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A point source on a plane constantly emits particles which rapidly diffuse and then stick to a growing cluster.
The growth probability of a cluster is presented as a sum over all possible scenarios leading to the same final
shape. The classical point for the action, defined as a minus logarithm of the growth probability, describes the
most probable scenario and reproduces the Laplacian growth equation, which embraces numerous fundamental
free boundary dynamics in nonequilibrium physics. For nonclassical scenarios we introduce virtual point sources,
in which presence the action becomes the Kullback-Leibler entropy. Strikingly, this entropy is shown to be the
sum of electrostatic energies of layers grown per elementary time unit. Hence the growth probability of the
presented nonequilibrium process obeys the Gibbs-Boltzmann statistics, which, as a rule, is not applied out from
equilibrium. Each layer’s probability is expressed as a product of simple factors in an auxiliary complex plane
after a properly chosen conformal map. The action at this plane is a sum of Robin functions, which solve the
Liouville equation. At the end we establish connections of our theory with the τ function of the integrable Toda
hierarchy and with the Liouville theory for noncritical quantum strings.
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The goal of this work is to unify two fundamental highly
nonequilibrium processes: Laplacian growth (LG) [1–5],
which is deterministic interface dynamics, and diffusion-
limited aggregation (DLA) [6]—a discrete universal stochastic
fractal growth. These remarkable processes have a lot in
common and were suspected to be deeply related [7–11].

Laplacian growth raised enormous interest in physics
because of (i) its impressively wide applicability ranging from
solidification and oil recovery to biological growth [1], (ii) the
remarkable universal asymptotic shapes it exhibits [1,12–16],
and (iii) discoveries of deep intriguing connections of LG
to quantum gravity [2] and the quantum Hall effect [17].
In mathematics the Laplacian growth appears so exciting
because it possesses beautiful and powerful properties, unusual
for most nonlinear partial differential equations, such as
infinitely many conservation laws [18] and closed form exact
solutions [16,19–22]. A new splash of intense activity in LG
(see [3] for a review) was provoked by the work [2], where
strong connections of LG with major integrable hierarchies
and the theory of random matrices were established.

Mathematical formulation of LG is (deceptively) simple: a
droplet of air, D+(t), where t is time, is surrounded by a viscous
fluid, D−(t) = C/D+(t), called D(t) for simplicity. Both
liquids are sandwiched between two parallel close plates. Fluid
velocity in D(t) obeys the Darcy law, v = −∇p (in scaled
units), where p(z,z̄) is pressure and z = x + iy is a complex
coordinate on the plane. Because of incompressibility, ∇ · v =
0, then ∇2p = 0 in D, except points with sources, which
provide growth. Also, p = 0 at the interface, �(t) = ∂D(t),
between two fluids, if to neglect surface tension. The kinematic
identity requires that normal interface velocity, V (ξ ) (ξ ∈ �),
equals to the fluid normal velocity at the interface, thus

V (ξ ) = −∂np(ξ ), (1)

where ∂n is a normal derivative.
Diffusion-limited aggregation is a process where equal

particles are issued one by one from infinity and diffuse until
they stick to a growing cluster [6]. Remarkably, all grown clus-

ters are monofractals with the numerically obtained Hausdorff
dimension Dh = 1.71 ± 0.01, which appears to be robust and
universal [23] (independent of geometrical details). Analytic
derivation of this number remains a long-standing challenge
in nonequilibrium physics despite numerous efforts [23].
Surprisingly, the same fractal dimension was observed in
several Laplacian growth experiments [24,25], where the
process is continuous and deterministic.

We have unified LG and DLA as two opposite limits
(classical and quantum, respectively) of a stochastic Laplacian
growth, where instead of one particle the source emits K � 1
uncorrelated particles per time unit. The DLA, when K = 1,
can be called a quantum limit of this process, as correlations
between particles in this case are maximal. The next particle
always “feels” a slight change of the interface, caused by
a previously landed particle, while both would be totally
uncorrelated if emitted simultaneously.

By using simple combinatorics we introduce below prob-
ability P of different growth scenarios and define the action
as A = −� logP , where � is the particle area. Then we show
that in the limit, K → ∞, the most probable motion of D(t)
(the classical point of the action) is deterministic and obeys
the Laplacian growth equation. Thus, K → ∞ is the classical
limit of this theory.

It is valuable that the action for Laplacian growth comes
so simply from growth probability. For it is known that
to find a functional, whose extremum gives equations for
dissipative motion, is much harder than for frictionless
processes, whose Lagrangian or Hamiltonian structure is
often straightforward [26]. So far the Laplacian growth
equation was derived only as the approximation of viscous
hydrodynamics.

Electrostatics and Gibbs-Boltzmann statistics. We found
that the action for an arbitrary D(T ) is fully characterized by
harmonic measures, μn(Am), for sources at Am and by their
strengths, Qm. Then we derived that the action equals a time
integral from the entropy, which is the left-hand side of (2)
below. Surprisingly, this purely probabilistic expression can
be transformed to a sum of electrostatic potentials created at
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am (the conformal image of Am) by charges induced on the
unit circle, kept at zero potential:

∑
m,n

Qmμn(Am) log
μn(∞)

μn(Am)
=

∑
m

Qm log(1 − |am|2). (2)

From (2) it follows that growth probabilities for these patterns
obey the usual equilibrium Gibbs-Boltzmann distribution:

P[D(T )]= exp

{
− 1

K�

∫ T

0
dt

∑
m

Qm log(1 − |am(t)|2)

}
,

(3)

where K� serves as temperature. This conclusion opens
possibilities for analyzing nonequilibrium growth processes
by tools of equilibrium statistical physics.

The structure of the Rapid Communication is straightfor-
ward: after introducing harmonic measure and conformal map
we derive the classical Laplacian growth (9) from elementary
probability formulas and introduce virtual classical sources,
which cause “nonclassical” complex shapes. This helps to
present the growth probability of nonclassical shapes in terms
of classical sources (14). Then we transform the entropy (14) to
electrostatic energy (21) in the “conformal” w plane and (26)
in the physical z plane. Finally, we reveal the physical
significance of growth probabilities (21) and (26), which are
two main results of this work, and establish connections with
modern mathematical physics.

The harmonic measure, μD(ξn,A), is important in what
follows. For simplicity we will skip below the label D and
will often refer to μD(ξn,A) just as μn(A). Let us partition the
boundary, �, into N � 1 little fragments of the size |dξn|, so
n = 1,2, . . . ,N . Then the harmonic measure, μn(A), for the
nth fragment between ξn and ξn + dξn, with the source at A,
is defined [27] as

μn(A) = −∂nGD(ξn,A)

2π
|dξn|, ξn ∈ �, (4)

where ∂n is a normal derivative, and GD(z,ζ ) is the Green’s
function of the domain D. By definition, GD(z,ζ ) is a harmonic
function in D, except at z = ζ , where G(z,ζ ) diverges as
log |z − ζ | [28], and also GD(z,ζ ) = 0 at the boundary �. In
electrostatics μn(A) is a charge distribution induced at ξn ∈ �

by a unit charge at A to keep � equipotential. But in this work
the harmonic measure is a probability for a Brownian particle,
issued at A ∈ D(t), to land between ξn and ξn + dξn at �.

Conformal mapping. The harmonic nature of GD(t)(z,A)
suggests the (time dependent) conformal mapping, z = f (w),
from the exterior of the unit circle at the auxiliary complex
w plane to the domain D(t) at the physical z plane. Then
the unit circle, w = eiφ , maps to �(t): ξ = f (eiφ) ∈ �(t).
Setting ∞ → ∞ and f ′(∞) > 0 makes this map unique. Each
fragment |dξ | ∈ � is mapped from a little arc dφ lying between
φ and φ + dφ at the unit circle, and the source A = f (1/ā),
where a is a singularity of f (w), and |a| < 1 (see Fig. 1).

Calculating μn(A) is simple at the w plane, chosen instead
of the z plane, since μn(A) is conformally invariant. From the
Green’s function outside the unit circle, G(w,1/ā) = log(|1 −

FIG. 1. Conformal map z = f (w) from the exterior of the unit
circle to D−, so that ∞ = f (∞), the conformal radius, r = f ′(∞) >

0, and A = f (1/ā).

āw|/|w − a|), and (4) we obtain

μn(A) = Re
eiφn + a

eiφn − a

dφn

2π
, where |dξn| = |f ′(eiφn)| dφn.

(5)
Stochastic Laplacian growth, unifying LG and DLA as

two opposite limits, differs from DLA by K � 1 of simul-
taneously issued independent particles of area � from several
sources.1 The particles are curvilinear quadrangles formed by
equipotential and stream lines, generated by the probability
field. A growing domain is initially a unit circle, so � � 1.
The particles quickly diffuse until they stick to a growing
cluster (forming on its surface an external layer of the area
K�) per characteristic time, δt , which determines a time scale
(a unit time) in the problem. Since they diffuse and stick at
the interface much faster than the interface grows, δt can be
treated as the small time interval. The K issued uncorrelated
particles are to be distributed into N bins of the boundary
with the probabilities, expressed by the harmonic measure (4),
such that the particles stuck to the same bin form a column.
Also, instead of a single source at ∞ there are M uncorrelated
sources at Am ∈ D(t) (m = 1,2, . . . ,M), and the mth source
emits Km particles simultaneously. Thus,

∑M
m=1 Km = K , a

total number of particles (see Fig. 2).
Since these particle sources become fluid sinks with rates

Qm in the continuous (hydrodynamical) limit, the correspond-
ing partial area increments are equal:

Km� = Qmδt. (6)

A single layer, grown by K particles issued from M sources
at Am, is defined by k = {km1, . . . ,kmN }Mm=1, where kmn is a
number of particles deposited from Am and landing at the
nth fragment. Its probability is given by the multinomial
formula P (k) = ∏M

m=1 Km!
∏N

n=1 μn(Am)kmn/kmn!, which in
the Stirling approximation, Km � 1, takes a form of the
Kullback-Leibler entropy [29] (the distance between two
distributions):

P (k) = exp

{
−

N∑
n=1

M∑
m=1

kmn log
kmn

Kmμn(Am)

}
. (7)

1For DLA K = 1 and a single source is at infinity.
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FIG. 2. (a) Stochastic growth of a single layer, Di+1/Di : Here a
thin line is �i = ∂Di formed during the first i time units; a dashed
line represents classical (deterministic) LG for a single source at ∞
during the (i + 1)st unit, and a solid line, �i+1, is an external boundary
of a stochastic layer, Di+1/Di , grown per elementary time unit, δt .
This stochastic layer is equivalent to a classical layer, grown in the
presence of M virtual sources located at A1,A2, . . . ,AM . (b) Three
consecutive fragments of �i , partitioned onto N � 1 equal pieces of
the size

√
� after stochastic growth during the (i + 1)st time unit. The

heights of grown columns equal to hn = √
�kn.

Derivation of the Laplacian growth equation [Eqs. (9)
and (10) below]. The variation of (7) with the constraints
Km = ∑N

n=1 knm shows that P is maximal when

k∗
mn = Kmμn(Am). (8)

This maximum is exponentially sharp when � → 0, so all
fluctuations around k∗

mn are suppressed. Hence k∗
mn is a

classical trajectory for this stochastic process. It describes
the deterministic Laplacian growth with M sources, Qm at
Am = f (1/ām). Indeed, because the normal displacement at
ξn is V (ξn)δt = √

�
∑

m k∗
mn (the particles are approximate

squares,
√

� × √
�), it readily follows from (5), (6), (8), and

the identity, V (ξ ) = Im(f̄tfφ)/|fφ|, that

Im(f̄tfφ) =
M∑

m=1

Re
eiφ + am(t)

eiφ − am(t)
, (9)

which is the classical Laplacian growth with M sources. If
M = 1, Q1(t) = Q, and A1 = ∞, (9) takes a form

Im(f̄tfφ) = Q/(2π ), (10)

which was intensely studied earlier [1–5,30] and addressed by
the stochastic LG in [31].

Thus, it turned out possible to derive the Laplacian
growth equation directly from variational calculus based on
elementary combinatorics. So far this equation was possible
to deduce only from viscous hydrodynamics or kinetics [1].

Growth probability as the sum over scenarios. If growth
continues until time T � δt (T/δt is integer), then different
scenarios to arrive from D(0) to D(T ) exist, depending on
the ordering operation of the sources Am in time. The total
probability is the sum over probabilities of all scenarios,
Ptotal[D(T )] = ∑

(k) P(k), where k = {ki}T/δt

i=1 labels differ-
ent scenarios, and ki denotes the ith layer. The probability of

a single scenario equals

P(k) =
T/δt∏
i=1

P (ki), (11)

where P (ki+1) is a conditional probability for the layer ki+1 to
grow over the domain Di ≡ D(iδt). Since P (ki+1) is indepen-
dent of prehistory, t < iδt , the product in (11) is a Markovian
chain, and the sum over all scenarios extends standard path
integration to scenarios in the space {�(t)} × [0,T ). Taking
P (ki) from (7), Km from (6), and transforming (11), we obtain,
when δt → 0, that P(k) = exp{−A(k)/�}, where we defined
the stochastic action A(k) as

A(k)=
∫ T

0

Qdt

K

M,N∑
m,n=1

kmn(t) log
kmn(t)

k∗
mn(t)

(
Q =

∑
m

Qm

)
.

(12)

For a single source at infinity, M = 1 and A1 = ∞, the
action (12) takes a form

A0(k) =
∫ T

0

Qdt

K

N∑
n=1

kn(t) log
kn(t)

Kμn(∞)
, (13)

where we replaced k∗
1n by its classical value (8).

Virtual sources. We see from (10) that in LG with a single
source at infinity an initial circle, z = r0e

iφ , stays as a circle,
z = r(t)eiφ . It is the classical trajectory of the stochastic
action (13). But in experiments with a single source far enough
from �(t) to be treated as at infinity [12,24,25], complex
irregular interfaces, caused by intrinsic instabilities of the
process, are always observed.

Remarkably, any noncircular domain D(T ) bears “finger-
prints” [singularities of the Schwarz function [32], S(T ,z)
for �(T ), lying in D(T )] left by sources operated at earlier
times, t < T . These complex shapes, D(T ), correspond to
nonclassical trajectories of the stochastic action (13). Thus,
all deviations of “nonclassical” D(T ) from a growing circle
we attribute to these virtual sources at Am, working in their
classical regime [33]. This process is described by the classical
equation (9), but with time-dependent virtual sources, Qm

(except Q1 at ∞), which cause observable deflections of
�(t) from the classical path, prescribed by (10) [34]. Each
virtual source Am contributes to the growth probability by the
action (13) with kn given by (8). By summing up contributions
of the independent virtual sources during δt we obtain the
logarithm of the probability of the nonclassical layer:

log P (ki) =
M,N∑

m,n=1

Kmiμn,i−1(Am) log
Kμn,i−1(∞)

Kmiμn,i−1(Am)
, (14)

where μn,i(Am) is referred to as Di . This is the Kullback-
Leibler entropy mentioned above.

The contribution of log(K/Kmi) in (14) equals K log K −∑M
m=1 Kmi log Kmi = log{K!/

∏M
m=1 Kmi!} = logNi when

Km � 1. Here Ni is the number of partitions of K particles
into Mi groups (sources), K1, . . . ,KMi

, at the ith time step.
Replacing μn,i(Am) by − ∂nGi(ξ,Am) |dξ |/(2π ) under the
logarithm in (14) we rewrite (14) in the continuous limit,
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|dξn| → 0, as

log
P (ki+1)

Ni+1
=

Mi+1∑
m=1

Km,i+1

∮
�i

μi(ξ,Am) log
∂nGi(ξ,∞)

∂nGi(ξ,Am)
,

(15)

where �i = ∂Di and Gi = GD(iδt).
A Dirichlet problem of recovery harmonic functions by

their boundary values is of great help in calculating this
integral. Notice that ∂nG(ξ,∞) = −|w′(ξ )|, where w = w(z)
is inverse to the conformal map, z = f (w), introduced earlier.
Since log |w′(z)| is harmonic in D, then log |w′(ξ )| is the
boundary value of this harmonic function, so the contribution
of the numerator to the integral in (15) equals∮

�

μ(ξ,A) log |∂nG(ξ,∞)| = log |w′(A)|. (16)

(The label i is omitted in (16)–(19) as unnecessary.)
Key observation. The contribution of the denominator to

the integral (15) can be rewritten in a remarkably simple way.
Presenting G(z,A) = ReW (z,A) as G(z,A) = G+(z,A) +
G−(z,A) = Re (W+ + W−), where G+ = ReW+ = log |z −
A|, we obtain from −∂nG = |∂zW | that

log |∂nG(ξ,A)| = Re log

(
1 + (ξ − A)∂ξW

−(ξ,A)

ξ − A

)
. (17)

Since near infinity ∂zW
−(ξ,A) = −1/ξ + O(ξ−2), then sub-

tracting G(ξ,∞) = 0 at � from (17) makes the expression
log |1 + (ξ − A) ∂zW

−(ξ,A)| − G(ξ,∞) harmonic for ξ ev-
erywhere in D. Therefore the corresponding integral in (15),
being a solution of the Dirichlet boundary problem, is the
difference between

∮
�

μ(ξ,A) log |ξ − A| = −G−(A,A) +
G(A,∞) from the denominator and

∮
�

μ(ξ,A) log |1 +
(ξ − A)∂ξW

−(ξ,A)| = −G(A,∞) from the numerator of (17).
After adding (16) to this difference we finally obtain the
remarkable identity,∮

�

μ(ξ,A) log
∂nG(ξ,A)

∂nG(ξ,∞)
=G−(A,A) − 2G(A,∞)

− log |w′(A)|,
(18)

which has a clear electrostatic interpretation shown below.
In the w plane the integral (18) can be further simplified.

Namely, because of (5), the integral (18) is easily calculated
to equal∮

|w|=1

1 − |a|2
|w − a|2 log

1 − |a|2
|w − a|2

dw

2πiw
=− log(1 − |a|2),

(19)

where A = f (1/ā), as said above. This is the Robin func-
tion [35], which is a potential at a created by charges induced
by a unit charge at a on the unit circle, kept at zero potential.
Thus, the entropy (14) was transformed to electrostatic energy,
and with the help of (19) the probability (15) for a single layer
can be compactly rewritten in a form of the Gibbs-Boltzmann
distribution [implying that probability Pi = C exp(−βEi),
where Ei is the energy of the ith state and β is a positive

constant]:

P (ki) = Ni exp

{
Mi∑

m=1

Km log(1 − |am|2)

}
. (20)

Then in the limit δt → 0 the scenario probability (11) becomes
(after defining N = ∏T/δt

i=1 Ni)

P(k) = N exp

{∫ T

0

dt

�

M(t)∑
m=1

Qm log(1 − |am(t)|2)

}
, (21)

and Am = f (1/ām) provides a time dependence of am.
In the z plane the integral (18) allows one to recast (15) in

another remarkable way: adding (15) over all i and assuming
one source per one time unit (we set m = i for convenience)
we obtain via (11) the logarithm of probability of the given
scenario,

log
P(k)

N = −
T/δt∑
i=1

Ki

∮
�i−1

μ(ξ,Ai) log
∂nG(ξ,Ai)

∂nG(ξ,∞)
. (22)

The contribution from the denominator in the right-hand side
of (22) equals to the following neat expression, which depends
on the final domain D(T ) only, but not on a particular way to
arrive at it [36]:

logMD(T ) = 1

2�

{
Area D(T ) +

∮
�(T )

log |w′
T (ξ )| ξ̄ dξ

i

}
.

(23)

As to the numerator in (22), it is shown [36] to equal

I = −
∮

�i−1

μ(ξ,Ai)
∮

�i−1

μ(η,Ai) log |ξ − η|, (24)

which is the energy of self-interacting charge induced on �i−1

with density μ(ξ,Ai). After transforming contour integrals
over �i−1 into integrals over the layer, li = Di/Di−1, it
becomes (see [36])

(Qiδt)
2I = −

∫
li

∫
li

log |z − ζ | d2z d2ζ + π

∫
li

Ai(z) d2z,

(25)
where Ai(z) = |z|2/2 − Re

∫ z

0 S(iδt,z′) dz′ is the so-called
modified Schwarz potential [37]. Then the probability of the
whole scenario (11) equals

P(k) = NMD(T )

T/δt∏
i=1

exp

{
1

Ki�
2

( ∫
li

∫
li

log |z − ζ | d2z d2ζ

−π

∫
li

Ai(z) d2z

)}
. (26)

Strikingly, despite the nonequilibrium nature of LG, in both w

and z planes, the growth probabilities (21) and (26) appear in
a form of the equilibrium Gibbs-Boltzmann distribution, since
exponents in these formulas are electrostatic energies (up to
multiplicative constants).

Finally, interesting connections were found between the
stochastic LG and modern mathematical physics.

Connection to the Liouville theory. Remarkably, the Robin
function, G−(w,w) = − log(1 − |w|2), obtained in (19),
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obeys the (integrable) Liouville equation, vital for the theory
of noncritical strings [38],

∇2
wG−(w,w) = 4 exp{2G−(w,w)}. (27)

Thus, the probability (20) appears to be the classical limit
of the multipoint correlation function of “light” exponential
operators in the Liouville theory on the pseudosphere [39]
(see [36] for details).

Connection to the τ function for the Toda hierarchy. The
main result (26) for a scenario probability can easily be
rewritten through the following integrals:

fi = − 1

π2

∫
li

∫
li

log

∣∣∣∣1

z
− 1

ζ

∣∣∣∣ d2z d2ζ, (28)

which coincide with the τ function for analytic curves [40]
after replacing a layer li by a simply connected fi-
nite domain D. The obtained expression (skipped here
for want of space) connects growth probability to
the dispersionless two-dimensional (2D) integrable Toda
hierarchy.

The replacement of li by D in (28) implies an interaction
of all layers constituting the domain. However, in our case the
layers, li , enter (26) additively, and so are independent. Hence
the sources, participating in the growth of different layers, are
also mutually independent (but not commutative, contrary to
the classical deterministic LG).

Summarizing, we emphasize the derivation of the Lapla-
cian growth equation (9) from the action functional using
elementary combinatorics, and the unexpected relation be-
tween the entropy (14) and electrostatic energies on the w

plane (19) and the z plane (24). As a result, the growth
probabilities satisfy the Gibbs-Boltzmann statistics, suggest-
ing applications of weakly nonequilibrium thermodynamics to
this highly unstable and nonequilibrium process.

In conclusion, we state the expected impact of the results
obtained in this Rapid Communication as follows:

(1) For LG and DLA: The presented theory promises
to elucidate derivation of the DLA fractal spectrum and
unexplained selection problems in LG.

(2) For nonequilibirum physics: It appears possible now
to address highly nonequlibrium growth in the framework of
linear nonequilibrium thermodynamics [41] and to reinterpret
complex pattern formation as a self-organizing nonequilibrium
process.

(3) For other branches of physics: Remarkably, the growth
probability (26) links stochastic LG with the growth of an
electronic droplet in a quantum Hall effect [17]. It allows
us to reformulate our model in terms of normal random
matrices [42], which underly 2D quantum gravity [43].

The next step is to go beyond the classical limit, which
was the subject of this work, and to study quantum stochastic
Laplacian growth, where the correlations between particles
become important, i.e., when K is small.
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