by
algebraic behaviors at small velocities [32,41,60], which im-
plies a broad distribution of transition times τn = λc/vn. Note,
however, that the proposed CTRW stretching mechanisms are
of a general nature and valid for any velocity distribution pv(v).
In order to extract the deformation dynamics, we coarse-grain
the elongation process along the streamline on the correlation
scale λc. This gives for the strip coordinates (8)

z1(sn) = z1(0)
vn

v0
+ z2(0)

vnv0

v2
c

σcτvrn, (10a)

z2(sn) = z2(0)
v0

vn

, (10b)

with vc and σc a characteristic velocity and shear rate, and
τv = λc/vc a characteristic advection time. The process rn,
which results from the integral term in (8a), describes the
coupled CTRW

rn+1 = rn + v3
c

σc

σn

v3
n

, tn+1 = tn + λc

vn

. (11)

The elongation at time t is given by �(t) = [z1(snt
)2 +

z2(snt
)2]1/2, where nt = sup(n|tn � t). It is observed over

several 2d flows that the shear rate may be related to the
streamwise velocity as σn = ξnσc(vn/vc)α̂ with α̂ ≈ 1, σc

a characteristic shear rate, and ξn an identical independent
random variable that is equal to ±1 with equal probability.
The average shear rate 〈σn〉 = 0 due to the stationarity of the
random flow field u(x). Thus, (11) denotes a coupled CTRW
whose increments ρn ≡ rn+1 − rn are related to the transition
times τn = λc/vn as

ρn = ξn(τn/τv)α, α = 3 − α̂. (12)

It has the average 〈ρn〉 = 0 and absolute value |ρn| = (τn/τv)α .
The joint PDF of the elongation increments ρ and transition
times τ is then given by

ψ(ρ,τ ) = 1
2δ[|ρ| − (τ/τv)α]ψ(τ ), (13)
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where δ(ρ) denotes the Dirac delta distribution. The transition
time PDF ψ(τ ) is related to the streamwise velocity PDF pv(v)
as ψ(τ ) = λcτ

−2pv(λc/τ ).

IV. ALGEBRAIC STRETCHING

In the following, we consider a streamwise velocity PDF
that behaves as pv(v) ∝ (v/vc)β−1 for v smaller than the
characteristic velocity vc. Such a power law is a model for the
low end of the velocity spectra in disordered media [30] and
porous media flows [36,39,41]. Note, however, that the derived
CTRW-based deformation mechanism is valid for any velocity
distribution. The relation between the streamwise and Eulerian
velocity PDFs, pv(v) ∝ vpe(v), implies that β � 1 because
pe(v) needs to be integrable in v = 0. The corresponding
transition time PDF ψ(τ ) behaves as ψ(τ ) ∝ (τ/τv)−1−β for
τ > τv = λc/v and decreases sharply for τ < τv . Due to the
constraint β > 1, the mean transition time 〈τ 〉 < ∞ is always
finite, which is a consequence of fluid mass conservation. For
transport in highly heterogeneous pore Darcy-scale porous me-
dia, values for β between 0 and 2 have been reported [36,39].
It has been found that decreasing medium heterogeneity leads
to a sharpening of the transition time PDF and increase of
the exponent β [41] with β > 1. With these definitions, the
coupled CTRW (11) describes a Lévy walk.

Figure 2 shows the evolution of the average elongation
〈�(t)〉 for α = 2 and different values of β obtained from
numerical Monte Carlo simulations using (10) and the Lévy
walk (11) for the evolution of the strip coordinates based
on a gamma PDF of streamwise velocities [53]. The mean
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FIG. 2. Evolution of the (open symbols) mean elongation
〈�(t)〉 = 〈[z1(snt

)2 + z2(snt
)2]1/2〉 with �n given obtained from nu-

merical Monte Carlo simulations using (10) and (11) for a uniform
distribution of initial strip orientations φ ∈ [−π/2,π/2], α = 2 and a
gamma PDF of streamwise velocity. The solid symbols are obtained
from the approximation (14) for (squares) β = 3

2 , (circles) β = 5
2 ,

(triangles) β = 7
2 , and (rhombi) β = 9

2 . The solid lines indicate
the late time power-law behaviors of 〈�(t)〉 ∝ t3−β for 1 < β < 2,
〈�(t)〉 ∝ t2/β for 2 < β < 4, and 〈�(t)〉 ∝ t1/2 for β > 4. The inset
illustrates the evolution of �(t) in a single realization of vn for β = 5

2
for an initial orientation of φ = 0.

elongation shows a power-law behavior and increases as
〈�(t)〉 ∝ tν . As discussed above, long episodes of small
velocity maintain the strip in a favorable shear angle, which
leads to a strong stretching. These dynamics are quantified by
the Lévy walk process (11), which relates strong elongations
to long transition times, i.e., small streamwise velocities,
through (12). This is also illustrated in the inset of Fig. 2, which
shows the elongation of a single material strip. The elongation
events increase with increasing time as a consequence of the
coupling (12) between stretching and transition time. This is
an intrinsic property of a CTRW characterized by a broad
ψ(τ ); the transition times increase as time increases, and
thus, through the Lévy walk coupling, also the stretching
increments. In fact, the strip length can be approximated
by [53]

�(t) ≈ �0 + σcτ
2
v 〈v〉

〈τ 〉vc

|z2(0)||rnt
|. (14)

The leading behavior of the mean elongation 〈�(t)〉 of a
material element is directly related to the mean absolute
moment of r(t) as 〈�(t)〉 ∝ 〈|rnt

|〉. Thus, even though rnt
is

in average 0, the addition of large elongation events in its
absolute value |r(t)|, which correspond to episodes of low
velocities, leads in average to an algebraic increase of �(t) as
detailed in the following.

The statistics of the Lévy walk (11) have been analyzed in
detail in Ref. [61] for α > 0 and β > 0. Here, β is restricted
to β > 1 due to fluid mass conservation. Furthermore, we
consider α � 1. The scaling of the mean absolute moments of
rnt

depends on the α and β regimes.
If the exponent β > 2α, which means relatively weak het-

erogeneity, we speak of weak coupling between the elongation
increment ρn and the transition time τn in (12). In this case,
the strip elongation behaves as 〈�(t)〉 ∝ t1/2. We term this
behavior here diffusive or normal stretching. For α = 2 as
employed in the numerical simulations this means that β > 4.
The coupled Lévy walk (11) reduces essentially to a Brownian
motion because the variability of transition times is low so that
the coupling does not lead to strong elongation events. Note
that scalar dispersion in this β range is normal [36,51].

For strong coupling, this means β < 2α and thus stronger
flow heterogeneity, it has been shown [61] that the density of
rnt

is characterized by two scaling forms, one that characterizes
the bulk behavior and a different one for large rnt

. As a
consequence, we need to distinguish the cases of β larger and
smaller than α. Also, the scaling of |rnt

| cannot be obtained
by dimensional analysis. In fact, rnt

has a strong anomalous
diffusive character [61].

For α < β < 2α the scaling behavior of the mean elon-
gation is 〈�(t)〉 ∝ tα/β . This means for α = 2, the stretching
exponent ν is between 1

2 and 1, the β range is 2 < β < 4.
It interesting to note that scalar dispersion in this range is
normal as well. Here, the frequency of low velocity regions is
high enough to increase stretching above the weakly coupled
case, but not to cause superdiffusive scalar dispersion.

For 1 < β < α in contrast, the mean elongation scales
as [61] 〈�(t)〉 ∝ t1+α−β . The stretching exponent is between
1 and α, and this means stretching is stronger than for shear
flow. The range of scaling exponents ν of the mean elongation

061102-4



RAPID COMMUNICATIONS

COUPLED CONTINUOUS-TIME RANDOM WALKS FOR FLUID . . . PHYSICAL REVIEW E 94, 061102(R) (2016)

here is 1
2 � ν < α. Specifically, α = 2 implies that stretching

is superlinear for 1 < β < 2, and this means faster than by a
pure shear flow, for which ν = 1. Here, the presence of low
velocities in the flow leads to enhanced stretching and at the
same time to superdiffusive scalar dispersion.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented a fundamental mechanism
for power-law stretching in random flows through intermittent
shear events, which may explain algebraic mixing processes
observed across a range of heterogeneous flows. We have
shown that the nonlinear coupling between streamwise ve-
locities and shear deformation implies that stretching follows
a coupled CTRW, which explains observed subexponential
stretching behaviors that can range from diffusive to su-

perdiffusive scalings, 〈�(t)〉 ∝ tν with 1
2 � ν < 2. The derived

coupled stretching CTRW can be parametrized in terms of
the Eulerian velocity and deformation statistics and provides
a link between anomalous dispersion and fluid deformation.
The presented analysis demonstrates that the dynamics of
fluid stretching in heterogeneous flow fields is much richer
than the paradigmatic linear and exponential behaviors. The
fundamental mechanism of intermittent shear events, which is
at the root of nonexponential stretching, is likely present in a
broader class of fluid flows.
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