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2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

3Peter Grünberg Institut, Forschungszentrum Jülich, D-52425 Jülich, Germany
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(Received 1 September 2016; published 15 December 2016)

Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation
function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids
the classical positive t−3/2 long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly
influenced by the transfer of the transverse current wave across the period boundary. The t−5/2 decay of the
negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within
a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic
t−2 decay.
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One of the simplest parameters for measuring liquid dynam-
ics is the diffusion coefficient, which can be calculated from
the mean-square displacement or from the single-particle ve-
locity autocorrelation function (VAF) through the Green-Kubo
relation [1,2]. In dilute fluids, where the correlation between
binary collisions can be neglected, the time-dependent VAF
decays exponentially. This has been validated by the kinetic
theory for gases or granular media and Brownian dynamics
[1,3]. It came as a surprise when Alder and Wainwright for
the first time reported that the long-time tail of the VAF
decays algebraically as t−d/2, where d is the dimension of the
system [4–6]. This long-lasting correlation is attributed to the
well-known hydrodynamic vortex, or backflow, that supports
the initial motion and develops a persistent long time tail [7,8].

At high densities the initial direction of motion of an atom
is, on average, soon reversed as the atom feels the surrounding
neighbors, as a negative region. For the reversed velocity a
t−5/2 decay has been reported for a hard-sphere fluid [9].
Interestingly, the same algebraic decay is observed in a Lorentz
gas, where the long-time tail has been shown both theoretically
[10] and by computer simulation (at low obstacle density) to
decay as −t−d/2−1 [11]. A plausible conjecture is that they
would have the same physical mechanism. Since the dynamic
heterogeneity (both in space and time) manifests itself in
the dynamics of high volume fraction of hard-sphere and
of supercooled liquids [12–14], groups of immobile atoms
might play the role of the fixed scatterers for mobile atoms
as in the Lorentz gas. They then account for the negative
long-time tail [9]. Actually frozen scatterers are not essential
for the emergence of negative long-time tails. A more general
approach using coarse graining has theoretically predicted a
negative t−d/2−1 decay [15–17].

There are two mechanisms for the decay of the single-
particle momentum in atomic or molecular liquids: diffusion
and sound propagation. By diffusion the momentum of a
tagged atom is transferred into a region of typical length l =√

Dt (D is the diffusion coefficient) and the velocity decays
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as vi(t) ∼ vi(0)/(ρl3) ∝ t−3/2, which is the classical long-time
tail. In accordance with this mechanism, the long-time decay
of the VAF has been reported as ∝ t−3/2 in momentum-
conserving and as ∝ t−1 in momentum-nonconserving gran-
ular fluids [18]. The initial momentum of a tagged atom can
also be rapidly carried away by propagating sound waves.
Usually, this contributes only to the short time decay of
the VAF [19]. As the system is confined, the long-time
hydrodynamic tail is expected to be lost and this mechanism
becomes important. A transition from a positive to a negative
t−μ decay has been reported in the confined systems, with
the exponent μ depending on the confining geometry [20].
Diffusive sound-wave modes have been found to account for
the negative long-time tail in this situation [20].

In viscous liquids, the competition between these two
mechanisms is responsible for the sign change of the long-time
tails. One reason for this is that transverse sound waves
are overdamped at high temperatures, but underdamped in
supercooling. The ability of supporting long-distance shear-
wave propagation in supercooled liquids [21,22] enhances
the momentum transfer capability of the sound wave for
long times. Recently, a negative t−3/2 long-time tail was
observed in polymers at the zero friction limit, as predicted
by the viscoelastic hydrodynamic interaction model [23]. In
this scenario, viscoelasticity is important for the velocity
fluctuations in supercooled liquids.

To address this question in atomic liquids, we per-
formed molecular dynamics (MD) computer simulations for
a Lennard-Jones potential. The physics exposed by this work
includes the following: (1) A strong system size dependence
of the long-time tail of the VAF is observed and found to be
caused by long-lived transverse waves in supercooled liquids.
(2) In supercooled liquids a negative long-time tail of the VAF
is found, decaying as t−5/2. (3) By a generalized Maxwell
model for shear-wave propagation, the negative long-time tail
is reproduced, but with a slower algebraic decay: t−2.

The MD simulation is done for a Lennard-Jones system
with Kob-Andersen parameters and composition A80B20 [24]
using the open software LAMMPS [25]. To frustrate vacancy
nucleation, a fixed pressure (= 5.0) is exerted on the system
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FIG. 1. Temperature dependence of self-intermediate scattering
function F (t), which is defined as F (t) = 〈exp[i(ri(t) − ri(0)) · q0]〉,
where q0 is the first peak position in the static structure factor.

at all temperatures. The self-intermediate scattering function
for this system is shown in Fig. 1. A clear second step
relaxation is observable at T < 0.8, indicating the slow
structural relaxation in the supercooled liquid state. Fitting
the temperature-dependent tracer diffusivity, we find the
mode-coupling theory crossover temperature at T ≈ 0.46.
Microcanonical ensembles are used to equilibrate the system
and to collect data. No temperature or pressure drift is
observed during this process. Three different systems sizes
are used for finite-size effect investigations. The total number
of atoms are N = 3000,24 000,100 000. If not specified
otherwise, the data given below are for the largest system, i.e.,
N = 100 000.

Figure 2 shows the calculated VAF, Z(t) = 1
3 〈vi(t)vi(0)〉.

At high temperature, e.g., at T = 2, the tail of Z(t) stays
positive, while for T = 1.5, Z(t) crosses the abscissa four
times already for short times up to t = 1 and eventually
approaches zero from above. This positive decay is well
described as t−3/2 [indicated by the dashed line in Fig. 2(a)],
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FIG. 2. Absolute value of the velocity autocorrelation function
Z(t) as function of time, high temperatures (a) and lower temperatures
(b). Dips in the curves indicate sign changes of Z(t).
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FIG. 3. Normalized time-dependent diffusivity, D(t) =∫ t

0 dtZ(t)/Dmsd, in supercooled liquids. Two different system sizes
are shown, i.e., N = 100 000 and N = 24 000 (inset). Regions where
D(t) increases indicate positive values of the VAF, decreasing ones
indicate negative values of the VAF. The oscillations of D(t) show a
clear system-size dependence.

indicating that the motion of atoms is collective as induced
by the hydrodynamic vortex [7]. At relative low temperatures,
i.e., T < 1 [see Fig. 2(b)], the negative tails do not show a
consistent t−5/2 decay as predicted by the theory [15–17].
Instead these long-time tails show a temperature-dependent
behavior. Similar behavior can also be seen at high packing
fractions of hard-sphere liquids [9]. This indicates an unstable
long-time tail of Z(t), or the destroyed tail in high-density
liquids, in contrast to the hydrodynamic situation and also the
results reported in other systems [9–11].

To clarify this problem, we investigate the normalized
time-dependent diffusivity, D(t) = ∫ t

0 dtZ(t)/Dmsd, shown
in Fig. 3. Dmsd is the diffusion coefficient calculated
from the mean-square displacement: Dmsd = limt→∞〈|ri(t) −
ri(0)|2〉/6t . The time evolution of D(t) shows a surprising
oscillatory behavior at low temperatures. Since an increase of
D(t) corresponds to a positive value of Z(t) and vice versa,
the oscillatory behavior of D(t) indicates that the sign of Z(t)
changes many times. For the N = 100 000 system, we find the
first minimum position at tm ≈ 9. If we reduce the box size,
i.e., for the N = 24 000 system, the first minimum position
shifts to tm = 5.3 (see inset of Fig. 3). A constant ratio L/tm
(L is the box size) is found for all system sizes investigated.
This indicates a wave is crossing the period boundary with
a propagation velocity L/tm ≈ 5.0, close to the velocity of
the transverse current (≈4.4, calculated from its dispersion
relation). We notice that the valleys of oscillation are almost
temperature independent, which is due to the weak temperature
dependence of the acoustic velocity.

This result shows that the long-time tail of Z(t) is seriously
influenced by shear-wave propagation. When a shear wave
propagates from a tagged atom to its periodic image, the
velocity of the atom is reversed. As the shear wave crosses
the boundary of the simulation box many times, the atom
will move backward and forward repeatedly, i.e., the atoms
rattle inside their cage. At low temperatures, the effect of
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FIG. 4. Spectrum of the velocity autocorrelation function Z(w).
Dashed straight lines show linear fits of the low-frequency data.
Left: normal liquids, where Z(w) ∝ w1/2 at low frequencies. Right:
supercooled liquids, where Z(w) ∝ w3/2 in the low-frequency limit.

shear-wave propagation becomes so strong that the long-time
tail of the VAF is eventually destroyed, as shown in Fig. 2(b).
This makes it difficult to determine the long-time behavior of
the VAF by computer simulation. In an infinite system or in
the usual experiments, the effect of shear-wave propagation
across period boundaries will disappear.

As an alternative, we investigate the Fourier transform of
the VAF: Z(w) = 2

π

∫ ∞
0 dtZ(t) cos(wt). Since here we are

interested in the long-time behavior of Z(t), we only show
the low-frequency part of Z(w) in Fig. 4. In normal liquids
(T � 1.5), Z(w) ∝ w1/2 is found at low frequencies, which
corresponds to Z(t) ∝ t−3/2 in time-space. The w1/2 region
shrinks at T = 1.5 compared with T = 2, which indicates that
the hydrodynamic tail weakens with decreasing temperature.
In low-temperature liquids (T � 0.8), Z(w) ∝ w3/2 at small
w is observed, which corresponds to Z(t) ∝ t−5/2 in the long
time limit. We checked that a variation of the exponent for 3/2
does not give a better linear fit in the low-frequency region.
Compared to T = 0.8, the region Z(w) ∝ w3/2 at T = 0.46
has slightly grown, which would be a hint that the t−5/2 long-
time tail strengthens upon undercooling.

We have noticed that the transverse acoustic wave is
important for the long-time behavior of the VAF. Actually,
one of the hallmarks of supercooled liquids is the anomalous
transverse-wave propagation: shear waves can propagate over
long distances for macroscopic wave vectors, as in elastic
media, but attenuate quickly for microscopic wave vectors, as
in viscous liquids, [22]. Possibly there is a connection between
this anomalous shear-wave propagation and the long-time
decay behavior of the VAF.

Figure 5 shows the spectrum of the transverse current cal-
culated as CT (w) = 2

π

∫ ∞
0 dtCT (t) cos(wt), where CT (q,t) =

q2〈j⊥q (t)j⊥q (0)〉/N is the transverse current [1]. Here, jq =∑N
i ui(t) exp[−iq · r(t)] and ⊥ indicates that the wave vector

q is perpendicular to the velocity u. Clear sound peaks
are observed at all shown temperatures. These peaks are
characterized by position (corresponding to the propagation
frequency), and half width of the peak (its inverse gives the
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FIG. 5. Transverse current spectrum CT (q,w) in slightly super-
cooled liquids, (a) T = 1 and (b) T = 0.8, and highly supercooled
liquids, (c) T = 0.5 and (d) T = 0.46. The data are for the N = 3000
system. We do not find any visible finite-size effect for the transverse
current at the same q values. In (c) and (d), solid lines are the fits by
Eq. (1).

attenuation rate of the mode). From temperature T = 1 to
T = 0.8 [Figs. 5(a) and 5(b)], we see a gradual emergence of
the peaks at finite frequency. At lower temperatures [Figs. 5(c)
and 5(d)], these peaks become much sharper, indicating the
propagation behavior of these small q-vector modes.

The viscoelastic behavior of the transverse current can be
characterized by the generalized Maxwell model with the
Lorentzian spectrum [22,26–28]:

CT (q,w) ∝ �(q)

[w − �(q)]2 + �(q)2
, (1)

where �(q) is the peak position and �(q) the half width of the
broadening. The fits are shown in Figs. 5(c) and 5(d) by solid
lines.

To quantitatively investigate the influence of the viscoelas-
tic modes on the long-time behavior of the VAF, we employ
the expression of the velocity autocorrelation function derived
by dynamic theory or the velocity field approach method
[1,26,29]:

Z(t) = 1

3kBT m

1

(2π )3

∫
dq[CL(q,t) + 2CT (q,t)]F (q,t),

where CL(q,t) is the longitudinal current, which decays
exponentially [1] with time, mainly contributes to the high-
frequency part of Z(w) [29], and can be neglected in the long
time limit. F (q,t) is the self-intermediate scattering function.
Compared to the velocity field, the density fluctuation decays
much slower, therefore F (q,t) can be approximated as unity.
With these approximations, at long times the VAF can be
rewritten as

Z(t) ∝
∫

dq CT (q,t). (2)

To verify the role of the viscoelasticity, we calculate CT (q,t)
from the fits of CT (q,w) via Eq. (1). In this calculation, the
major contribution sustained in Z(t) is the viscoelasticity.
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FIG. 6. Log-log plot of the negative value of the velocity autocor-
relation function. Red circles: Z(t) calculated from the definition, the
same as in Fig. 2. Solid blue lines: Z(t) calculated from Eq. (2), with
the transverse current taken from the fit by the viscoelastic model,
i.e., Eq. (1).

Figure 6 shows Z(t) calculated from the viscoelastic model,
together with the data calculated from its definition (the same
data as in Fig. 2). Clearly, the negative long-time tails are
reproduced by the viscoelastic model. Compared with the data
Z(t) directly calculated from its definition, the viscoelastic
model gives some differing results. First, the oscillations
which destroy the long-time tails disappear. As shown in
Fig. 3, the first dip point should be around several time
units. It is missing in the viscoelastic model. This gives
rise to a longer time range of algebraic decay. Second, the
viscoelastic model predicts a negative long-time decay as
t−2, which is slightly slower than the t−5/2 decay when
all contributions are included. This slower decay indicates
that the viscoelastic fitting underestimates some fast decay
channels, e.g., hydrodynamic modes and/or the interaction
between hydrodynamics and viscoelastics. Third, the algebraic
decay t−2 is independent of temperature, which agrees with
the independence of the t−5/2 decay found in Fig. 4 for the
supercooled liquids.

In undercooling, dynamic heterogeneity manifests itself in
temporal and spatial fluctuations of the atomic displacements
[12–14]. Groups of immobile atoms could form relative

compact clusters at appropriate time scales [30]. Connection
of these compact clusters enables the liquid to support
the propagation of acoustic shear waves, and at the same
time frustrates the diffusion transport like in the confining
geometry [20]. As discussed earlier, the diffusion process
accounts for the classic positive long-time tail, while acoustic
propagation for the negative tail. Dynamic heterogeneity
could promote a transition from the positive to the negative
tail.

In normal liquids, it is known that the t−3/2 law is the
leading term of the asymptotic expansion of VAF [31,32],
and the subleading term is essential for the intermediate-time
behavior of the VAF [33]. The t−5/2 decay would also be one of
the infinite terms in the asymptotic expansion in supercooled
liquids. Unfortunately, theory for this issue in supercooled
liquids is still lacking.

The system investigated here is a binary mixture. But we
do not find any significant difference of the long-time tail
behavior (e.g., algebraic decay in Fig. 2) between particles
A and B, as well as of the sound-wave propagation behavior
(e.g., dip positions in Fig. 3). Because the relevant vibrations
here are acoustic modes (rather than optic ones), an atomic-
species-dependent behavior is not expected.

In conclusion, we observed the classical −3/2 power-law
decay of the VAF at high temperatures. Upon supercooling, a
transition of this positive tail to a negative −5/2 power-law
decay is found, which agrees with findings in hard-sphere
fluids [9]. In highly supercooled liquids, elasticity becomes so
strong that the long-time tail of VAF is nearly destroyed by
the transfer of shear waves across the period boundary. From
the generalized Maxwell model, we reproduced the negative
long-time tail, but with a slower t−2 decay. This indicates the
atoms become collective through the propagation of elastic
modes in supercooled liquids. The slower decay predicted by
this model is believed to be caused by the underestimation of
the hydrodynamic effect.
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