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Fronts under arrest: Nonlocal boundary dynamics in biology
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We introduce a minimal geometric partial differential equation framework to understand pattern formation
from interacting, counterpropagating fronts. Our approach concentrates on the interfaces between different states
in a system, and relies on both nonlocal interactions and mean-curvature flow to track their evolution. As an
illustration, we use this approach to describe a phenomenon in bacterial colony formation wherein sibling colonies
can arrest each other’s growth. This arrested motion leads to static separations between healthy, growing colonies.
As our minimal model faithfully recovers the geometry of these competing colonies, it captures and elucidates
the key leading-order mechanisms responsible for such patterned growth.
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Nonlocality has recently crystallized into an essential
component of the mathematical study of biological pattern
formation. A variety of natural mechanisms lead to nonlocal
effects: An animal’s ability to see and hear its surroundings
leads to convolutional averages in swarming, aggregation, and
alignment models of collective behavior [1–7]; the propensity
of a species to broadly forage according to superdiffusive
processes, such as Lévy flights, motivates the use of fractional
Laplacians in partial differential equation (PDE) models
of albatrosses, sharks, and criminals [8–11]; the physical
coupling between neurons also leads to nonlocal operators
in continuum models for nerve signal propagation and hallu-
cinations [12–15]. Even local PDEs used for understanding
phase transitions and optics, such as the Allen-Cahn equation
and singularly perturbed reaction-diffusion systems, exhibit an
effective nonlocal coupling at the interface between different
domain boundaries [16–18].

Despite the recent deluge of mathematical models that
exploit nonlocality, there still remains a broad class of
interesting biological phenomena where nonlocal models
could provide significant insight. These broadly fall into the
category of complex systems characterized by the presence of
several sharp, mutually interacting codimension one interfaces
or fronts; see Fig. 1. These systems represent biological
analogs of well-studied physical systems, such as the motion of
incompressible vortex patches and vortex sheets [19,20]. Just
as the presence of sharp, discontinuous jumps between regions
of different vorticity naturally leads to a nonlocal evolution
equation for the motion of the front, such as the Birkhoff-Rott
equation in the case of a vortex sheet, the mutual interactions
between fronts in biological systems lead to an analogous
class of nonlocal evolution laws. Despite the successful
history of nonlocal contour dynamics in fluid dynamics and
material science, this approach appears underused as a tool for
understanding pattern formation in biological systems.

We exploit the analogy between biological fronts and
domain boundaries in material science to understand a specific
pattern forming mechanism wherein the interactions between
a collection of counterpropagating, or driven, codimension one
fronts lead to a cessation of forward motion. We refer to these
as arrested fronts. We study the motion of these interfaces
under the influence of nonlinear, nonlocal interactions that
account for the repulsive forces induced by the other members

in the collection. This nonlocality proves crucial for describing
the arrested front phenomenon. In contrast to the more standard
methodology, based on coupled systems of reaction-diffusion
equations with multiple scales, our approach provides a
flexible, minimalistic way to study arrested fronts. From both
an analytical and computational perspective, this framework
offers reduced model complexity while still capturing the
essential pattern forming mechanisms.

The motivation for this approach arises out of a well-
established body of literature that reduces the evolution of
multicomponent reaction-diffusion systems to that of codi-
mension one interfaces via contour dynamics [21–24]. These
reduced equations typically describe geometric motion of the
interfaces, and can also include nonlocal self-interactions in
certain cases. We view this class of reduced equations as
primary models that, even if they are not necessarily tied to
an underlying reaction-diffusion system, are interesting and
useful in their own right. This viewpoint provides the impetus
to broaden their functional form and domain of application.
Crucially, this insight allows us to naturally arrive at a cohesive
description of a mutually interacting collection of codimension
one interfaces. We provide an example application of this
approach that models the two-dimensional bacterial growth
of competing sibling bacteria colonies, but we emphasize that
the framework easily extends to higher dimensional settings
and to far more general situations. We therefore conclude with
a summary of physical problems to which this methodology
applies.

A framework for arrested fronts. Our general class of mod-
els describes the dynamics of a collection C = {γ 1, . . . ,γ N }
of N mutually interacting planar curves

γ i(x,t) =
[
γ i

1 (x,t)
γ i

2 (x,t)

]
, γ i(x,t) : D × R+ �→ R2,

where D denotes some fixed Lagrangian coordinate domain.
We assume that the nonlocal force vi

NL(x,t) on γ i(x,t) always
acts in some a priori known direction di(x,t) to leading order.
Its magnitude varies under the influence of self-repulsion
and repulsive-attractive effects induced by the remaining
curves γ j ∈ C in the collection. These assumptions lead to
a nonlocal velocity field vi

NL(x,t) := vi
NL(x,t)di(x,t) with
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FIG. 1. Graphical depiction of (1) for a single bacterial colony.
The boundary γ of the colony evolves according to pure normal
motion. Pointwise curvature κγ and a constant normal velocity c give
the total local component vLOC of the normal velocity. The repulsive
nonlocal term vNL arises from integrating an interaction kernel around
the boundary of each white circle. The number on each circle indicates
the strength of the kernel; the green (light gray) overlay on circle 1
emphasizes the boundary of integration for the nonlocal term. The
color along γ depicts the total velocity at each point; points with zero
velocity (in blue or dark gray) form the arrested portions of the colony.
The separation between the colony edge and the circular boundaries
increases with the strength (1–50) of the nonlocal interaction.

magnitude vi
NL(x,t) :=∮

D

fi

(
1

2
|γ i(x,t) − γ i(z,t)|2

)
|∂xγ

i(z,t)|dz

+
∑
j �=i

∮
D

gij

(
1

2
|γ i(x,t) − γ j (z,t)|2

)
|∂xγ

j (z,t)|dz.

The kernels fi(s) describe the self-interaction of γ i , while
gij (s) describes the influence of γ j on γ i due to nonlocality.
In addition to this nonlocal forcing, we assume each of these
interfaces undergoes an additional geometric motion driven
by a combination of curvature κγ i (x,t) and constant normal
growth. These considerations lead to the following general
class

∂tγ
i(x,t) = [εiκγ i (x,t) + ci]nγ i (x,t) + vi

NL(x,t) (1)

of front evolutions, provided we let nγ i (x,t) denote the outward
unit normal vector to each curve. See Fig. 1 for a graphical
depiction of this type of evolution.

The model parameters include the functional forms of
the nonlocal kernels fi(s),gij (s), the relative strength εi of
the curvature, and the constant speed ci of normal growth.
For simplicity we assume identical nonlocal interactions with
Gaussian decay

fi(s) = gij (s) = gC,σ (s) := (C/
√

2πσ )e−s/σ 2
(2)

described by the strength C and the length scale σ parameters.
By assuming identical curvature εi ≡ ε and normal growth
ci ≡ c parameters, we may set ε = c = 1 via nondimension-
alization. This yields a set of equations (1) governed by a single
relative strength C̃ = C/c parameter and a single relative
length scale σ̃ = σc/ε parameter. We omit the tildes in the
remainder of this Rapid Communication.

Competing bacteria colonies. We illustrate this modeling
methodology with a case study involving a well-known
phenomenon in bacterial colony formation. Bacteria often
secrete antibacterial compounds to inhibit the growth of
competing colonies. These compounds may inhibit the growth
of sibling colonies, and self-inhibition of a single colony may
also occur for certain geometries. The strain Paenibacillus den-
dritiformis serves as a model bacteria for experimentally study-
ing and mathematically modeling sibling and self-inhibition
[25,26].

Previous modeling of this phenomenon exploits the classi-
cal reaction-diffusion methodology [26]. The model exhibits
multiple time scales and separately tracks variables including
bacterial concentration, nutrients, prespores, subtilisin (which
promotes colony growth), the sibling-sibling inhibitory com-
pound itself (i.e., sibling lethal factor or Slf), and the colony
edge (see Ref. [26], Supplemental Material). All together,
this leads to a system of six components in 2 + 1 space-time
variables with stiff dynamics due to the presence of multiple
time scales. The slow variables Slf and subtilisin appear to
mediate a sharp transition in the fast variable for motile
bacterial concentration (see Fig. 4 in Ref. [26]). While the
model faithfully reproduces the behavior of growing colonies,
in terms of both sibling-sibling and self-inhibition, it proves
challenging from an analytical perspective even for simple
geometries.

In contrast, our general model (1) proves capable of
reproducing the essential features of colony growth and
is amenable to exact or asymptotic analysis. To illustrate
this, we model the evolution of each bacterial colony as a
front that evolves due to both local geometric effects and
a nonlocal interaction with every colony. We use (1) with
identical Gaussian kernels (2) to model both sibling-sibling
repulsion and self-inhibition. The nonlocal forcing acts in
the direction opposite to the normal di(x,t) = −nγ i (x,t),
so that each γ i evolves according to pure normal motion.
We set D = (−π,π ) with periodic boundary conditions to
guarantee that each γ i remains a simple, closed curve. In the
case of a single colony, these choices lead to a governing
equation that closely resembles a quasistatic reduction of
the Fitzhugh-Nagumo equations in a singular parameter
regime [22,23]. The nonlocality differs in form from (1),
however.

We perform numerical experiments to verify that (1)
suffices to describe the pattern forming behavior of P. den-
dritiformis. Specifically, we demonstrate that the model can
adequately describe the geometry of evolving colonies in both
sibling-sibling and self-inhibiting scenarios. We numerically
integrate (1) using a simple implicit update for the curvature
and an explicit update for all other forces. Figures 2 and 3
display experimental images for the colony formation from
Refs. [25,27] overlaid with these numerical calculations. In
the case of two colonies with circular inoculations we obtain
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FIG. 2. Competing sibling colonies from Ref. [25], Fig. 1. Two
initial inoculations, shown in white with initial radius R0 = 10 and
separation s0 = 44.2, evolving under the dynamics of (1) and (2) with
(C,σ ) = (0.5725,18.45). The toxin produced by each colony inhibits
the growth of its sibling, leading to a region of zero growth in the
rectangular region between the two colonies. The red (light gray)
lines and the blue (dark gray) line are successive time slices from the
simulation. Curve motion arrests in the region of zero colony growth.
(Figure is reproduced with permission.)

the curves in Fig. 2. These simulations show the initial onset
of inhibition at a certain critical separation between the two
fronts. For sufficiently large times, the interfaces between
sibling colonies arrest. We perform a similar numerical ex-
periment to qualitatively reproduce more complicated growth
patterns observed in Ref. [27]. An initial inoculation of seven
radial colonies is depicted in Fig. 3 to illustrate the dynamics

FIG. 3. Seven sibling colonies are initially inoculated in a purely
radial distribution from Ref. [27]; a black and white negative of
Ben-Jacob’s original is shown. Six of the seven centers of each circular
inoculation (small red or light gray circles) form an outer hexagonal
ring surrounding the seventh circular inoculation (small red or light
grey circle at center). As with Fig. 2, the red (light gray) lines and the
blue (dark gray) line are time slices from a simulation of (1) using
(C,σ ) = (0.575,25.2) and a Gaussian kernel. (Figure is reproduced
with permission.)

of (1) with more than two curves in the collection. In each
case, (1) faithfully reproduces bacterial colony growth data
at a qualitative level. In particular, the effective nonlocal
repulsion and arrested nature of colony growth can clearly be
seen in all of the images. These experiments demonstrate that
our simplified framework (1) includes the essential features
necessary to understand these arrested fronts without resorting
to fully explicit modeling of numerous reaction-diffusion
components.

The advantage of (1) lies in its relative simplicity. While
exact solutions of (1) are unobtainable for these simulations,
we may appeal to asymptotic analysis to estimate key features
of these experiments. The manner in which the parameters
C,σ influence the final separation s between colonies in Fig. 2
is easily estimated, for instance. After the onset of colony
growth, the constant C provides a reasonable leading-order
approximation of the self-interaction. We appeal to Laplace’s
method to estimate the nonlocal forcing from the second curve∫ π

−π

e−|p−γ (z)|2/2σ 2 |∂xγ (z)|dz ≈
√

2πσ√
1 − sκγ (z0)

e−s2/2σ 2
,

where s = |p − γ (z0)| is the minimal distance (or separation)
between γ and p and κγ (z0) is the curvature of γ at the closest
point along the curve. In other words, if σ is small relative to the
size of the colony, then the nonlocal integral is dominated by
those portions of the second curve lying near the point γ (z0) on
γ that achieves the minimal separation. In nondimensionalized
variables we may therefore solve

[1 − C + κγ (z0)]
√

1 − sκγ (z0) = Ce−s2/2σ 2

to estimate the separation s at which a front will arrest. For the
two competing colonies in Fig. 2 separated by a linear front,
we have κγ (z0) = 0, while κγ (z0) = −1/rf for rf the terminal
radius (i.e., at arrest) of the circular colony at the center of
Fig. 3. Thus curvature terms do not occur for flat fronts, but
lead to an increase in colony separation for radial fronts, as
Fig. 3 illustrates. These useful calculations, while elementary,
would prove significantly more challenging in the context of a
large reaction-diffusion system. It is difficult, if not impossible,
to perform them for the model from Ref. [26].

We conclude our case study with an illustration of self-
inhibition. We accomplish this analytically for radial single
colony inoculations and numerically for nonradial inocula-
tions. Given a single radial colony γ (x,t) with self-inhibition
given by (2), the dynamics (1) lead to the ordinary differential
equation (ODE)

r ′ = 1 − r−1 −
√

2πCfσ (r,r)(r/σ ) (3)

for the radius r(t) of the colony, where fσ (r,R) := exp{−(r2 +
R2)/2σ 2}I0(rR/σ 2) and I0(s) denotes the modified Bessel
function of the first kind. Similarly, the coupled system of
ODEs(

r ′
R′

)
=

(
−(

1
r

+ 1
) + √

2πC(rfσ (r,r) + Rfσ (r,R))/σ

1 − 1
R

+ √
2πC(rfσ (r,R) + Rfσ (R,R))/σ

)

describes the evolution of a single annular colony with inner
and outer radii r < R, respectively. The model (1) therefore
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FIG. 4. Dynamics of the model (1) for a single, self-inhibiting colony. The underlying experimental image is from Ref. [25], Fig. 6. At left:
An initial inoculation consisting of a half circle of radius 183 connected to a larger half circle of radius 238. Colors indicate the magnitude
of the total nonlocal forcing vNL at each point; the dark gray regions around the tips of the C are small nonlocal forcing and the dark gray at
the C’s center are large nonlocal forcing. At center: The evolution of the initial colony under (1), with red (light gray) and blue (dark gray)
lines representing time slices from (1) using (C,σ ) = (0.464,200) and a Gaussian kernel. At right: The initial and final states of the evolution.
Smaller values of |vNL| do not deter colony growth, while for larger values of |vNL| the effect of self-inhibition leads to regions of near zero
growth near the center of the colony (a quasiarrested front). (Figure is reproduced with permission.)

illustrates that colony die-out will occur for r(0) sufficiently
small, while (3) itself reveals the influence of the self-inhibition
strength C and length scale σ on an isolated colony in terms
of its die-out radius. The forcing term fσ (r,R) acts with
greater strength on the inner radius of an annular colony,
which shows that growth of the outer edge can occur while the
inner edge remains stagnant, in accordance with experiment
(Ref. [25], Fig. 6). Finally, in Fig. 4 we numerically explore
the ability of (1) to model the dynamics of self-inhibition
for a more complex initial geometry taken from Ref. [25].
When taken together, these results indicate that two simple
mechanisms suffice for qualitatively describing the growth of
competing bacterial colonies. A curvature mediated constant
growth combined with a repulsive force are enough to dictate
the overall growth pattern of the colonies. The key parameters
therefore are the curvature dependence of a single colony’s
growth rate, the length scale over which competing colonies
can communicate, and the strength of mutual interaction. In
particular, the detailed interactions between numerous other
compounds are superfluous at the qualitative level.

Conclusions. Nonlocal effects play a key role in many
biological systems, and they arise naturally from a plethora
of different mechanisms. Our results reveal how nonlocal
models can aid our understanding of patterns formed by
counterpropagating, interacting fronts that experience arrested
motion. While we illustrate this approach using a well-known
phenomenon in bacterial colony formation, we emphasize
that similar systems are ubiquitous in nature and we expect
our approach could be beneficially applied. Examples in-
clude multiscale models for tumor growth, wound healing,
and angiogenesis [28,29]. Predator-prey systems are also
increasingly modeled with nonlocal systems because of the
ubiquity of superdiffusion in nature. Desert plants will often
inhibit competitor growth in nearby regions to secure more
resources such as water [30,31]. Singularly perturbed or
nonlocal reaction-diffusion equations have a long history

in neuroscience [12–15,32–34]. Moving away from biology,
optics has long been a source of singularly perturbed systems
where such behavior has been observed (Ref. [35], Figs. 3–7).
Indeed, a whole host of physical problems could be explored
with our methodology. While reducing a given set of con-
tinuum equations to our nonlocal framework is a nontrivial
task, directly extracting the tangential, curvature, and nonlocal
terms from data is generally more tractable than developing a
full set of equations for all possible signaling variables. The
pattern forming process for complicated initial geometries can
then easily be explored numerically. We are not aware of a
similar approach to understanding nonlocal pattern formation;
this leaves the door open for many explorations both of the
general mathematical behavior of our system and its possible
applications for different experimental systems.

Finally, the basic modeling framework (1) has experimental
implications in many instances. For example, systems that
evolve by mean curvature frequently exhibit self-similar coars-
ening for different phases or droplets, as is typified in a spinodal
decomposition. If the different coarsening domains exhibit a
weak interaction as in (1), then we would expect deviations
from standard scaling laws predicted by mean-curvature flow
alone, and in some cases an unexpected termination of
the coarsening process. These deviations can be explicitly
measured. A second example concerns the characteristic shape
of stable spiral waves that are seen in excitable media such
as the heart. The prevailing theory is that this arises from
an invariant shape under mean-curvature dynamics, i.e., a
purely local and geometric effect. Our approach implies that
a nonlocal interaction between arms of the spiral is necessary
for the stable spiral shape, and that such coherent behavior
then depends crucially on the effective nonlocal interactions
in these systems.

This research was supported by National Science Founda-
tion Grant No. DMS-1312344/DMS-1521138.
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